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Abstract: Accelerated development of mobile networks and applications leads to the exponential
expansion of resources, which causes problems such as trek and overload of information. One of
the practical approaches to ease these problems is recommendation systems (RSs) that can provide
individualized service. Video recommendation is one of the most critical recommendation services.
However, achieving satisfactory recommendation service on the sparse data is difficult for video
recommendation service. Moreover, the cold start problem further exacerbates the research chal-
lenge. Recent state-of-the-art works attempted to solve this problem by utilizing the user and item
information from some other perspective. However, the significance of user and item information
changes under different applications. This paper proposes an autoencoder model to improve recom-
mendation efficiency by utilizing attribute information and implementing the proposed algorithm
for video recommendation. In the proposed model, we first extract the user features and the video
features by combining the user attribute and the video category information simultaneously. Then,
we integrate the attention mechanism into the extracted features to generate the vital features. Finally,
we incorporate the user and item potential factor to generate the probability matrix and defines the
user-item rating matrix using the factorized probability matrix. Experimental results on two shared
datasets demonstrates that the proposed model can effectively ameliorate video recommendation
quality compared with the state-of-the-art methods.

Keywords: recommendation system; matrix factorization; attention mechanism; autoencoder; collab-
orative filtering

1. Introduction

Recommendation systems (RSs) [1,2], aiming at predicting the scores that users might
give the items according to historical data, have been applied in many fields, such as
social networking, news, information retrieval, courses [3], movies [4], music [5], and
knowledge services [6]. However, with the rapid development of information science,
more and more applications are continuously generating large-scale data, leading to an
information explosion [7]. All these generated data can entail considerable convenience
to our daily lives. Meanwhile, this phenomenon also leads to some problems, such as
trek and overload of information. Moreover, how to extract valuable information from
large-scale data quickly and efficiently becomes a significant challenge [8]. RSs [9] prove
to be effective tools to extract useful information from the chaotic application data, and
have attracted extensive attention from academics and the industry. As a result, a set of
state-of-the-art research works have been proposed, and many practical applications have
been developed. Collaborative filtering is one of the most widely used recommendation
algorithms. The algorithm generates user groups close to the current user by analyzing
their historical behavior data and then determines recommendation content on the basis of
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the preferences of the current user group. Presently, RS has been successfully applied in
many areas, including social networking, news, information retrieval, and e-commerce,
and so on. With the rapid development of mobile networks and mobile services, the user
and item data are split into different blocks and stored in different devices. However, most
current studies focus on web-based applications with the data stored in the same database.
How to design the recommendation algorithm for the split data scenario is a new challenge.

The shallow learning-based approach cannot catch the deep features of the user and
items given that only one hidden level exists and relying on manual design features, tradi-
tional recommendation algorithms have limited manageability against the background of
big data. With the commercialization of big data, cloud computing, and other technologies,
more and more data are being recorded and stored on the Internet. These data include
multiple sources of heterogeneous information, such as video [10], audio, text, graphics,
and images [11]. They encapsulate rich user and item background information and in-
dividualized demands [12–14]. How to effectively alleviate the day sparseness and cold
start problems by using the multi-source heterogeneous auxiliary information in the RS
has currently become the hottest topic in academic research [15,16]. As a vital branch of
artificial intelligence, deep learning technology has outstanding performance in various
fields, such as image processing, NLP, and speech recognition, which introduces new
commercialization directions for RS [17]. Deep learning can automatically extract features
from the massive data of users and items, and obtain deep-level feature representations of
users and items. Moreover, deep learning can also integrate multi-source heterogeneous
data through feature fusion to obtain a decentralized feature representation [18]. When it
is combined with traditional recommendation algorithms, recommendation quality can be
ameliorated significantly. Google proposed the Wide & Deep model [19], which combined
various linear models and deep neural network models to take the advantages of memory
and generalization to make recommendations. Google’s model has played a leading role.
Recommendation algorithms based on autoencoders have also been extensively studied
in the recommendation field. For example, AutoRec [20] is a classic application of early
deep learning techniques in the recommendation field, which combines autoencoders and
collaborative filtering to make recommendations. ACAE [21] is the latest application that
uses an autoencoder fused with an attention mechanism to display recommendation appli-
cations, but it does not use auxiliary information. SASRec [22] is a sequence model based
on self-attention. It considers the time correlation of the system to try to identify related
items from the user’s operation history so as to predict the next item. It has accomplished
impressive results. In [23], Tal et al. proposed two models—DARIA and SARAH—which
use the user’s personalized historical information and item attribute information to as-
sist recommendation through a dual attention mechanism. Good experimental results
were obtained.

