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Abstract: With the spread of devices equipped with touch panels, such as smartphones, tablets,
and laptops, the opportunity for users to perform touch interaction has increased. In this paper,
we constructed a device that generates multi-touch interactions to realize high-speed, continuous,
or hands-free touch input on a touch panel. The proposed device consists of an electrode sheet
printed with multiple electrodes using conductive ink and a voltage control board, and generates
eight multi-touch interactions: tap, double-tap, long-press, press-and-tap, swipe, pinch-in, pinch-out,
and rotation, by changing the capacitance of the touch panel in time and space. In preliminary
experiments, we investigated the appropriate electrode size and spacing for generating multi-touch
interactions, and then implemented the device. From the evaluation experiments, it was confirmed
that the proposed device can generate multi-touch interactions with high accuracy. As a result, tap,
press-and-tap, swipe, pinch-in, pinch-out, and rotation can be generated with a success rate of 100%.
It was confirmed that all the multi-touch interactions evaluated by the proposed device could be
generated with high accuracy and acceptable speed.

Keywords: touch panel; multi-touch interaction generation; human–computer interaction; interface

1. Introduction

Devices equipped with a capacitive touch panel, such as smartphones, tablets, and
laptops have become widespread. The users can intuitively input the intended operations
by performing touch interactions on the touch panel. Touch interaction is superior to the
keyboard and mouse input in that it enables rich interaction in a small area. Although small
screens such as smartwatches limit input and output space, a synergistic system by allowing
input and output on the strap of a smartwatch [1] and a new gesture input using touch and
blink synchronization [2] have been proposed. Touch interaction includes tap using one
finger and multi-touch using multiple fingers. With multi-touch, it is possible to perform
complicated input that is difficult with a tap, and the range of input expression expands.
Some studies have also proposed new touch interactions by creating their recognition
algorithms [3] and by using buttons attached to the edge of the touch panel [4]. Thus,
research on input methods for touch panels has been actively conducted. On the other
hand, a tangible interface using a magnetic rubber sheet and conductive material [5], and
a sticker with a striped conductive part printed on the sheet [6], have been proposed as
methods to generate touch input without directly touching the touch panel.

In this paper, we propose a device that dynamically generates multi-touch interactions
using a printable circuit and a microcontroller. The proposed device generates multi-touch
interactions such as swiping and pinching with one interface without installing any new
software on the touch panel. If there is a device that generates multi-touch interactions
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on behalf of the user, high-speed, continuous, and hands-free touch input can be realized,
and it can be expected to improve work efficiency and automation using touch panels.
Integrating the proposed device into a tangible device or stylus, it will be possible to
generate multi-touch interactions at the point where they are placed. It can also be used
as an automatic operation of game applications or as a command input aid. Since the
proposed device can operate the touch panel in the same way as a person physically
touches the touch panel, it is possible to operate and debug multiple devices in parallel at
the same time, or to physically operate devices that are not connected to the network for
security reasons by attaching the proposed wireless device. There is a product that tests the
responsiveness of touch panels [7]. It would be able to generate multi-touch by this product
with two nibs, but the proposed method is more useful because it can be downsized, does
not need to be fixed, and can be embedded in the objects used in daily life.

The proposed device consists of an electrode sheet printed with electrodes using
conductive ink and a voltage control board, and generates multi-touch interactions by
changing the capacitance of the touch panel in time and space. Preliminary experiments
were performed to investigate the size and spacing of the electrodes required to generate
multi-touch interactions, and based on that the device was designed and implemented. In
the evaluation experiments, it was confirmed that the proposed device can generate six
multi-touch interactions of tap, press-and-tap, swipe, pinch-in, pinch-out, and rotation with
high accuracy. We also measured the number of pixels that the generated swipe moved the
page (movement), the rate at which the page was enlarged by pinch-out (enlargement), the
rate at which the page was reduced by pinch-in (downsizing), and the angle at which the
page was rotated by rotation (rotation). In addition, we investigated the minimum required
interval until the next multi-touch interaction after the generation of the multi-touch
interaction, and confirmed that the proposed device can generate multi-touch interactions
at high speed.

This paper is organized as follows. Section 2 introduces related works. The proposed
method is explained in Section 3 and device implementation is explained in Section 4.
The evaluation experiment is detailed in Section 5. Application examples of the proposed
method are described in Section 6. Section 7 concludes this paper.

2. Related Work

This section introduces the works on a tangible interface that enables interaction
between human and computer through the touch panel and the works on touch interaction
generation device.

2.1. Tangible Interface for Touch Panel

Capacitive touch panels recognize a touch by detecting the approach of a conductor
such as the human body. This basic principle was proposed by Rekimoto [8] for SmartSkin,
and since his proposal, many studies on the interface used on touch panels have been
made. This section introduces works related to interfaces to touch panels.

