
electronics

Article

The Impact of COVID-19 in Collaborative Programming.
Understanding the Needs of Undergraduate Computer Science
Students

Carmen Lacave * and Ana Isabel Molina

����������
�������

Citation: Lacave, C.; Molina, A.I. The

Impact of COVID-19 in Collaborative

Programming. Understanding the

Needs of Undergraduate Computer

Science Students. Electronics 2021, 10,

1728. https://doi.org/10.3390/

electronics10141728

Academic Editor: Dimitris Apostolou

Received: 21 June 2021

Accepted: 12 July 2021

Published: 19 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

CHICO Research Group, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain;
anaisabel.molina@uclm.es
* Correspondence: carmen.lacave@uclm.es

Abstract: Collaborative learning activities have become a common practice in current university
studies due to the implantation of the EHEA. However, the COVID-19 pandemic has led to a radical
and abrupt change in the teaching–learning model used in most universities, and in the way students’
group work is carried out. Given this new situation, our interest is focused on discovering how
computer science students have approached group programming tasks. For this purpose, we have
designed a cross-sectional pilot study to explore, from both social and technological points of view,
how students carried out their group programming activities during the shutdown of universities,
how they are doing them now, when social distance must be maintained, and what they have missed
in both situations. The results of the study indicate that during the imposed confinement, the students
adopted a programming model based on work division or distributed peer programming, and very
few made use of synchronous distributed collaboration tools. After the lockdown, the students
mostly opted for a model based on collaborative programming and there was an increased use of
synchronous distributed collaboration tools. The specific communication, synchronization, and
coordination functionalities they considered most useful or necessary were also analyzed. Among
the desirable features included in a software for synchronous distributed programming, the students
considered that having an audio-channel can be very useful and, possibly, the most agile method to
communicate. The video signal is not considered as very necessary, being in many cases rather a
source of distraction, while textual communication through a chat, to which they are very accustomed,
is also well valued. In addition, version control and the possibility of recovering previous states of
the practical projects were highly appreciated by the students, and they considered it necessary to
record the individual contributions of each member of the team to the result.

Keywords: group programming; distributed collaborative programming; students’ needs; COVID-19

1. Introduction

The ability to work in a team is undeniably a basic skill for successful employment in
STEM [1] and in particular in computer science (CS) [2]. This is more evident in the field of
software development, as it is considered to be a significantly creative and collaborative
process [3], and it has been proved that programming in groups improves the process of
solving software projects, the quality of the programs generated [4,5], and the programmers’
confidence [6]. Therefore, universities should prepare their students effectively for the job
market by including the opportunity for teamwork in their curricula [7]. As a result, most
undergraduate CS programs related to software development are designed to include the
completion of various programming projects of small and medium size, which has been
found to have a positive effect on students: they enjoy the social interaction resulting from
collaborative activities, and improve their engagement, retention, and performance [8].

Thus, in the first year, when the basics of programming are introduced, the concept of
software development is considered as a programming problem, although also involving

Electronics 2021, 10, 1728. https://doi.org/10.3390/electronics10141728 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-2770-8482
https://orcid.org/0000-0002-3449-2539
https://doi.org/10.3390/electronics10141728
https://doi.org/10.3390/electronics10141728
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10141728
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10141728?type=check_update&version=1


Electronics 2021, 10, 1728 2 of 17

planning the solution, sharing ideas, organizing files, and editing code. The most frequent
ways to approach such joint activities are the distribution of programming tasks in different
parts of the program (different files, modules or functions) or the application of pair
programming (PP) techniques [9], which constitutes a pedagogical strategy widely used in
introductory programming courses [10].

Pair Programming is the term used to describe the process followed by two program-
mers working on the same computer, performing a specific programming task, or designing
an algorithm. In this case, two roles are defined: the driver, who controls the programming
activity and writes the source code; and the observer, who gives indications to their part-
ner about the development being carried out, the existence of possible syntax errors, etc.
Both roles can be exchanged, alternating the control each member of the team during the
programming activity. Pair Programming also requires working face-to-face in the same
location. When it is carried out in a distributed environment, it is called Distributed Pair
Programming (DPP) [11]. In this case, both members of the team collaborate synchronously
on the same programming task, although they are geographically distant. Thus, they
need to use specific collaboration support tools (groupware) to develop their work, mainly
screen-sharing applications, or real-time editing software, which provides instantaneous
synchronization of edits of all users as they write their code [6]. Asynchronous collabo-
ration is generally supported using shared or control version repositories, as well as the
incorporation of notification mechanisms [6].

When the number of programmers is not limited to two, the technique is known as
Collaborative Programming (CP). Although pair programming is the most widely studied
form of collaborative activity, increased individual performance appears to result more
reliable than other forms [8]. To ensure the efficiency of this process, the tools used must
incorporate support mechanisms to the group activity (coordination, access to shared
information and workspace, awareness in the case of working synchronously, etc.) [12].
Awareness [13,14] is the set of visualization techniques that are incorporated into the user
interface of collaborative applications to provide information about group activity, that is,
visual information about the people with whom the user is working, the activities they are
carrying out and about which part of the shared artefact they are working with.