In this research, the author puts forward a multi-head attention autoencoder matrix
factorization (MAAMF) model and an autoencoder model multi-head attention autoen-
coder (MAA) fused with a multi-head self-attention mechanism to mine users and items
auxiliary information, and it is combined with probability matrix factorization to realize rat-
ing prediction. Autoencoders with a dual-multi-head self-attention mechanism effectively
extract the hidden factors of user attribute information and video category information
and observe the vital information on the user side and the video side, thus improving
the interpretability of the recommendation model based on deep learning. It incorporates
probability matrix decomposition to achieve rating prediction, effectively alleviating data
sparseness and cold start problems. The main contributions of this paper are summarized
as follows:

(1) It utilizes the user’s attribute information and the category information of the video
to reveal the potential factors of the user and the video succeedingly and combine the
probability matrix factorization to realize the rating prediction.

(2) It explores the role of the self-attention mechanism and multi-head self-attention
mechanism in mining hidden factors of side information.
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(3) We have carried out numerous experiments on two public datasets. We extracted
features by only using user attribute information, through item category informa-
tion, through the self-attention mechanism, and through multi-head self-attention
mechanism using user and item side information simultaneously to illustrate the
effectiveness of the proposed MAAMF model.

The remainder of this article is organized as follows: Section 2 reviews the related
works about the RS. Section 3 introduces the proposed MAAMF model in detail. Section 4
presents and analyzes our experimental results. Finally, Section 5 concludes.

2. Related Work
2.1. Matrix Factorization

Matrix factorization [24] is the most frequently used recommendation algorithm. The
famous Netflix Prize in the RS uses matrix factorization technology. Matrix factorization
has attracted considerable attention due to its high recommendation accuracy, strong
model scalability, and easy integration of side information. Common matrix factorizations
include SVD [25] and NMF [26]. These methods achieve rating prediction by decom-
posing a high-dimensional sparse rating matrix into multiple low-dimensional matrices
and multiplying multiple low-dimensional matrices to approximate the original scoring
matrix. EigenRec [27] realizes top-N recommendations by constructing a low-dimensional
representation of similarity between items and combining it with the classic PureSVD
algorithm. In [28–30], Liu et al. discussed the process from traditional matrix factorization
to modern RS using neural networks for multi-objective learning [31]. The abovemen-
tioned recommendation methods are based only on the user’s attribute information or the
category information of the videos. This paper aims to utilize the user attribute cues and
videos category cue to predict the rating accurately, hence the self-attention and multi-head
self-attention mechanisms are introduced to mine the hidden factors of side information
from users and videos.

2.2. Collaborative Filtering

With the advancement of information technology, side material of users or videos,
for instance, user or item attribute information, user portrait information, social network
information, comment information, and so on, are recorded and stored. The features of
users and videos or user preferences are hidden in these big data. How to ascertain useful
information from these big data to ameliorate the accuracy of recommendation and reduce
the problems of cold start and data sparsity is a current research hotspot. Numerous
studies are applying text comment information to assist recommendation. For instance,
ConvMF [32], DeepCoNN [33], D-Attn [34], ANR [35], CARL [36], DAML [37], and other
models combine all comments of users or items into a long document and then build a
model to assist recommendation. Meanwhile, NARRE [38], TARMF [39], and MPCN [40]
build a model on the basis of every single piece of comment of the user or item to obtain the
feature of each comment, which is then combined to form the features of the user or item to
make recommendations. Moreover, many studies use social network information to assist
recommendation, such as [41–44], or using social network and text information to assist
recommendation, such as [14,45]. How to extract hidden information from large-scale data
is the main challenge faced by RS. In [46], Anastasiu et al. put forward a good research
plan on how to find the nearest neighbors from big data and how to expand the potential
factors. In [47], Sardianos et al. and in [48], David et al. surveyed various aspects of
large-scale social network-based RS, summarizing the challenges and attractive problems,
and discussed specific solutions. Current research shows that the advantages of multi-task
learning and ensemble learning are very obvious, and they are forceful means to solve
multi-source information fusion problem [49,50].