Ikematsu et al. [9] proposed an interaction technique to extend the input area of
capacitive touchpads and touchscreens through objects. A physical bar can be turned into
a touch bar by touching the trackpad and the line width can be continuously changed
according to the force of holding the pen in a gripping pen that incorporates a pressure-
sensitive sensor. Bianchi et al. [10] proposed a widget that electrically connects the contact
surface of a touch panel with a conductive material. It is a simple physical aid for active
reading on a tablet computer that runs on a tablet device and runs without batteries. Clip-
on Gadgets proposed by Yu et al. [11] use a clip with physical buttons attached to a touch
panel such as a smartphone to perform touch input. Conductive rubber is attached inside
the clip, and when a button is pressed, the capacitance of the conductive rubber changes to
generate touch input. Touch input can be performed only at the place where the conductive
rubber is arranged.
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CapStones of Chan et al. [12] have multiple conductive parts with a block-like interface.
By stacking CapStones on a touch panel, the number of conductive parts that touch
the touch panel increases, creating different multi-touch patterns. In CapStones, the
connection state of an object is obtained by a multi-touch pattern. GaussBricks proposed by
Liang et al. [13] is a device embedded with a magnet and can detect the method of device
connections by the Hall sensor in the touch panel. It is also possible while floating over the
touch panel. In addition, an application that displays objects on the touch panel according
to the shape of the connected interface is implemented. Jansen et al. [14] proposed a
tangible interface for operating a large display by placing a slider or dial on a tablet.

Schmitz et al. [15] have proposed a design system for 3D objects with capacitive touch
sensors, and based on this, a tangible interface with conductive parts using a 3D printer
has been proposed [16,17]. Kato et al. [16] have proposed a tangible interface that generates
touch input on a touch panel when the user touches a grid with multiple conductive points
by printing it with a fused deposition modeling (FDM)-based 3D printer. This allows the
user to control the touch input at any position on the printed interface surface. CapWidgets
proposed by Kratz et al. [17] use a knob-type interface with two conductive parts arranged
on the bottom of its surface, turning the knob changes the capacitance of the conductive
part and can operate the touch panel.

As introduced above, there have been proposed many tangible interfaces that produce
touch interaction on touch panels. By touching the tangible objects, predefined touch
pattern(s) are invoked on a touch panel, while our method enables multiple dynamic touch
inputs, such as swipe and pinch-in, by controlling the capacitance change points.

2.2. Touch Interaction Generation Device

Table 1 shows the methodology, performance, and feature of the devices in the related
works on touch interaction generation and our device for the comparison at a glance.
The marker fabricated by Yu et al. [18] changes the capacitance between the touch panel
and the marker by applying an electric current to generate a touch on the touch panel.
Ogata et al. [19] have realized data transmission on a touch screen of a multi-touch device
using a pen-type device that can electronically change the judgment of touch sensing.
Kim et al. [20] have built a mechanism called SikuliBot that uses a 3D printer to physically
move a stylus pen and input data to a touch panel. Voelker et al. [21] created a multi-touch
interface that does not require contact with a battery or human body by electrostatically
coupling a transmitting electrode in a touch panel to a receiving electrode at another posi-
tion via a conductive bridge as an interface for generating touch input. Takashina et al. [22]
have proposed a method to operate the touch panel without using fingers to automate the
operation of the touch panel. They propose two methods to achieve the quasi-touch: the
resistance control method, in which a semiconductor switch is contacted to cause a direct
charge movement on the surface, and the capacitance sensor control method, in which an
alternating-current (AC) signal is given from the outside to deceive the capacitive sensor. In
this study, the quasi-touch is realized by the same method as the resistance control method.

Kawahara et al. [23] have proposed a method to generate conductive patterns using
a multifunction machine and conductive ink. The followings works use conductive inks.
Ikeda et al. [24] proposed a CapacitiveMarker that can generate a multi-touch by touching a
two-dimensional electrode pattern printed with conductive ink on the touch panel. This can
be applied to viewpoint switching in a map application or character switching in a game.
Wiethoff et al. [25] created Sketch-a-TUI, which creates a different multi-touch pattern for
each object by drawing conductive parts on a paper object with conductive ink, and identi-
fies the object using the multi-touch pattern. Yamanaka et al. [26] proposed a SheetKey that
generates complex touch input patterns printed with conductive ink for secure authentica-
tion against shoulder surfing. ExtensionSticker [6] by Kato et al. is an interface to extend
the touch panel by sticking it to the touch panel with a striped seal made using conductive
ink. By touching the conductive part of the sticker, a touch input corresponding to the print
pattern is generated on the touch panel. Ikematsu et al. [27] have proposed LightTouch for
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dynamically generating multi-touch. LightTouch is a photoresistor-based passive interface
for converting visible light into capacitive touch inputs. It simulates finger operations such
as tapping, swiping, or multi-touch gestures using conductive materials and photoresistors
embedded inside the objects.

Table 1. Method, performance, and features of the related works on touch interaction generation. Note that dynamic
multi-touch means multi-touch interaction with motion such as swipe and static multi-touch means multi-touch pointing
without motion.

Ref. Methodology Performance Features

Ours Controlling the grounding state of
printed electrodes using relays.

Multi-touch interactions at
88–100% accuracy.

Multiple dynamic multi-touch
available; touchpoints can move;

battery required

TUIC [18]

Fabricated conductive marker
changing the capacitance on the

touch panel by applying an electric
current.

Half-cycle input interval is
12 ms.