In March 2020, the measures to stop the spread of the COVID-19 virus resulted,
among others, in the closure of universities, forcing an overnight switch from face-to-
face to an online education model [15]. Each university provided teachers and students
with different tools to address this non-face-to-face modality, facilitating the adaptation of
methodologies, planning and evaluation [16]. In general, the technological ecosystems of
the universities made it possible to manage an unprecedented situation [16]. Despite all the
challenges posed by the coronavirus pandemic, some universities reopened as safe places
by enforcing control measures, such as social distancing, the use of face masks quarantine,
etc. preventing group work as it was conceived before the pandemic.

It is still too early to know the real impact that the coronavirus pandemic will have
on the education system, especially within the CS community [17] in which collaborative
work plays a key role. Recent studies have focused on improving student collaboration in
the context of group work and pair programming [18] although students’ perceptions and
needs about teamwork have not been sufficiently studied [7], especially those arising from
the need to use new strategies and work tools to move from a traditional PP-based model
to a DPP or CP approach. On the other hand, current trends in collaborative work propose
that the challenge be not only technical but also social [19].

Then, we try to shed some light on these issues, focusing on understanding how
students have approached their collaborative programming tasks and the emerging needs
in these new situations. To this end, we have designed a cross-sectional pilot study at a
Spanish public university to explore, both socially and technologically, how the students
carried out their group programming activities during the closure of the university, how
they do them now, when they must maintain social distance, and what they have missed
in both situations. Thus, from the social point of view we have studied the role played by



Electronics 2021, 10, 1728 3 of 17

the students’ scaffolding, the size of the working groups, and the method used to address
collaboration within the group. From the technical point of view, we have studied the
groupware tools used and the students’ subjective perception about them [8], focusing on
their needs since it seems that they are not met by current tools [6]. In addition, we also
wanted to investigate whether the distributed collaborative programming model imposed
by COVID-19 is here to stay.

The paper is organized as follows: research questions are described in Section 2; the
non-experimental design is presented in Section 3; Section 4 describes the results obtained,
and Section 5 addresses the discussion, including the main limitations. Finally, Section 6
presents a set of conclusions and further works.

2. Research Questions

The aim of the research is to understand the students’ needs imposed by the sanitary
restrictions due to the coronavirus pandemic to solve their group programming tasks in
a distributed way. To that end, we intend not only to identify the mechanisms and tools
used during and after the imposed lockdown but also the difficulties and the subjective
perceptions of CS students to address their programming tasks in a distributed way.

Therefore, we have defined the following research questions:

• RQ1: Do the students need to perform their group programming activities in a distributed
way?

• RQ2: What was the size of the existing programming group?
• RQ3: How have they approached group programming tasks?
• RQ4: Which was the students’ subjective perception of the different strategies adopted

for group programming?
• RQ5: Do students require tools that support distributed and synchronous group program-

ming activities?
• RQ6: Which features, and functionalities should be useful for students to support syn-

chronous distributed programming activities?
• RQ7: Are there significant differences in the students’ needs or perceptions depending on

the enrollment year or the size of their programming groups?

3. Method

In this section, we describe the design of the cross-sectional pilot study aimed at
finding out how the COVID-19 pandemic has led to the emergence of new needs in CS
students when performing group programming tasks and the solutions adopted. The
study, summarized in Figure 1 was conducted based on two experiences carried out
at two different moments: the first one was performed in June 2020, immediately after
the confinement decreed by the state of emergency in Spain (from March to May 2020),
coinciding with the end of the second semester of the academic year 2019/2020; and the
second one was conducted in January 2021, at the end of the first semester of the academic
year 2020/2021.

In both cases, the information of interest provided by the participants was collected
by the same measure instrument: an ad hoc questionnaire. The only difference between
the two experiences was the reference period to answer the questions: in the first one,
the considered context was the lockdown; in the second, there is no longer imposed
confinement, but there were sanitary measures, such as the use of masks, social distancing,
and self-confinement in case of positive PCR or close contact with a patient who had tested
positive.

Afterwards, the data obtained were analyzed by different statistical methods, making
use of IBM Statistics version 25. Since the research was designed as a cross-sectional
study rather than as longitudinal, some of the participants may have answered both
questionnaires and others only one, although they cannot be differentiated from each other
because all data have been obtained anonymously.



Electronics 2021, 10, 1728 4 of 17

Electronics 2021, 10, x FOR PEER REVIEW 4 of 16 
 

 

Afterwards, the data obtained were analyzed by different statistical methods, mak-
ing use of IBM Statistics version 25. Since the research was designed as a cross-sectional 
study rather than as longitudinal, some of the participants may have answered both ques-
tionnaires and others only one, although they cannot be differentiated from each other 
because all data have been obtained anonymously. 

 
Figure 1. Experiment design. 

3.1. Participants and Context 
The target population was undergraduates of the computer science degree (CSD) at 

the Ciudad Real campus of the Spanish public University of Castilla-La Mancha (UCLM). 
Only CSD students were invited because, during home confinement, the authors of the 
study did not have the possibility to contact other degree students. In each experience, 
however, we attempted to gather as many participants as possible, thus, almost all stu-
dents of the degree (some 500 out of the approximately 650 enrolled) were asked to par-
ticipate on a voluntary basis. 