However, in video recommendation, our intuition tells us that people of different
genders, age groups, occupations, and regions will have distinct preferences. Similarly,
many video websites practice classifying video information by category. One example the
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fact that children like to watch cartoons is judged by categories. Everyone prefers one or
more categories of video. In [51], Zhao et al. applied the recommendation model on the
basis of deep learning to the field of industrial video recommendation. He proposed a large-
scale multi-objective ranking system, and applied it to the next video recommendation. The
experiment achieved good results. In [52], Chen et al. assisted memory-based collaborative
filtering recommendation by fusing video category information, which ameliorates the
accuracy, coverage, precision, and recall rate of prediction, but it failed to consider the
impact of user side information on video recommendation. Utilizing the side information
of users and videos simultaneously for ensemble learning is a vital method to ameliorate
the accuracy of video recommendation. Recently, the knowledge graph [53,54] is also
introduced as the side information for the recommendation algorithms, which has achieved
significant success in the field of natural language processing. Although the existing studies
have made some progress in RS, no work has considered the user’s attribute information
and the category information of the video in an online platform to predict rating.

3. Proposed MAAMF Model

This section first introduces the structure of the proposed deep hybrid rating prediction
model MAAMF, which integrates the dual-multi-head self-attention mechanism. By using
autoencoder with the multi-head self-attention mechanism, the potential factors of the user
side and the project side are determined. The factors are then integrated into the probability
matrix decomposition to achieve rating prediction. The principle of the MAAMF model
is explained in detail subsequently. Finally, the MAAMF model is optimized through
maximum a posteriori estimation. Table 1 summarizes all the symbols used in this article
to clarify our method.

Table 1. Summary of symbols description.

Notation Meaning Notation Meaning

U User side information εj Influence of Gaussian noise
V Item side information X Side information
U’ approximate representation of U S’ Unzipped secondary information
V’ approximate representation of V X’ Unzipped rating information
W Weight h Hidden layer
N Number of users L Number of hidden layers
M Number of items h1 First hidden layer
R User item rating matrix W1 First layer of weight parameters
Ui Side information of the i-th user mi Times
Vj Side information of the j-th item Qm Query
α Compressed representation of Ui km Key
β Compressed representation of Vj vm Values
λu User regularization parameter WQm

mi
parameter matrix of Qm in the mi

λv Item regularization parameter transformation

3.1. MAAMF Model Structure

Figure 1 shows the structure of the deep hybrid rating prediction model MAAMF
fused with the dual-multi-head self-attention mechanism. In the figure, N is the number of
users and M is the number of videos, R is the user video rating matrix, and Rij is the rating
of the i-th user on the j-th video. Ui is the side information of the i-th user, such as the user’s
rating information and the user’s attribute information. Vj shows the side information of
the j-th item, such as the rating information of the video and the category information of
the video. α is the compressed representation of Ui, and β is the compressed representation
of Vj. λu is the user regularization parameter, λv is the project regularization parameter,
U′i and V′j are the new approximate representations obtained by decompressing Ui and
Vj through the autoencoder of the fusion multi-head attention mechanism, respectively.



Electronics 2021, 10, 1581 5 of 17

The purpose of MAAMF is to integrate MAA into the PMF framework and achieve rating
predictions through PMF and two MAAs.

Figure 1. MAAMF model structure.

This study aims to identify the potential matrix of users and videos (U ∈ Rn×k,
V ∈ Rm×k) UTV to rebuild the rating matrix R, and the observed rating matrix is calculated
as follows:

p
(

R | U, V, σ2
)
= ∏n

i ∏m
j N

(
Rij | uT

i vj, σ2
)Iij

(1)

where N
(

x | µ, σ2) is the probability density function of the Gaussian normal distribution
with mean µ and variance σ2. Iij demonstrates the indicator function. If user i evaluates
the video j, then it is set to 1, otherwise, it is set to 0.

3.2. MAAMF Model Principle

The core of our MAAMF model is the MAA module. The purpose is to use two MAA
modules to obtain the potential factors of users and videos from user side information
and video side information, respectively. The MAA module is shown in Figure 2. In
the figure, S represents side information, specifically user attribute information or video
category information in this model. X represents user rating or item rating information. S’
represents decompressed auxiliary information, and X’ represents the scoring information
after decompression. h represents the hidden layer, and L represents the number of hidden
layers. h1 represents the first hidden layer, h(L/2) represents the L/2-th hidden layer. W
represents the weight parameter, and W1 represents the first layer weight parameter, W(L/2)
represents the weight parameter of the L/2-th layer.

The input layer uses the preprocessed tensor that is the side information as the input
of the neural network. In this study, the user side information is the concatenation of the
user rating matrix and the user characteristic information, and the video side information
is the concatenation of the video rating matrix and the video classification information.
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Figure 2. MAA module.