Single static multi-touch available;
touchpoints cannot move; battery

required

FlashTouch
[19]

Controlling the grounding state of
conductive sponge using a relay.

Transmit data via a single touch
pattern at 33 bps.

Single-touch available; touchpoints
cannot move; battery required

SikuliBot [20]
Controlling a stylus attached to a 3D

printer extruder with computer
vision.

Single-touch interactions can be
generated like a human.

Any single-touch available;
touchpoints can move; battery

required; big device

PUCS [21]

Electrostatically coupling a
transmitting electrode with a

receiving electrode in a touch panel
via a conductive bridge.

90% or more touch detection
accuracy; marker size: 6–10 mm;

bridge length: +20 mm.

Static multi-touch available;
touchpoints cannot move; no

battery required

Device of
Takashina
et al. [22]

A variable resistance matrix to the
ground on a specified point on the

touch panel.

Touch at up to 3 points
are generated.

Static multi-touch available;
touchpoints cannot move; battery

required

Capacitive
Marker [24]

A 2D electrode pattern printed with
conductive ink.

A static multi-touch pattern
recognized in 19 ms.

Single static multi-touch available;
touchpoints cannot move; no

battery required

Sketch-a-
TUI [25]

Drawing parts on a paper object
with conductive ink.

Objects are identified on a touch
panel from conductive pattern.

No evaluation.

Single static multi-touch available;
touchpoints cannot move; no

battery required

SheetKey [26] Printing the touch input patterns on
the sheet with conductive ink.

The user slides a finger on the
sheet and authenticated with

78–87% accuracy.

Single dynamic multi-touch
available; touchpoints cannot move;

no battery required

Extension
Sticker [6]

Printing stripe pattern on the sheet
with conductive ink.

Touching the conductive part, a
touch input corresponding to
the print pattern is generated.

Single dynamic multi-touch
available; touchpoints can move; no

battery required

LightTouch
[27]

Change grounding state of
electrodes using photoresistor and

visible light.

Touch, swipe, and pinch-in/out
can be generated. No

evaluation.

Touch, swipe, and pinch-in-out
available; rotation not available

For the touch generation methods introduced in the related studies, it is possible to
generate predefined multi-touch patterns or mimic and transform finger touch inputs. In
this paper we propose a device that generates multi-touch interactions using a sheet on
which electrodes are printed with conductive ink. Unlike conventional works, in this paper
a single device can dynamically generate multiple multi-touch interactions. In addition,
LightTouch [27] needs to install the application to the PC of the touch panel that emits
visible light through the display, while our device does not need any software installation
or setup. The idea of the proposed method and preliminary experiments were presented



Electronics 2021, 10, 1475 5 of 19

at the conference adjunct proceedings paper [28]. In this study, a new prototype was
implemented, and a more detailed evaluation was conducted to validate the effectiveness.

3. Proposed Method

This section explains the configuration and processing of the proposed method.

3.1. Touch Recognition Mechanism of General Capacitive Touch Panel

A touch detection method in a capacitive touch panel is briefly explained. Please
refer to the literature [8,29,30] for details. The capacitive touch panel senses the change
in capacitance by the capacitance coupling effect [29]. There are two types of capacitive
touch panels, surface capacitive and projected capacitive, but currently, they are mainly
made with projected capacitive technology (PCT) [30]. In a projected capacitive touch
panel, a signal transmitting electrode and a signal receiving electrode are arranged in a
grid pattern, and electrostatic coupling occurs at the intersection of the transmitting and
receiving electrodes. When a grounded conductor, such as the human body, approaches a
place where electrostatic coupling is performed, the capacitance between the electrodes
changes. The touch is detected by measuring the amount of change in the capacitance.
Multiple touches can be detected by scanning the signal of the transmission electrodes.

Since the touch panel adapts to the operations with fingers, touch is not detected
if the area where the capacitance is changing is too small or too large. In addition, a
threshold is set for the change in capacitance so that the touch is not detected before the
finger touches the touch panel. Furthermore, when two points are touched, if the distance
between the two points is shorter than the grid spacing of the electrodes, the two points
cannot be separated and recognized as a tap. In this paper, we create a device that takes
these constraints into account.

3.2. Multi-Touch Interactions

In the proposed device, the electrodes are grounded under the control of a microcon-
troller and a relay, and eight types of multi-touch interaction: tap, double-tap, long-press,
press-and-tap, swipe, pinch-in, pinch-out, and rotation, are realized. Each multi-touch
interaction is shown in Figure 1.

Press-and-tapLong-pressDouble-tapTap

Swipe Pinch-in Pinch-out Rotation
Figure 1. Illustrations of multi-touch interactions (designed by Macrovector—Freepik.com (ac-
cessed on 18 June 2021)).