All candidates received a personal message through the usual online communication 
platform provided by our university (Moodle (https://moodle.org/?lang=en (accessed on 
18 July 2021))) by which they were informed about the research work and their participa-
tion was requested. They were also informed that, if participating, their data would be 
treated anonymously and would be used exclusively for research purposes.  

Moreover, to facilitate the participation of the students who voluntarily decided to 
take part in the study, the message contained the link to the questionnaire defined to col-

Figure 1. Experiment design.

3.1. Participants and Context

The target population was undergraduates of the computer science degree (CSD) at
the Ciudad Real campus of the Spanish public University of Castilla-La Mancha (UCLM).
Only CSD students were invited because, during home confinement, the authors of the
study did not have the possibility to contact other degree students. In each experience,
however, we attempted to gather as many participants as possible, thus, almost all students
of the degree (some 500 out of the approximately 650 enrolled) were asked to participate
on a voluntary basis.

All candidates received a personal message through the usual online communication
platform provided by our university (Moodle (https://moodle.org/?lang=en
(accessed on 18 July 2021))) by which they were informed about the research work and
their participation was requested. They were also informed that, if participating, their data
would be treated anonymously and would be used exclusively for research purposes.

Moreover, to facilitate the participation of the students who voluntarily decided to
take part in the study, the message contained the link to the questionnaire defined to
collect the data, which was displayed through the MS Forms (https://forms.office.com

https://moodle.org/?lang=en
https://forms.office.com


Electronics 2021, 10, 1728 5 of 17

(accessed on 18 July 2021)) tool. The questionnaire was accessible to the students for one
week and they could fill it in without time limit.

The heading of the questionnaire expressly stated that answering the questionnaire
implied the participant’s consent to use his/her data exclusively for research purposes.
Furthermore, the data were collected completely anonymously, and the participants did
not have to enter any information that could identify them, such as name, ID number, etc.

The response rate was about the same in both experiences, approximately 22%.

3.2. Measure Instrument Design

The instrument used to compile the student feedback was an ad hoc questionnaire
consisting of 19 items classified into 7 dimensions, as shown Table A1 of the Appendix A.
The first six dimensions are related to the research questions from RQ1 to RQ6; the last one
is related to demographic information about the students, which is useful to answer RQ7
question and could help to discuss some results.

The first two items try to give an answer to the first two research questions RQ1
and RQ2, respectively, that is, whether the students had to perform group programming
activities (Item 1) and whether the groups were made up of two, three, or more members
(Item 2). In addition, Item 2 is also useful for research question RQ7.

The third research question, RQ3, has been addressed by the definition of two items,
one to know how the students approached group programming tasks in terms of the
solution adopted to perform them when the members of the work team could not meet
face-to-face (Item 3), and an additional question to indicate which tool(s) they had used
(Item 4). Regarding Item 3, several answer options were provided to reflect the different
possibilities. Note that option (d) is the one that best aligns with the PP approach, but in a
distributed (online) format: the videoconferencing tool allows for sharing the development
environment (IDE) (for instance, Eclipse) so that the members of the pair can alternatively
take turns to adopt the roles of driver and observer. On the other hand, option (e) refers to
the use of a groupware programming environment, which would allow the application of
a CP approach.

In order to find an answer to the research question RQ4, related to the subjective
perception of different strategies for group programming, three items were defined, each
one corresponding to three possible strategies for group programming: divide the pro-
gramming task among the members of the group (Item 5), work asynchronously on the
same code (Item 6) or work synchronously making use of several communication tools
(Item 7). Each of the possible response options was ranked by means of a 5-level Likert
scale, which allowed the students to indicate the degree of agreement (value closest to 5) or
disagreement (value closest to 1) with each one.

Research question RQ5 is intended to know the need for tools to support distributed
and synchronous group programming, which matches the last case described in the pre-
vious question. Then, an item was defined to ask about the need for collaborative syn-
chronous work (Item 8).

Regarding the answers to research question RQ6, about the features and functionalities
needed to support synchronous distributed programming activities [20], several items were
defined. The starting point was a hypothetical case of synchronous distributed program-
ming, and then, a set of features and functionalities that could be considered desirable, and
even necessary, for effective and efficient group programming were presented (Items 9 to
17) [11]. Those items include the main communication tool (text-chat, audio, and video),
coordination and access control to the shared workspace (lock of code sections, version
control) mechanisms, as well as aspects related to awareness (connected users and visual
highlight of access to the shared area) [14,21]. The participants were asked to rate the need
for each of these features or functions, or their usefulness on a scale of 1 to 5, with the
lower end of the scale (1) representing that it would not be necessary or useful at all, and
the upper end (5) indicating that it would be very necessary or very useful. In addition,



Electronics 2021, 10, 1728 6 of 17

an item in which students could indicate any feature or functionality not listed that they
considered necessary or useful was included (Item 18).

Finally, trying to answer the last question RQ7, we included one item to get the highest
enrollment year (In Spanish universities, students can be enrolled in different courses at
the same time.) for the student (Item 19).

3.3. Variables

Table 1 contains the names of the defined variables which are necessary to perform
the subsequent analysis. They represent the collected answers for all closed-ended items
of the measure instrument. In addition, one more variable, named TIME, with values
{during_conf, after_conf } has been defined to denote moment to which the answers refer:
during or after the imposed confinement.