The coding layer contains four layers, which are compressed layer by layer from
400 to 200 to 100 to 50. After each layer passes through the fully connected layer, batch
normalization is performed, and then activated by the relu activation function, and finally,
dropout is performed to prevent overfitting.

The multi-head attention layer selects vital features. The multi-head attention mecha-
nism [55] first conducts linear transformation, and then the outcome is input to the scaled
dot-Product attention, which is done h times in total. One head for each time, so it be-
comes multi-head. mi means the mi time, Qm means to query, km means key, vm means
the values. WQm

mi , Wkm
mi , and Wvm

mi respectively represent the parameter matrix of Qm, km,
and vm in the mith transformation, W0

m is the weight initialization parameter, as shown
in Equations (2) and (3). The parameters are not shared among the heads, and then the h
times of scaled dot-Product attention results are concatenated, and the value is calculated
by performing linear transformation, which is used as the result of multi-head attention:

hdmi = Attention
(

QmWQm
mi , kmWkm

mi
, vmWvm

mi

)
(2)

MultiHead (Qm, km, vm) = Concat ( hd 1, . . . , hd h)W0
m (3)

The multi-head attention mechanism is developed on the basis of self-attention. The
calculation of self-attention involves the connection between one input and all other inputs,
and the calculation process mainly involves matrix multiplication. The self-attention
mechanism is to perform three linear transformations on the result matrix of the embedding
layer to obtain three new matrices named query matrix Qm, key matrix km, and value matrix
vm. The query matrix Qm is used as the score corresponding to each key matrix km. The
score and the key matrix km are multiplied to calculate the corresponding weight, which is
then multiplied by the value matrix vm. After performing a weighted average on the value
matrix, we can finally obtain the scaled dot-Product attention. In practice, multiple parallel
self-attention mechanisms are often used to form a multi-headed attention mechanism, that
is, multiple attention matrices and multiple weights are used to weight the input values,
and finally the weighted average results are concatenated. The self-attention mechanism
can only capture the correlation between adjacent information. If multiple self-attention
mechanisms are used, it can capture the correlation between relatively distant information.
The final concatenation combines multiple attention mechanisms that can better describe
the relationship between information at different distances.
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The decoding layer corresponds to the coding layer, decompressing layer by layer
from 50 to 100 to 200 to 400. Likewise, after each layer passes through the fully connected
layer, batch normalization is performed, and then activated by the relu activation function,
and finally, dropout is performed to prevent overfitting.

The probability density function of the zero-mean spherical Gaussian distribution
above the user potential model with a difference of σ2

U is shown in Equation (4):

p
(

U | σ2
U

)
= ∏n

i=1 N
(

ui | 0, σ2
UI
)

(4)

Different from the traditional PMF model, we assume that the user latent vector is
affected by the MAA internal weight w+, Ai represents the ancillary information of the i-th
user, and εi is the influence of Gaussian noise, and we obtain Equation (5) as follows:

ui = MAA
(
W+, Ai

)
+ εi (5)

Using them to optimize the rating of the user’s potential model, hence we obtain
Equation (6):

P
(

W+ | σ2
W+

)
= ∏

k
N
(

w+
k | 0, σ2

W+

)
(6)

where σ2
W+ is its variance, and k represents the dimension of the latent factor. The user

potential model based on conditional distribution is written as,

p
(

U |W+, A, σ2
U

)
=

n

∏
i

N
(

ui | MAA
(
W+, Ai

)
, σ2

UI
)

(7)

where A represents the side information of the user, the latent vector MAA (W+, Ai)
obtained by the MAA module is used as the mean of the Gaussian distribution, the
variance σ2

UI is the variance of the Gaussian distribution, I is the identity matrix, and n is
the user number.

Similarly, we can obtain the probability density function of the internal weight W of
the item as shown in Equation (8). In addition, the probability density function of the item
based on conditional distribution is shown in Equation (9), where σ2

W is its variance, and k
represents the dimension of the potential factor, C represents the ancillary information of
the video, the latent vector MAA

(
W, Cj

)
obtained by the MAA module is used as the mean

of the Gaussian distribution, the variance σ2
VI is the variance of the Gaussian distribution, I

is the identity matrix, and m is the item number:

P
(

W | σ2
W

)
= ∏

k
N
(

wk | 0, σ2
W

)
(8)

p
(

V |W, C, σ2
V

)
=

m

∏
j

N
(

vj | MAA
(
W, Cj

)
, σ2

VI
)

(9)