Tap is a single-touch operation and is equivalent to a left-clicking with the mouse.
Double-tap is a quick two-touch operation, and is equivalent to a double-click. Long-press
is an operation that keeps touching and is equivalent to right-clicking with the mouse.
Long-press is also known as press-and-hold. Press-and-tap is a touch operation with one
finger while touching with the other finger, which is also equivalent to right-clicking. Both
long-press and press-and-tap are equivalent to right-clicking a mouse, however long-press
requires touching the touch panel for a few seconds, while press-and-tap allows quick
right-clicking. Swipe is the operation of moving in one direction while touching with a

Freepik.com
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finger, and is equivalent to moving the mouse wheel. Pinch-in is an operation of pinching
with two fingers, and is equivalent to downsizing the object on the screen by moving the
mouse wheel while pressing the Ctrl key. Pinch-out is an operation to move two fingers
in opposite directions while touching with the fingers and is equivalent to enlarging the
object on the screen by moving the mouse wheel while pressing the Ctrl key as well as
pinch-in. Rotation is the operation of touching with one finger as a center and moving the
other finger on the touch panel similar to drawing a circle around the center finger, which
is equivalent to rotating an object in the screen. Rotation cannot be realized with a mouse.

3.3. Multi-Touch Interaction Generation Method

The proposed method uses an electrode sheet made by printing electrodes on a plastic
film using conductive ink. The method of realizing each touch interaction is as follows.
Tap ground one electrode only once. Double-tap generates two taps quickly. Long-press
grounds one electrode for a certain time. During the electrode is grounded, long-press
is effective.

The remaining five types of interactions are generated by continuously grounding
multiple electrodes and moving the center point of the change in capacitance. The pro-
cedure for generating a swipe is shown in Figure 2. In the figure, � (black square) is the
grounded electrode, � (white square) is the ungrounded electrode, and the blue circle is
the center point of the capacitance change recognized by the touch panel.The procedure for
generating the swipe is as follows.

1. Electrode A is grounded and the center of the capacitance change is generated at the
position of electrode A.

2. Electrode B is also grounded and the center of the capacitance change is moved to the
midpoint of the two electrodes.

3. Electrode A is released (not grounded), and the center of the capacitance change is
moved to the position of electrode B.

Point of capacitance change recognized by touch panel

Grounded electrode
Ungrounded electrode

(1) (2) (3)A B A B A B

Figure 2. Generation procedure of swipe.

This procedure is carried out with two electrodes adjacent to each other in the swipe
direction to generate a swipe. This method takes advantage of the constraint that if the
distance between adjacent electrodes is shorter than the grid electrode spacing inside the
touch panel, two points of grounding are misidentified as one point of touch.

Other interactions are realized by a combination of tap, long-press, and swipe as
shown in Figure 3. In the figure, � (black square) is the grounded electrode, � (white
square) is the ungrounded electrode, and the blue circle is the center point of the capacitance
change recognized by the touch panel. Press-and-tap keeps one electrode grounded while
another non-adjacent electrode is grounded. Pinch-in/-out is created with two swipes in
the direction of approaching/away. Rotation long-press one electrode and creates swipe at
non-adjacent positions.
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Press-and-tap

Pinch-in

Pinch-out

Rotation

Point of capacitance change recognized by touch panel

Grounded electrode
Ungrounded electrode

Figure 3. Generation procedure of press-and-tap, pinch-in, pinch-out, and rotation.

In addition to these, there are drag and flick interactions. Drag is generated with a
long-press and then swipe, and we confirmed that drag can be generated in this way. We
also confirmed that flick can be generated by generating a swipe whose last electrode is
grounded for short time.

In the touch generation methods of related studies, it is possible to generate unique
multi-touch patterns or to output a finger touch input as a separate touch input using a
sheet with printed conductive parts. However, it is necessary to combine multiple interfaces
or design new interfaces to generate different touch patterns. The proposed method can
dynamically generate various multi-touches with a voltage control board, a battery, and a
single electrode sheet.

4. Implementation

This section describes a preliminary experiment to investigate the electrode size
required for multi-touch interaction generation and an implementation based on the results
of the preliminary experiment.

4.1. Preliminary Experiment

According to the literature [21], it is assumed that the grid electrode spacing inside the
touch panel is generally 5 mm. The longest distance of the diagonal electrode intersections
is 5
√

2 ≈ 7.07 mm. If the distance between electrodes of our device is shorter than
this, multi-touch interaction may not be generated. On the other hand, if the electrodes
are distant, the device becomes large and the interaction generation in the procedure of
Figures 2 and 3 results in separate taps, so the electrode spacing should be the smallest one
that generates multi-touch interaction with high accuracy. Therefore, a prototype device
was built and its success rate, i.e., the number of success input per trials, was investigated
for four interactions that move the center of the capacitance change point: swipe, pinch-in,
pinch-out, and rotation, at different electrode sizes.

The electrode sheet was made by printing electrodes on a plastic film (NB-TP-3GU100
manufactured by Mitsubishi Paper Mills, Ltd., Tokyo, Japan) using conductive ink (silver
nano-particle ink manufactured by Mitsubishi Paper Mills) by an inkjet printer (PX-S160T
manufactured by EPSON) as shown in Figure 4. In this study, conductive ink was used,
but technology to print electrodes using a 3D printer has been proposed [31], which is
also the other solution to realize our device. One electrode was made of squares of five