Table 1. Variables defined for the statistical analysis.

Item Question Variable

2 What is the size of the groups . . . ? GROUP_SIZE

5 . . . group programming is best done by dividing the
work . . . COOP

6 . . . group programming is best done asynchronously
. . . ASYN_COLAB

7 . . . group programming is best done synchronously . . . SYN_COLAB

8 . . . there is a need for the development of new tools for
distributed and synchronous . . . ? SYN_COLAB_NEED

9 An environment . . . should be an evolution of a known
IDE . . . IDE_EVOLUTION

10 An environment . . . should display connected users USERS

11 An environment . . . should have a synchronous
communication tool (chat) CHAT

12 An environment . . . should provide the possibility of
audio communication with the partner AUDIO

13 An environment . . . should have a video channel that
would allow videoconferencing . . . VIDEO

14 An environment . . . should always highlight where the
colleague is writing/working . . . AWARENESS

15 An environment . . . should give the possibility to lock
code sections . . . BLOCKING

16 An environment . . . should incorporate a version
control system VERS_CTRL

17 An environment . . . should keep a history or record of
the contributions of each member of the group . . . LOG

19 What is your highest enrollment year? COURSE

4. Results

The subsequent analysis of the responses yielded very interesting results, which are
described in the next subsections.

4.1. Sample Description

The number of students who voluntarily decided to answer the questionnaire related
to the confinement (n = 111) was like the number of students who voluntarily completed it
after the confinement (n = 107). Table 2 shows the distribution of students according to the
highest enrollment course, together with the percentages relative to each sample size.



Electronics 2021, 10, 1728 7 of 17

Table 2. Sample description.

during_Conf after_Conf

Enrollment Year n = 111 n = 107
1st Year 14 12.6% 22 20.6%
2nd Year 49 44.2% 37 34.6%
3rd Year 34 30.6% 30 28.0%
4th Year 14 12.6% 18 16.8%

4.2. RQ1: Need for Group Programming Activities in a Distributed Way

As Table 3 notes, during the confinement, 98 out of the 111 students (88%) answered
positively to Item 1 about the need to perform group programming activities. During this
non-confined year, the number of students who answered positively increased to 102 out
of the 107 participants (95%). In both cases, most of them were 2nd and 3rd year students.

Table 3. Description of the students who had to program collaboratively.

during_Conf after_Conf

Enrollment Year 98 88% 102 95%
1st Year 14 14.3% 22 21.6%
2nd Year 44 44.9% 37 36.3%
3rd Year 29 30.6% 28 27.4%
4th Year 11 12.6% 15 14.7%

4.3. RQ2: Size of the Existing Programming Groups

During the confinement, 52 out of the 98 students indicated that they programmed
in pairs, 16 in groups of three and 13 in groups of more than three. Another 17 indicated
that they were part of several groups of different sizes. However, after the confinement
these values changed significantly because most students indicated that they programmed
in groups of three or more members (61 out of 102) and only 8 programmed in pairs. The
number of students who took part in more than one group also increased to 33 out of
102. Table 4 summarizes these results and Figure 2 shows the distribution of the size of
programming groups according to the enrollment year.

Table 4. Size of the programming group.

during_Conf after_Conf

2 members 52 53.1% 8 7.8%
3 members 16 16.3% 24 23.5%
More than 3

members 13 13.3% 37 36.3%

Several groups
of different size 17 17.3% 33 32.4%

4.4. RQ3: How Have They Approached Group Programming TASKS?

The answers provided to Items 3 and 4 indicate that the solutions adopted to deal with
group programming (Figure 3) consisted, mostly, in the combination of various strategies,
highlighting the use of some videoconferencing system (being MS Teams (https://www.
microsoft.com/en-gb/microsoft-teams/group-chat-software (accessed on 18 July 2021))
and Discord (https://discord.com (accessed on 18 July 2021)) the most cited) together with
an asynchronous version control system (GitHub (https://github.com
(accessed on 18 July 2021)) was particularly outstanding). Figure 3 also shows that a small
number of students used only one tool, being the most cited the videoconferencing sys-
tems, sharing the IDE, or the screen or the desktop. It is also interesting to note that after
confinement, the vast majority used a combination of several tools, and the individual

https://www.microsoft.com/en-gb/microsoft-teams/group-chat-software
https://www.microsoft.com/en-gb/microsoft-teams/group-chat-software
https://discord.com
https://github.com


Electronics 2021, 10, 1728 8 of 17

assignment of tasks was not used. Among those who combined several strategies during
confinement, 5 participants in 3rd and 4th year indicated that they used a synchronous col-
laborative development environment, being CodeTogether (https://www.codetogether.com
(accessed on 18 July 2021)) and Codeshare (https://codeshare.io (accessed on 18 July 2021))
the most referenced. However, after confinement that value increased to 26 students: 2 in
1st year, 13 in 2nd, 6 in 3rd, and 5 in 4th.

Electronics 2021, 10, x FOR PEER REVIEW 7 of 16 
 

 

4.2. RQ1: Need for Group Programming Activities in a Distributed Way 
As Table 3 notes, during the confinement, 98 out of the 111 students (88%) answered 

positively to Item 1 about the need to perform group programming activities. During this 
non-confined year, the number of students who answered positively increased to 102 out 
of the 107 participants (95%). In both cases, most of them were 2nd and 3rd year students. 