3.3. Model Optimization

The variables U, V, W+, and W are optimized by using maximum a posterior esti-
mation. In Equation (10) A represents user side information, C represents project side
information, and R represents predicted rating. U represents the user potential factor, V
represents the project potential factor, and i and j represent the variables of the user and
the project. n is the number of users, m is the number of videos, W is the internal weight of
each model, and σ2 is the variance of the corresponding Gaussian distribution:

max
U,V,W+ ,W

p
(
U, V, W+, W | R, A, C, σ2, σ2

U , σ2
V , σ2

W+ , σ2
W
)

= max
U,V,W+ ,W

[
p
(

R | U, V, σ2)p
(
U |W+, A, σ2

U
)

p
(
W+ | σ2

W+

)
p
(
V |W, C, σ2

V
)

p
(
W | σ2

W
)] (10)
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Taking the logarithm of both sides of Equation (10) we obtain Equation (11)

ln p
(
U, V, W+, W | R, A, C, σ2, σ2

U , σ2
V , σ2

W+ , σ2
W
)
= ln p

(
R | U, V, σ2)+

ln p
(
U |W+, A, σ2

U
)
+ ln p

(
W+ | σ2

W+

)
+ ln p

(
V |W, C, σ2

V
)
+ ln p

(
W | σ2

W
) (11)

Substituting Equations (1), (6), (7) (8), (9) into Equation (11), and then making both
sides negative we obtain Equation (12):

L(U, V, W+, W) =
n
∑
i

m
∑
j

Iij
2
(

Rij − uT
i vj
)2

+ λU
2

n
∑
i
‖ ui −MAA(W+, Ai) ‖2

F

+ λV
2

m
∑
j
‖ vj −MAA

(
W, Cj

)
‖2

F +
λW+

2

|w+
k |

∑
k
‖ w+

k ‖
2
2 + λW

2

|wk |
∑
k
‖ wk ‖2

2

(12)

We utilized the coordinate descent method to minimize L, and iteratively optimize the
latent variables while fixing remaining parameters. Equation (12) is the quadratic function
of U. Assuming that V and W are constants, the loss function L can be obtained by Ui
differentiation. Take the same operation on V to obtain the following expressions:

ui ←
(

VIiVT + λU IK

)−1(
VRi + λU MAA

(
W+, Ai

))
(13)

vj ←
(

UIjUT + λV IK

)−1(
URj + λV MAA

(
W, Cj

))
(14)

where Ii, Ij, IK, and IK are diagonal matrices, and λU and λV are balance parameters.
Equation (13) shows the effect of updating ui by the user potential vector MAA(W+, Ai)
through λU , and Equation (14) shows the effect of updating vj by the project potential
vector MAA

(
W, Cj

)
through λV . However, we cannot update W+ and W similar to U

and V, because W+ and W are linked to the nonlinearity in the MAA architecture. When
U and V are temporarily constant, the loss function L can be referred to as the regular
term weighted square error function of L2. We obtain E(W+) and E(W) as given in
Equations (15) and (16).

E
(
W+

)
=

λU
2

n

∑
i
‖ ui −MAA

(
W+, Ai

)
‖2

F +
λW+

2

|w+
k |

∑
k
‖ w+

k ‖
2
2 + constant (15)

E(W) =
λV
2

m

∑
j
‖ vj −MAA

(
W, Cj

)
‖2

F +
λW
2

|wk |

∑
k
‖ wk ‖2

2 + constant (16)

By optimizing U, V, W+, and W, we can finally obtain the predicted user’s rating
Equation (17):

R̂ij = E
[

Rij | uT
i vj, σ2

]
= uT

i vj =
(
MAA

(
W+, Ai

)
+ εi

)T(MAA
(
W, Cj

)
+ εj

)
(17)

where R̂ij is the expected value of rating.

4. Experimental Results and Discussion

In this section, two shared datasets from the video field are used to verify the proposed
MAAMF model. First, the datasets and evaluation indicators are described. Then the
environment and basic parameter settings of the experiment are introduced, and then the
principle of the baseline model is briefly described. Finally, the best result was obtained
through experimental adjustment, and the final result was studied and compared to the
baseline model.
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4.1. Datasets and Evaluation Indicators

To accurately evaluate the performance of the MAAMF model, experiments were
conducted on the MovieLens shared dataset. The MovieLens dataset [56] is one of the most
widely used open-source datasets in the field of video recommendation. Users’ ratings
of films range from 1 to 5. This experiment uses two subsets ML-100k and ML-1m, as
shown in Table 2. The table presents that ML-100k is rating data in order of 0.1 million,
and ML-1m is rating data in order of 1 million.