Electronics 2021, 10, 1475 8 of 19

sizes with sides of 4, 5, 6, 7, and 8 mm, and the gap between the electrodes was set to
0.5 mm. The 0.5 mm gap is the minimum distance that the two electrodes do not carry
voltage. When the electrode size is determined, the gap is set to 0.5 mm, and the electrode
distance is automatically determined, so the evaluation is conducted by changing only the
electrode size. The touch panel used was a Lenovo ThinkPad X1 Yoga (14 inch, 30.94 cm
width, 17.42 cm height display; Windows 7; 10-point multi-touch compatible). The display
resolution is set to 1920 × 1080 pixels and divided by side length; density is approximately
157 pixels per inch (ppi). Each multi-touch interaction was generated 100 times using five
different sized electrode sheets in two directions: parallel and diagonal (tilted 45 degrees
to the parallel direction) to the grid electrode inside the touch panel, for a total of 4 types
of multi-touch interaction × 5 types of sheets × 2 directions × 100 = 4000 times and
the success rate was measured, e.g., the success rate is 90% when 90 out of 100 trials
are successfully input. Generation in the parallel direction was triggered by placing the
rectangular electrode sheet parallel to the edge of the touch panel, while generation in the
diagonal direction was triggered by placing the rectangular electrode sheet at a 45-degree
angle to the edge of the touch panel.

Figure 4. Electrode sheet used in the preliminary experiment. The scale is millimeters.

We implemented an application in C# that obtains touch input information. As a
means of detecting touch input, we use ManipulationDeltaEvent, which can acquire
the amount of movement, downsizing, enlargement, and rotation of an object when a
touch operation is performed on an object placed in a windows application. Therefore,
we placed a square object in the application and generated touch input on that object.
More specifically, ManipulationStaringEvent is triggered when a touch input starts (i.e.,
when a finger touched the panel), ManipulationDeltaEvent is triggered when the touch
input moves, and ManipulationInertiaStartingEvent is triggered when the touch input
ends (i.e., when a finger leaves the panel). Through the events, position, amount of
downsizing/enlargement, and amount of rotation can be obtained. The success of each
multi-touch interaction is judged as follows. For swipe, if the positions of the object at the
end of touch input and the start of touch input are not identical, the swipe is counted as a
success. For pinch-in, if the amount of scale ratio at the end of touch input in proportion to
the original object size is less than 1, the pinch-in is counted as a success. For pinch-out,
if the amount of scale ratio at the end of touch input in proportion to the original object
size is more than 1, the pinch-out is counted as a success. For rotation, if the amount of
rotation at the end of touch input compared to the original object orientation is not zero,
the rotation is counted as a success.

The duration of grounding and ungrounding the electrodes is explained with an
example of the time series of controlling two electrodes A and B to generate a swipe as
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shown in Figure 5. As seen in the figure, the time to switch between the grounding and
ungrounding of the electrodes is called switching time in this paper, and all switching
time is set to 50 ms in the preliminary experiments. More specifically, one snapshot of
switching pattern in an interaction remains for a switching time. The time between the end
of one multi-touch interaction and the start of the next multi-touch interaction is called the
interval and was set to 1000 ms. These values are enough long to generate and secure the
interaction generation so that the electrode sizes can be investigated. The investigation of
switching time and the success rate is conducted in the later evaluation section.

Switching time

ElectrodeA Grounded

A BElectrode ElectrodeB

Ungrounded

Grounded
Ungrounded

Time

Interval
Figure 5. An example of time series for controlling electrodes to generate swipe.

The results are shown in Table 2. The success rate of the swipe was 100% for electrode
size more than 7 mm in both the parallel and diagonal directions. These results are generally
in line with our expectations that the grid electrode spacing inside the touch panel is
generally 5 mm and distance of the diagonal electrode intersections is 5

√
2 ≈ 7.07 mm.

Table 2. Success rate of interaction generation [%]. (Diag. = Diagonal).

Electrode Swipe Pinch-In Pinch-Out Rotation
Size Parallel Diag. Parallel Diag. Parallel Diag. Parallel Diag.

4 mm 9 24 27 75 61 65 97 94
5 mm 95 93 71 84 55 98 100 100
6 mm 98 97 100 100 100 100 100 99
7 mm 100 100 100 100 100 100 100 100
8 mm 100 100 100 100 100 100 100 100

Other multi-touch interactions could be generated with a 5 mm electrode. While the
swipe is generated by two adjacent electrodes, the pinch-in and pinch-out electrodes use
five electrodes and the swipe part in the rotation uses three electrodes, and the success rate
is estimated to be higher even for small electrodes due to the large displacement of the
center of the capacitance change. In the 4 mm experimental conditions, the success rate of
swipe was lower, even though complex operations such as Pinch-in/out can be recognized.
The complex operations invoked electrodes in a wider area than swipe, which might lead
to higher success rate. The electrode size should be at least 7 mm to generate swipe with
high accuracy.