Table 3. Description of the students who had to program collaboratively. 

 during_Conf after_Conf 
Enrollment Year 98 88% 102 95% 

1st Year 14 14.3% 22 21.6% 
2nd Year 44 44.9% 37 36.3% 
3rd Year 29 30.6% 28 27.4% 
4th Year 11 12.6%  15 14.7% 

4.3. RQ2: Size of the Existing Programming Groups 
During the confinement, 52 out of the 98 students indicated that they programmed 

in pairs, 16 in groups of three and 13 in groups of more than three. Another 17 indicated 
that they were part of several groups of different sizes. However, after the confinement 
these values changed significantly because most students indicated that they pro-
grammed in groups of three or more members (61 out of 102) and only 8 programmed in 
pairs. The number of students who took part in more than one group also increased to 33 
out of 102. Table 4 summarizes these results and Figure 2 shows the distribution of the 
size of programming groups according to the enrollment year.  

Table 4. Size of the programming group. 

 during_Conf after_Conf 
2 members 52 53.1% 8 7.8% 
3 members 16 16.3% 24 23.5% 

More than 3 members 13 13.3% 37 36.3% 
Several groups of different size  17 17.3% 33 32.4% 

Figure 2. Distribution of the programming group size according to the enrollment year 
during confinement (left) and after confinement (right). 

4.4. RQ3: How Have They Approached Group Programming TASKS? 
The answers provided to Items 3 and 4 indicate that the solutions adopted to deal 

with group programming (Figure 3) consisted, mostly, in the combination of various strat-
egies, highlighting the use of some videoconferencing system (being MS Teams 
(https://www.microsoft.com/en-gb/microsoft-teams/group-chat-software (accessed on 18 

Figure 2. Distribution of the programming group size according to the enrollment year during confinement (left) and after
confinement (right).

Electronics 2021, 10, x FOR PEER REVIEW 8 of 16 
 

 

July 2021)) and Discord (https://discord.com (accessed on 18 July 2021)) the most cited) 
together with an asynchronous version control system (GitHub (https://github.com (ac-
cessed on 18 July 2021)) was particularly outstanding). Figure 3 also shows that a small 
number of students used only one tool, being the most cited the videoconferencing sys-
tems, sharing the IDE, or the screen or the desktop. It is also interesting to note that after 
confinement, the vast majority used a combination of several tools, and the individual 
assignment of tasks was not used. Among those who combined several strategies during 
confinement, 5 participants in 3rd and 4th year indicated that they used a synchronous 
collaborative development environment, being CodeTogether (https://www.codeto-
gether.com (accessed on 18 July 2021)) and Codeshare (https://codeshare.io (accessed on 18 
July 2021)) the most referenced. However, after confinement that value increased to 26 
students: 2 in 1st year, 13 in 2nd, 6 in 3rd, and 5 in 4th.  

Figure 3. Bar diagram illustrating the different solutions adopted for group program-
ming during confinement (orange) and after confinement (grey). 

4.5. RQ4: Which Was the Students’ Subjective Perception of the Different Strategies Adopted for 
Group Programming? 

Figure 4 summarizes the mean of the answers related to the participants’ subjective 
perception of the convenience of applying the three group programming situations de-
scribed in the previous section (cooperation by work division, asynchronous collaboration, 
and synchronous collaboration), according to the enrollment year (Figure 4) and to the size 
of the programming groups (Figure 5). No significant differences are perceived in the an-
swers given by the students before and after the confinement on which is the best strategy 
to adopt for group programming. The students would rather prefer to collaborate syn-
chronously (Figure 4), which is more evident in those students whose programming 
group consists of three members.  

 
Figure 4. Bar diagram illustrating the subjective perception of the different solutions adopted for 
group programming during and after the confinement. 

Figure 3. Bar diagram illustrating the different solutions adopted for group programming during confinement (orange) and
after confinement (grey).

4.5. RQ4: Which Was the Students’ Subjective Perception of the Different Strategies Adopted for
Group Programming?

Figure 4 summarizes the mean of the answers related to the participants’ subjective
perception of the convenience of applying the three group programming situations de-
scribed in the previous section (cooperation by work division, asynchronous collaboration,
and synchronous collaboration), according to the enrollment year (Figure 4) and to the size
of the programming groups (Figure 5). No significant differences are perceived in the
answers given by the students before and after the confinement on which is the best strat-
egy to adopt for group programming. The students would rather prefer to collaborate
synchronously (Figure 4), which is more evident in those students whose programming
group consists of three members.

https://www.codetogether.com
https://codeshare.io


Electronics 2021, 10, 1728 9 of 17

Electronics 2021, 10, x FOR PEER REVIEW 8 of 16 
 

 

July 2021)) and Discord (https://discord.com (accessed on 18 July 2021)) the most cited) 
together with an asynchronous version control system (GitHub (https://github.com (ac-
cessed on 18 July 2021)) was particularly outstanding). Figure 3 also shows that a small 
number of students used only one tool, being the most cited the videoconferencing sys-
tems, sharing the IDE, or the screen or the desktop. It is also interesting to note that after 
confinement, the vast majority used a combination of several tools, and the individual 
assignment of tasks was not used. Among those who combined several strategies during 
confinement, 5 participants in 3rd and 4th year indicated that they used a synchronous 
collaborative development environment, being CodeTogether (https://www.codeto-
gether.com (accessed on 18 July 2021)) and Codeshare (https://codeshare.io (accessed on 18 
July 2021)) the most referenced. However, after confinement that value increased to 26 
students: 2 in 1st year, 13 in 2nd, 6 in 3rd, and 5 in 4th.  