Table 2. Statistics of the two preprocessed datasets.

Dataset User side Information Video Side Information User Number Video
Number Ratings

ML-100K ID/gender/age/
job/zipcode Video category information 943 1546 94,808

ML-1m ID/gender/age/
job/zipcode Video category information 6040 3544 993,482

Prediction accuracy measures the ability of a recommendation model to predict user
behavior, and is the most vital offline evaluation indicator for recommendation algorithms.
This research aims to ameliorate the accuracy of rating prediction. Root mean square
error (RMSE) and mean absolute error (MAE) are used to evaluate the performance of the
MAAMF model. For user U and video V in the dataset, Rij is the actual rating data of user
Ui for video Vj, and R̂ij is the predicted rating data given by the recommendation model,∣∣Rij

∣∣ is the number of ratings in the test set. The definitions are as (18) and (19), respectively:

RMSE =

√√√√√∑U,V∈Rij

(
Rij − R̂ij

)2∣∣Rij
∣∣ (18)

MAE =
∑U,V∈Rij

∣∣∣Rij − R̂ij

∣∣∣∣∣Rij
∣∣ (19)

4.2. Experimental Software and Hardware Environment and Parameter Settings

This experiment was carried out on the integrated development platform PyCharm
Community Edition 2020.1.1 x64 of Windows 10, using Python 3.7 language development,
and the Keras 2.3.1 deep learning library. The equipment environment is an Intel Core i7
4790K 4.00 GHz CPU, equipped with a GeForce GTX 1080 GPU and 32 GB of RAM.

The project side has 18 categories, and an empty category is designed and added to
form 19 categories. If a video does not have a category, the 19th column is 1, otherwise, it is
marked 1 in the corresponding column. If a video belongs to more than 1 category, then 1
is marked on each of these corresponding columns to obtain the category representation
matrix of the video. The auxiliary information on the user side uses the user’s ID, gender,
age, occupation, and postcode, which are transformed into a vector through one-hot
encoding. Training data recorded for 80%, cross-validation data recorded for 10%, and test
data recorded for 10%. The dimension of the hidden factor is 50.

4.3. Baseline Models

Six well-known baseline models, including PMF, SVD, aSDAE, R-ConvMF, PHD,
and DUPIA are compared to the MAAMF model proposed in this study. The are briefly
described as follows:

PMF [24]: Probability matrix decomposition is a widely known collaborative filtering
model. It explains the rating prediction task from the perspective of probability. It assumes
that the rating obeys a Gaussian distribution.
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SVD [25]: Singular value decomposition model is a prominent matrix factorization
model, which uses rating information to achieve rating prediction.

aSDAE [57]: aSDAE is a two-tower model, which extracts the hidden factors of the
auxiliary information on the user side and the project side through two SDAEs. The item
side information uses the word bag model as the input of the deep learning model.

R-ConvMF [58]: Convolutional matrix factorization is a text context-aware hybrid
recommendation prototype. It uses item statistics that capture contextual information,
integrates CNN into the PMF framework, and considers Gaussian noise in different ways.

PHD [59]: PHD is a new hybrid model that uses an autoencoder to extract user-
side hidden factors. Meanwhile, it uses a convolutional neural network to extract item-
side text hidden factors, which is then integrated into the PMF framework to achieve
rating prediction.

DUPIA [60]: The DUPIA model is based on the PHD model and adds a self-attention
to the CNN on the item side.

4.4. Analysis of Experimental Results

In this part, we first explored the influence of different parameters on the experimental
results, and then compared the MAAMF model we proposed to the baseline models.

4.4.1. Influence of Balance Parameters on Experimental Results

Tables 3 and 4 test the changes of RMSE and MAE on the two shared datasets under
different combinations of λu and λv, and the best results are shown in bold. The tables
exhibit that when λu = 8, λv = 50 on ML-100k and λu = 3, λv = 120 on ML-1m, the MAAMF
model achieves the best results. It indicates that the appropriate combination of λu and λv
plays a vital role in balancing user- and project-side information. Adjusting the λu and λv
hyperparameters has a vital influence on RMSE and MAE.

Table 3. Influence of λu and λv on RMSE and MAE on ML-100k.

ML-100k

λu 1 5 8 10 10
λv 100 50 50 50 60

RMSE 0.9320 0.9050 0.8900 0.9043 0.9051
MAE 0.7280 0.7095 0.6985 0.7095 0.7101

Table 4. Influence of λu and λv on RMSE and MAE on ML-1m.