4.2. Device Implementation

Based on the results of preliminary experiments, we designed a honeycomb structure
with nine regular hexagonal electrodes with a distance of 7 mm to opposing surfaces
across a flat surface to minimize the printed area of the electrodes and to increase the
granularity in the direction of the swipe. In Figure 6,
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Rotation

Pinch-out

Pinch-in

Swipe (use two electrodes)

Swipe (use three electrodes)

Point of capacitance change recognized by touch panel
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(white hexagon) is the ungrounded electrode, and the blue circle is the
center point of the capacitance change recognized by the touch panel. A swipe using two
adjacent electrodes can be generate in six directions π/3× n [rad] (n = 0, 1, 2, 3, 4, 5), and
a swipe using three electrodes can be generated in different six directions π/6 + π/3× n
[rad] (n = 0, 1, 2, 3, 4, 5), enabling 12 directions in total. In Pinch-in and pinch-out were
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achieved by generating two sets of swipes with four electrodes and rotation was achieved
by switching the electrodes to draw two arcs simultaneously with six electrodes. Tap,
double-tap, long-press, and press-and-tap are the same as in the preliminary experiment as
these do not require movements.

Rotation

Pinch-out

Pinch-in

Swipe (use two electrodes)

Swipe (use three electrodes)

Point of capacitance change recognized by touch panel

Grounded electrode
Ungrounded electrode

Figure 6. Multi-touch interaction generation procedure in the honeycomb structure of the pro-
posed device.

Figure 7 shows the configuration of the proposed device. The device consists of a
one-board microcontroller, a circuit consisting of a mechanical relay, an electrode sheet,
and a power supply. Multi-touch interactions are generated by pre-programming the
electrode control pattern. The circuit diagram is shown in Figure 8. An Arduino Uno was
used as the microcontroller. The electrodes and microcontroller were connected via a relay
(946H-1C-5D). The relay and the electrode are connected by a conducting wire, and the
electrodes and the conducting wires are bonded by conductive tape. The microcontroller is
powered by universal serial bus (USB).
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Power source

Microcontroller

Relay circuit

Electrode sheet

Touch panel

Figure 7. Device configuration.

2
3
9

1 0
1 1
1 8
1 4
1 5
1 6

GND

Micro
controller

Relay Electrode

Figure 8. Device schematic.

5. Evaluation

In this section, we evaluate the success rate of multi-touch interactions and the amount
of swipe, pinch-in, pinch-out, and rotation.
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5.1. Success Rate of Multi-Touch Interactions
5.1.1. Evaluation Environment

If a single multi-touch creation takes several seconds, it cannot be used as an interface,
and it is preferable to be able to create interactions on the display within a short time after
sending the creation command. In some cases, swiping and zooming multiple times in
succession can result in long moves and large zooms, so it is desirable to be able to generate
a large number of touch interactions in a short period of time. Therefore, we evaluate the
success rate for six interactions with different switching times: tap, press-and-tap, swipe,
pinch-in, pinch-out, and rotation by changing the switching time. Double-tap is omitted
from the evaluation since we have confirmed that it is generated by two taps with short
intervals. Long-press is also omitted from the evaluation since it is just grounding an
electrode for a longer time than tap. If only taps were performed, it would simply be an
evaluation of the responsiveness of the touch device, but we evaluated our device because
it is unknown whether the success rate of interactions with motion, such as swipe, pinch-in,
pinch-out, and rotation, is similar to that of taps.

The touch panel used was a Lenovo ThinkPad X1 Carbon (14 inch, 30.94 cm width,
17.42 cm height display; Windows 10; 10-point multi-touch compatible). The display
resolution is set to 1920 × 1080 pixels and divided by side length; density is approximately
157 ppi. We obtain touch input information by the same application as in the prelimi-
nary experiment in Section 4.1. Figure 9 shows the experimental setup of Arduino Uno,
mechanical relays, electrode array, and a touch panel. The electrodes are connected to
the relays via enamel coated cable and the relays are connected to the pins of Arduino
Uno. The operation is sent from the laptop. The C# application run on the laptop acquires
the amount of movement, downsizing, enlargement, and rotation of an object when a
touch operation is performed on a red square object placed in a windows application. The
electrodes generate touch input on that object. The success of tap and press-and-tap is
determined as follows. For tap, when ManipulationInertiaStartingEvent is triggered if
the amount of scale ratio and rotation are unchanged, the tap is counted as a success. For
press-and-tap, when the second tap is detected while the first press is being detected, the
press-and-tap is counted as a success.

For tap, the switching time was changed from 1 ms to 25 ms in steps of 1 ms and from
25 ms to 200 ms in steps of 5 ms. For each switching time, taps were generated 100 times
continuously without an interval (6000 times in total). More specifically, when switching
time is 5 ms, the electrode is grounded for 5 ms, ungrounded for 5 ms, grounded for 5 ms,
and to be the same afterward. Except for the tap, the switching time was changed from
5 ms to 200 ms in steps of 5 ms. For each switching time, the interval was fixed to 500 ms.
For each switching time, each interaction was generated 100 times, 4000 times in total.

To laptop
(communication and power)

Electrodes

Mechanical relays

Arduino Uno

Touch panel
(Thinkpad X1 carbon)

Object in the application
(red square area)

Figure 9. Experimental setup of the microcontroller, relays, electrodes, and laptop in the evaluation.
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5.1.2. Results

The success rates for tap, press-and-tap, swipe, pinch-in, pinch-out, and rotation are
shown in Figure 10. In the following, the results are explained for each interaction.

Figure 10. The success rate of multi-touch interaction generation vs. switching time.