Figure 3. Bar diagram illustrating the different solutions adopted for group program-
ming during confinement (orange) and after confinement (grey). 

4.5. RQ4: Which Was the Students’ Subjective Perception of the Different Strategies Adopted for 
Group Programming? 

Figure 4 summarizes the mean of the answers related to the participants’ subjective 
perception of the convenience of applying the three group programming situations de-
scribed in the previous section (cooperation by work division, asynchronous collaboration, 
and synchronous collaboration), according to the enrollment year (Figure 4) and to the size 
of the programming groups (Figure 5). No significant differences are perceived in the an-
swers given by the students before and after the confinement on which is the best strategy 
to adopt for group programming. The students would rather prefer to collaborate syn-
chronously (Figure 4), which is more evident in those students whose programming 
group consists of three members.  

 
Figure 4. Bar diagram illustrating the subjective perception of the different solutions adopted for 
group programming during and after the confinement. 

Figure 4. Bar diagram illustrating the subjective perception of the different solutions adopted for group programming
during and after the confinement.

Electronics 2021, 10, x FOR PEER REVIEW 9 of 16 
 

 

 
Figure 5. Bar diagram illustrating the subjective perception of the different solutions adopted for 
group programming regarding the size of the group. 

4.6. RQ5: Do Students Require Tools That Support Distributed and Synchronous Group 
Programming Activities? 

In both situations, during and after confinement, the students expressed the necessity 
of having tools supporting synchronous distributed collaborative programming. This is 
reflected by the same value of 4.1 for both means of Item 8, as it is shown in Table 5, which 
also includes the answers for every enrollment year. It can be observed that during con-
finement, 1st year students are the most in need of synchronous tools and, after the con-
finement, 2nd and 3rd year students indicate the greatest need. 

Table 5. Need for synchronous distributed programming. 

 during_Conf After_Conf 
 mean st dev mean st dev 
 4.1 0.925 4.1 1.156 

1st year 4.43 0.65 3.82 1.24 
2nd year 4.09 0.91 4.19 1.33 
3rd year 4.10 1.01 4.25 0.88 
4th year 3.73 1.01 4.00 1.13 

4.7. RQ6: Which Features and Functionalities Should Be Useful for Students to Support 
Synchronous Distributed Programming Activities? 

There are distinguishing results in both experiences, during and after the confine-
ment. Most of the students considered that having tools to support synchronous distrib-
uted programming scenarios should be necessary (µ = 4.00 and µ = 4.10). The features they 
considered most useful for the software supporting this programming strategy have been 
the same in both cases: the incorporation of awareness mechanisms (µ = 4.36 and µ = 4.58), 
version control support (µ = 4.29 and µ = 4.31) and the recording of individual contribu-
tions made by each member of the team to the result (µ = 4.23). With respect to the com-
munication mechanisms that should be incorporated, the best rated were audio (µ = 4.21 
and µ = 4.11), and the possibility of locking code regions (µ = 4.19 and µ = 4.13.), while the 
video signal was considered the least useful (µ = 3.26 and µ = 2.96). The functionalities and 
features they considered most necessary or useful in a tool to support this programming 
strategy are shown in Table 6. 

  

Figure 5. Bar diagram illustrating the subjective perception of the different solutions adopted for group programming
regarding the size of the group.

4.6. RQ5: Do Students Require Tools That Support Distributed and Synchronous Group
Programming Activities?

In both situations, during and after confinement, the students expressed the necessity
of having tools supporting synchronous distributed collaborative programming. This
is reflected by the same value of 4.1 for both means of Item 8, as it is shown in Table 5,
which also includes the answers for every enrollment year. It can be observed that during
confinement, 1st year students are the most in need of synchronous tools and, after the
confinement, 2nd and 3rd year students indicate the greatest need.



Electronics 2021, 10, 1728 10 of 17

Table 5. Need for synchronous distributed programming.

during_Conf after_Conf

mean st. dev. mean st. dev.

4.1 0.925 4.1 1.156

1st year 4.43 0.65 3.82 1.24
2nd year 4.09 0.91 4.19 1.33
3rd year 4.10 1.01 4.25 0.88
4th year 3.73 1.01 4.00 1.13

4.7. RQ6: Which Features and Functionalities Should Be Useful for Students to Support
Synchronous Distributed Programming Activities?