ML-1m

λu 1 3 3 3 5
λv 100 100 150 120 120

RMSE 0.8697 0.8434 0.8416 0.8399 0.8429
MAE 0.6787 0.6594 0.6599 0.6574 0.6601

4.4.2. Influence of Different Dropouts on the Experimental Results

Dropout is one of the most effective and commonly used regularization methods in
neural networks. It reduces the risk of overfitting by randomly discarding some layer
output features. Figure 3a,b present that when the dropout is 0.2, the ML-100k achieves
the optimal MAE value of 0.6985, and when the dropout is 0.4, the ML-1m achueves the
optimal MAE value of 0.6574. To reduce overfitting, dropout regularization significantly
improved the model’s generalization ability.
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Figure 3. (a) Description of MAE values under different dropouts on the ML-100k dataset; (b) De-
scription of MAE values under different dropouts on the ML-1m dataset.

4.4.3. Changes of RMSE Value with the Number of Iterations

In the experiment, we assume that when the RMSE value of the test set increases more
than five times during the iteration process, the training is terminated. Figures 4 and 5
show that the RMSE values of the cross-validation and the test set are very close. The RMSE
value of the training set increased once before decreasing continuously. The RMSE value
on the cross-validation set and the test set initially decreased and then slowly increased.

Figure 4. Changes of the RMSE of the training set, cross-validation set, and test set under ML-100k
with the number of iterations.

Figure 5. Changes of the RMSE of the training set, cross-validation set, and test set under ML-1m
with the number of iterations.
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4.4.4. Total Results of the Experiment

Table 5 shows the RMSE results of the proposed model and five well-known RS mod-
els on two shared datasets, where MAAMF-U in the table indicates that only user attribute
information is used to assist recommendation, and MAAMF-I indicates that only item
category information is used to assists recommendation. MAAMF-UI-S represents a user
and item information-assisted recommendation through the fusion of self-attention mecha-
nism, and MAAMF-UI-M represents user and item information assisted recommendation
through the fusion of multi-head self-attention mechanism. The results of SVD and aSDAE
in the table reveal that if there is little hidden information in the auxiliary information, or
the training effect of deep learning is not good, the classic traditional recommendation
models may outperform the recommendation models based on deep learning. The com-
parison of the experimental results of MAAMF-UI-S and MAAMF-UI-M with the results
of other models shows that the vital information in the auxiliary information can be paid
attention to by fusing the attention mechanism.

Table 5. RMSE result of different models in the two shared datasets. Results of the state-of-the-art
models are underlined, and the optimal result of our model is marked in bold.

Models
Datasets

ML-100k ML-1m

PMF 0.9412 0.8971
SVD 0.9453 0.8684

aSDAE 0.9441 0.8723
R-ConvMF 0.9447 0.8470

PHD 0.9296 0.8465
DUPIA 0.9138 0.8439

MAAMF-U 0.9167 0.8544
MAAMF-I 0.9053 0.8509

MAAMF-UI-S 0.8822 0.8412
MAAMF-UI-M 0.8900 0.8399

Compared with the most advanced model DUPIA, the RMSE value of MAAMF-UI-
S on the ML-100k dataset has improved by 3.46%, whereas the performance of DUPIA
on the same dataset has improved by 1.70% compared with PHD, which is lower than
the improvement of MAAMF-UI-S. The RMSE value of MAAMF-UI-M on the ML-1m
dataset has improved by 0.47% when compared with DUPIA, which has an improvement
of 0.31% on the same dataset when compared with PHD, lower than MAAMF-UI-M’s
improvement. The comparison of experimental results of MAAMF-U and MAAMF-I shows
that different auxiliary information affects the experimental results distinctly. In this study,
the recommendation assisted with item category information achieves a better result than
the recommendation assisted with user attributes. Compared with MAAMF-U, the RMSE
value of MAAMF-I on the ML-100k dataset has improved by 1.24%.

Among the well-known recommendation algorithms, the PHD and DUPIA model that
uses user and project auxiliary information simultaneously has the same design thought as
MAAMF-UI-S and MAAMF-UI-M. It has an outstanding performance on ML-1m with a
large amount of data, which shows that integrating multi-source information of users and
projects simultaneously and expanding the number of samples in the training dataset are
the future research directions. Given that the RMSE value of MAAMF-UI-S on ML-100k is
lower than that of MAAMF-UI-M may result from the relatively small scale of the ML-100k
dataset, and the deep learning algorithm shows instability on small-scale datasets. When
PHD and MAAMF are compared, the optimal deep learning based model and the optimal
neural attention mechanism based model respectively, the RMSE values of the latter are
respectively 5.10% and 0.78% better than the former.