Tap was generated with a success rate of almost 100% when switching time was equal
to or more than 22 ms. When the switching time was less than 15 ms, the success rate
was less than 50%. When the tap generation failed, any other false interactions were not
generated. Press-and-tap was generated with a success rate of 100% when the switching
time was equal to or more than 170 ms and 94% or more when switching time was equal to
or more than 95 ms. The success rate was 0% when the switching time was equal to or less
than 45 ms. When the press-and-tap generation failed, mostly single tap was incorrectly
generated and the rest are no interactions generated. Swipe was generated with a success
rate of 100% when switching time was equal to or more than 20 ms, 99% when switching
time was 15 ms, 80% when the switching time was 10 ms, and 0% when the switching
time was 5 ms. When the swipe generation failed, mostly tap was incorrectly generated
and the rest are no interactions generated. Pinch-in was generated with a success rate of
99% or more when the switching time was equal to or more than 105 ms and 0% when
the switching time was less than 25 ms. When the pinch-in generation failed, mostly no
interactions were generated and the rest are tap, swipe, or pinch-out incorrectly generated.
Pinch-out was generated with a success rate of 99% or more when the switching time was
equal to or more than 60 ms and 0% when the switching time was less than 15 ms. When
the pinch-out generation failed, mostly no interactions were generated and the rest are tap
or swipe incorrectly generated. Rotation was generated with a success rate of 99% or more
when the switching time was more than 40 ms and 0% when the switching time was less
than 10 ms. When the rotation generation failed, mostly no interactions were generated
and the rest are tap or swipe incorrectly generated.

5.1.3. Discussion

The results show that tap can be generated at 25 touches per second with a success
rate of almost 100% since 20 ms switching time means that one tap takes 40 ms. The success
rate of tap significantly drops at a switching time of 20 ms or less, showing that the touch
recognition of the touch panel is performed at intervals of approximately 20 ms, or there is
a restriction in the software that the touch whose occurrence interval is less than 20 ms is
not recognized. Particularly the result for tap in the short switching time (less than 10 ms)
is not stable and may not be reliable due to the operation time of the relay used, which is
less than 6 ms according to the datasheet. On the other hand, the success rate of longer
switching time (more than 10 ms) is improving as switching time becomes longer. As the
touch panel does not react for the switching time less than 20 ms, the operation time of the
mechanical relay does not affect the performance of the proposed method.
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5.2. Amount of Movement, Downsizing, Enlargement, and Rotation
5.2.1. Evaluation Environment

For multi-touch interactions with motion, such as swipe, pinch-in, pinch-out, and
rotation, it is an important indicator that the amount of movement by swipe, amount of
downsizing by pinch-in, amount of enlargement by pinch-out, and amount of rotation by
rotation are the intended amount and stable amount. We measured the swipe movement,
pinch-in downsizing, pinch-out enlargement, and rotation degrees for the successfully
generated touch interactions in Section 5.1.

The amount of movement was recorded by calculating the distance between the
positions of the object at the start of touch input and the end of touch input. Since the object
moves in both the x-axis and y-axis directions, we calculated the square root of the sum of
squares of the amount of movement in the x-axis direction and the amount of movement in
the y-axis direction. The amount of downsizing and enlargement is the amount of scale ratio
at the end of touch input to the start of touch input. DeltaManipulation.Scale is a property
that can be retrieved when ManipulationDeltaEvent occurs, and the scale ratio of an object
by touch input can be acquired. Similarly, the amount of rotation of an object by touch
input can be acquired through DeltaManipulation.Rotation. Since ManipulationDeltaEvent
occurs multiple times during a touch input, the amount of scale ratio was calculated as
the product of DeltaManipulation.Scale from the start to the end of the touch input. The
amount of rotation was calculated as the sum of DeltaManipulation.Rotation from the start
to the end of the touch input.

5.2.2. Results and Discussion

The amounts of movement, downsizing, enlargement, and rotation are shown in
Figures 11–14, respectively. In the figures, the blue line shows the success rate, red circles
with black error bars show the average value and the standard deviation. The average and
standard deviation are calculated over the successful input, therefore error bars are not
shown for the cases of 0% success rate. In the amount of downsizing and enlargement, it
represents the ratio of the object size after the interaction compared with the original size,
so 100% means that the object size has not been changed.

For swipe, the average amount of movement was approximately 40 pixels (px) at
almost of all switching times and the standard deviation increased as the switching time
decreased. We have observed that the amount of movement often exceeded 100 px when
the switching time was less than 20 ms. This may be due to the short grounding time
of the electrode, which was recognized as a flick by the computer. The average amount
of downsizing, enlargement, and rotation became smaller as the switching time became
shorter. Please note that for the amount of downsizing and enlargement 100% means the
original object size and that amount of downsizing and enlargement close to 100% means
small change. For pinch-in, the average amount of downsizing was approximately 54% at
200 ms switching time, and the average amount of downsizing was 96% at 20 ms switching
time. The standard deviation range was similar at all switching times. For pinch-out, the
average amount of enlargement was approximately 184% at 200 ms switching time and
104% at 20 ms switching time. The standard deviation range was similar at all switching
times. For rotation, the average amount of rotation was approximately 53 degrees at 200 ms
switching time and 8 degrees at 20 ms switching time. The standard deviation range was
similar at all switching times.
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Figure 11. Amount of movement vs. switching time for swipe. Interval of interactions is fixed at
500 ms.