There are distinguishing results in both experiences, during and after the confinement.
Most of the students considered that having tools to support synchronous distributed
programming scenarios should be necessary (µ = 4.00 and µ = 4.10). The features they
considered most useful for the software supporting this programming strategy have been
the same in both cases: the incorporation of awareness mechanisms (µ = 4.36 and µ =
4.58), version control support (µ = 4.29 and µ = 4.31) and the recording of individual
contributions made by each member of the team to the result (µ = 4.23). With respect to
the communication mechanisms that should be incorporated, the best rated were audio
(µ = 4.21 and µ = 4.11), and the possibility of locking code regions (µ = 4.19 and µ =
4.13.), while the video signal was considered the least useful (µ = 3.26 and µ = 2.96). The
functionalities and features they considered most necessary or useful in a tool to support
this programming strategy are shown in Table 6.

Table 6. Features identified as necessary or useful in a tool supporting synchronous distributed
programming.

during_Conf after_Conf

mean st. dev. mean st. dev.

IDE_EVOLUTION 4.05 0.93 3.87 1.00
USERS 3.88 1.17 3.97 1.04
CHAT 4.07 2.06 3.85 1.19

AUDIO 4.21 1.06 4.11 1.17
VIDEO 3.26 1.31 2.96 1.38

AWARENESS 4.36 0.87 4.58 0.76
BLOCKING 4.19 1.04 4.13 1.05
VERS_CTRL 4.29 0.87 4.31 0.92

LOG 4.23 0.93 4.23 1.07

4.8. RQ7: Are There Significant Differences in the Students’ Needs Depending on the Enrollment
Year or the Size of Their Programming Groups?

The answer to this question involves measuring the variations of the responses given
the enrollment course. Since all variables follow a normal distribution, a one-way ANOVA
was performed considering the students’ year as factor of change. The results reflected no
significant differences at 95% although when analyzing data from each experience (during
and after the confinement) separately, some interesting findings were observed, which
are summarized in Table 7. Hence, during confinement, the ANOVA revealed significant
differences at 95% in the means of variables GROUP_SIZE (p = 0.000), USERS (p = 0.011),
and VERS_CTRL (p = 0.003).



Electronics 2021, 10, 1728 11 of 17

Table 7. Variables with significant differences in its means according to the enrollment year.

during_Conf after_Conf

GROUP_SIZE USERS VERS_CTRL IDE_EVOLUTION

1st year 2.07 3.86 3.79 3.32
2nd year 3.48 3.57 4.07 3.97
3rd year 2.55 4.41 4.59 3.86
4th year 3.00 4.18 4.73 4.47

The subsequent post hoc revealed that, in the case of variable GROUP_SIZE, the
differences occurred between 2nd year students with respect to 1st and 3rd year students.
This means that the size of the collaborative programming groups of 2nd year students was
greater than 1st and 3rd year students. Regarding variable USERS, students of the 3rd year
reported greater needs of displaying connected users than students of the 2nd year. As far
as variable VERS_CTRL, the differences are between 1st year students with respect to 3rd
and 4th year students, because first-year students reported lower requirements regarding
the control of the different versions of the program.

After the confinement, only significant differences were detected in variable
IDE_EVOLUTION (p = 0.005), between 1st and 4th year students. Consequently, it can
be interpreted as that 4th year students have more need than first-year students that the
synchronous collaborative programming tool be the evolution of a known IDE.

Regarding the size of the existing programming groups, the one-way ANOVA only
detected significant differences at 95% in variable SYNC_COLAB (p = 0.003) during the
confinement. This may be because the students who programmed in groups of three
(µ = 4.69) reported greater needs for synchronous collaborative tools than those who
programmed in groups of two members (µ = 3.67), in groups of more than three members
(µ = 3.23), and who formed more than one programming group (µ = 3.76).

5. Discussion

The results obtained also show that, even though the students positively valued
synchronous distributed programming (CP), during the confinement period they opted for
a PP (driver-observer roles) programming model as a first option, but in an online mode
(DPP). In most cases, they extrapolated the way they work in the practice laboratories
to a distributed model. Very few students made use of a distributed and synchronous
programming environment, possibly due to a lack of knowledge of the one that would suit
their needs. However, after the confinement, the increase in the number of students opting
for collaborative work and in the number of groups to which they belonged, together with
the decrease in the number of pairs, indicate that the students were open-minded about
working in groups.

In addition, it seems that the confinement has provided an opportunity to discover
different synchronous collaborative tools as well as to become familiar with their use. This
is also supported by the fact that the individual assignment of tasks has not been used and
by the increase in the percentage of students who have used a synchronous collaborative
system (from 5% during the confinement to 25.5% during this school year). Moreover,
during the confinement these systems were only used by 3rd and 4th year students, while
after the confinement it has been used by students from all years.

Regarding the tools used to collaborate, most of the students made use of MS Teams or
Discord, sharing the development IDE (Eclipse for Java; MS Visual Studio for Visual Basic,
RStudio for R and Visual Studio Code for C and ADA) and taking turns alternatively to
code. In the very few cases that they did so, the tools used were Google Colab for Python
programming and MS Visual Studio Live Share or Atom for C and ADA programming.

Among the desirable features included in a software for group programming, at the
same time and in a distributed way, the students considered that an audio-channel can be
very useful and, possibly, the most agile method to communicate. The video signal is not



Electronics 2021, 10, 1728 12 of 17

considered as very necessary, being in many cases rather a source of distraction. However,
the possibility that code regions can be locked as they are edited is also well valued.