In addition, we performed a one-tailed paired t-test test on the results of the DUPIA
model and the MAAMF-UI-M model under different training data percentages in the ML-
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1m dataset. We found that there is a significant difference between the results of the DUPIA
model and the MAAMF-UI-M model, with the p-value of the t-test reported in Table 6. The
experimental results prove that our model outperforms the state-of-the-art model.

Table 6. The p-value of the one-tailed paired t-test between the DUPIA model and the MAAMF-UI-M model.

Models 20% 30% 40% 50% 60% 70% 80% t sig

DUPIA 0.9195 0.8968 0.8829 0.8694 0.8598 0.8470 0.8439
3.7520 0.0047MAAMF-UI-M 0.9180 0.8848 0.8720 0.8589 0.8519 0.8466 0.8399

The overall results of the experiment show that user attribute information and video
category information impact the score prediction results. Mining the potential factors on
the user side and the potential factors on the item side simultaneously can more effectively
assist the recommendation. In addition, importance of the information in the auxiliary
information varies, and more attention on more important information will improve
recommendation outcome. This provides support for future research on constructing a
unified multi-source information fusion framework.

4.4.5. Comparison of Experimental Results under Different Percentages

Finally, the effect of different training data percentages on the RMSE results is also
studied. The results are shown in Figure 6. The figure reveals that the proposed MAAMF
model obtains the best result except for 20% training data. In the figure, except for the PMF
and SVD models, the other models are applications of deep learning in the RS. The results in
the figure show that recommendation models combined with deep learning achieve better
results than the traditional recommendation models, but the auxiliary information source
and the algorithm used to extract potential factors significantly impact the experimental
results. The figure also presents that for the same model, as the percentage of training data
increases, the result of RMSE gradually decreases, and the accuracy of rating prediction
gradually increases. The RMSE curves of the aSDAE and R-ConvMF models cross, and the
RMSE curves of the PHD and MAAMF-UI-M models cross, indicating that the robustness
of the recommendation model based on deep learning must be ameliorated.

Figure 6. Comparison of the influence of different training data percentages of different models on
RMSE results.

In this experiment, we discussed the influence of the regularization parameters λu, λv,
and dropout on the experimental results, and described the changes in the RMSE values of
the training set, cross-validation set, and test set under different iteration times. A compar-
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ative study between the model proposed in this study and the five well-known baseline
models reveals the feasibility of the proposed MAAMF model. The performance of different
models is compared through experimental profits under different training data percent-
ages. PMF and SVD are classic collaborative filtering recommendation algorithms. aSDAE,
R-ConvMF, and PHD are recommendation algorithms based on deep learning. DUPIA and
MAAMF are recommendation algorithms based on neural attention mechanism.

The overall results of the experiments and the comparison results under different
percentages reveal that these models are constantly developing and improving, from
solely using scoring data to using scoring data and auxiliary information, from using
auxiliary information to paying more attention to important information in auxiliary
information. The experiment unveils that the use of side details can ameliorate the accuracy
of rating prediction, and different side information significantly impacts the prediction
results. Making full and effective use of multi-source heterogeneous data can better assist
recommendations. In addition, the success of MAAMF demonstrates the importance of the
user’s attribute information and the category information of the video in the RS, which
was ignored by previous research.

5. Conclusions

In this study, we proposed an autoencoder model fused with a multi-head self-
attention mechanism to mine user and item auxiliary information combined with probabil-
ity matrix decomposition to achieve rating prediction. The autoencoder model fused with
the dual multi-head self-attention mechanism effectively extracts the hidden factors of the
user’s basic attribute information and the item category information and pays attention to
the vital information on the user side and the item side. It ameliorates the efficiency of the
recommendation model on the basis of deep learning. The autoencoder model is combined
with probability matrix decomposition to achieve rating prediction. Experimental results
on two shared datasets of ML-100k and ML-1m demonstrate the usefulness of the proposed
MAAMF model. Exploring more hidden factors in auxiliary information is a vital way to
ameliorate the quality of recommendation. Furthermore, the time dimension of auxiliary
information is also a vital factor affecting recommendation. For example, most people
prefer to pay attention to the latest movies. How to better utilize time details is the focus of
future research. We have also noticed that some auxiliary information will also influence
one another. Ultimately, future studies must examine that how to effectively integrate the
features of each auxiliary information in the RS.
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