Figure 12. Amount of downsizing vs. switching time for pinch-in. Interval of interactions is fixed at
500 ms.

Figure 13. Amount of enlargement vs. switching time for pinch-out. Interval of interactions is fixed
at 500 ms.

Figure 14. Amount of rotation degrees vs. switching time for rotation. Interval of interactions is fixed
at 500 ms.
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From these results, the average amount of swipe is stable with a long switching time
and it would be possible to move an object in the required amount. On the other hand, it
would be difficult to zoom-in, zoom-out, and rotate the object in the required exact amount
with one interaction even by setting enough amount of switching time. The standard
deviation of the enlargement at 20 ms switching time was small, which may have been
due to the low success rate, i.e., there are a few successful interactions and there are no
variety of result values. However, even humans cannot change the specified amount by
the touch interactions. It is common to stop the interaction at an appropriate timing of
the user seeing the object changed while performing the interaction, and we do not think
that it is necessary to change the specified amount by one interaction. If the user wants
to enlarge exactly 200% or rotate 90 degrees, it can be specified from the graphical user
interface (GUI).

5.3. Interval of Interactions

The length of the multi-touch interaction interval affects the total operation time when
generating multi-touch interactions in succession. To investigate the effect of the interval,
the switching time was fixed at 100 ms and the interval varied from 5 ms to 100 ms in steps
of 5 ms and the success rate was measured for four kinds of interactions: swipe, pinch-in,
pinch-out, and rotation. Each interaction generated 100 times and 2000 times in total.

The result is shown in Figure 15. The success rate of a swipe was almost 100% when
the interval was 55 ms or more, but it was less than 1% when 40 ms or less. The success
rate of pinch-in was over 99% when the interval was 55 ms or more, but it was less than 6%
when 40 ms or less. The success rate of pinch-out was 99% when the interval was 70 ms
or more, but it was less than 2% when 45 ms or less. The success rate of rotation was 99%
when the interval was 60 ms or more, but it was less than 1% when 40 ms or less. The
success rate of all multi-touch interactions were significantly reduced below 60-ms interval,
however, the success rate of all multi-touch interactions was 99% when the interval was
70 ms or more. Setting switching time to 100 ms and interval to 70 ms, a swipe takes 370 ms,
pinch-in takes 370 ms, pinch-out takes 370 ms, and rotation takes 570 ms, which can be
said that these multi-touch interactions can be produced within a reasonable time.

Figure 15. The success rate of multi-touch interaction generation vs. interval. The switching time is
fixed at 100 ms.

6. Application

An example of the application using the proposed device is its implementation in
a stylus pen. When using a stylus on a touch panel, touch interactions with fingers
are difficult and messy to do while holding a stylus. Therefore, by implementing the
proposed device in the pen tip, multi-touch interactions are realized without changing
how to hold a stylus. For example, an object can be moved, rotated, zoomed-in, and
zoomed-out while being drawn without detaching a stylus from the touch panel. In the
current implementation, the size of the electrode sheet is about 3 cm squared, which is large
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enough for a stylus for a tablet or laptop. On the other hand, the size of the stylus would
be acceptable for a large touch panel for the educational, conference, and presentation
uses, and we think it is useful to be able to draw, move, and rotate with a pen in one hand
while explaining.

For another example, a touch input with fingers can be copied by the software of
the touch panel, and the touch input can be reproduced with the proposed device. The
proposed device can be used for a capacitive touch panel and can copy the touch input
to another terminal without any software installation. Moreover, if there are multiple
proposed devices, the similar touch input can be generated simultaneously on multiple
touch panels, so that one touch panel can operate multiple touch panels, which would be
useful for testing and debugging software with multiple different devices. The amount
of movement may not be accurate but the success rate is almost 100% with the proposed
method, enabling the check of the operation of the software. To cover the entire screen
with the electrode sheet of the proposed device, many relays are required and a dedicated
circuit board must be implemented, and parts other than the electrode sheet would be
large. However, it is considered to be acceptable because it is not intended to be held by the
hand at all times. Another advantage is that if the same operation is generated on multiple
devices, only one relay circuit hardware is needed.

7. Conclusions

In this paper, we constructed a device that generates various multi-touch interactions
using a printable circuit and a one-board microcontroller. Based on the results of prelim-
inary experiments, a device with an appropriately sized electrode was created and the
success rate of six types of multi-touch interaction generation—tap, press-and-tap, swipe,
pinch-in, pinch-out, and rotation—was evaluated. Tap was generated at a rate of 25 times/s
at 100%. Press-and-tap, swipe, pinch-in, pinch-out, and rotation were generated at a max-
imum of 100%. We also confirmed that high-speed continuous swipe can be generated
with 99+% accuracy: swipe takes 370 ms, pinch-in takes 370 ms, pinch-out takes 370 ms,
and rotation takes 570 ms. In addition, we also measured the amount of swipe movement,
pinch-in downsizing, pinch-out enlargement, and rotation degrees, and although there was
variation in their amounts, swipe movement was stable at approximately 40 px.
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