Version control tools and the possibility of recovering previous states of the practical
projects were highly appreciated by the students, for their obvious usefulness [6]. The fact
that no first-year students and very few second-year students used them suggests that this
type of tool requires a certain “maturity” not only in the use of technology, but also in the
way of addressing work in groups because it is a long process [6]. Therefore, considering
the advantages that the use of these kinds of tools could offer to CS students [22], they
should start using version control systems as early as the first or second year.

On the other hand, those who best value version control tools also consider it necessary
to record the individual contributions of each member of the team to the result. This
feature is very useful for both teachers and students to evaluate and justify the personal
involvement in the deliveries.

Finally, no significant differences are detected in the students’ needs during and after
the confinement depending on the enrollment year or the size of their programming groups.

To summarize, the pandemic has highlighted the need to integrate technology into
their training models in order to take advantage of existing resources and means, in
both in face-to-face and virtual processes [16]. In our research group (CHICO) [23] the
support of group programming has been, for years, a topic of interest [24,25]. Among
the latest developments, the COLLECE 2.0 system [26] stands out. This is a synchronous
collaborative programming environment that incorporates many of the features that have
been most appreciated by the students in this study (it is a plug-in integrated in Eclipse,
which incorporates awareness mechanisms, version control, lock of code regions, etc.). Even
so, some of the features that have also been positively valued by the students could be
added to this system, such as the incorporation of an audio-channel between the members
of the team and the possibility of locking code regions. Similarly, we plan to continue
studying the tools that support CP through a systematic literature review, which allows
us to know the state of current research in this field. The pilot experiences to evaluate
the system [27] are producing very promising results, thus we are considering using it in
several programming subjects throughout the academic year 2021–2022.

Limitations

The study presents several threats to validity [28] that might have influenced our
results.

• Statistical Conclusion Validity. We have tried to enhance our results by the proper
application of the statistical tests. In fact, besides descriptive results, we have checked
whether the distributions adjusted to the normal to perform the subsequently para-
metric analysis. Moreover, we have provided the participants with non-dichotomic
variables to avoid the restriction of range and we have tried to identify variability in
different sources. However, some uncontrolled extraneous factors, such as personal
feelings or circumstances, that could affect the students’ responses have been beyond
our reach.

• Internal Validity. The results are based on a biased sample formed solely by the
students who chose to participate. On the other hand, it is likely that an important
part of the participants in the second experience had already done so in the first one,
so the repetition of the answers may have influenced the results.

• Construct Validity. Our research questions may not provide complete coverage of
variables, e.g., gender [29] or the way the programming group was formed [30,31].
Also, the list of factors used to check alternative explanations was intended to be
exhaustive, however additional factors could also be considered (e.g., learning style
or general programming experience [31]).

• External Validity. Since the sample is formed exclusively by volunteer students, there
is no certainty that the sample is representative of the generality and, consequently,



Electronics 2021, 10, 1728 13 of 17

the results are not generalizable for all college students. Thus, the reproduction of the
case study in other context tools remains open as an important line of future work.

6. Conclusions

In this article we have described an experience conducted with more than a hundred
students of the Computer Engineering Degree of the ESI-CR of the UCLM, whose objective
was to identify the mechanisms and tools used during and after the imposed lockdown and
the difficulties and the subjective perceptions of CS students to address their programming
tasks in a distributed way.

The experience has revealed the need for group programming in a distributed way
among CS students, especially in the first three years, although no significant differences
were detected in the students’ needs depending on the enrollment year or the size of their
programming groups.

Concerning the lessons learned from this study, we would like to highlight the good
acceptance of collaborative programming tools by CS students. However, the lack of
experience with this type of software has led them to move from the traditional model of
face-to-face group work to a distributed support. Thus, during confinement, Distributed
Pair Programming was the preferred programming paradigm by the students, although
the lockdown gave them the opportunity to discover different synchronous collaborative
programming tools, especially for those in the higher grades. So, the return to face-to-face
teaching has resulted in an increase of the use of Collaborative Programming support tools
for upper-level students. Therefore, in the classroom context, it would be advisable to
introduce first-year students in the use of Collaborative Programming support tools, so that
they can use them outside the laboratory (during weekends, holidays), where they should
complete their practical work.

Another lesson learned, related to the communication needs of group members
during confinement, is that video systems have been the most widely used tools for remote
work, but students consider that an audio channel might be more effective, as it is more
agile and less distracting than video.

Finally, the two most critical aspects considered by students are related to coordina-
tion support and the recording of individual contributions (collaboration) in the shared
program production. In terms of coordination, the preferred control mechanism to allow
shared code editing was the locking of the program sections to be edited, as opposed to
other access policies such as shift assignment, free editing without locking, etc. As for the
second aspect, students find it essential to be able to record the individual contributions of
each group member, probably because the teacher also evaluates the work done by each
one of them. Related to the later aspect, and to the possibility of recovering previous states
of the shared artefact, version control systems are highly appreciated by the students from
all years, even though they are mainly used by higher levels students. Then, it would be
advisable for students to start learning the use of version control systems from the first
year.

Our research group has developed several environments that implement the three
programming approaches (PP, DPP and CP). Among these systems, it is COLLECE 2.0 that
stands out, which incorporates many of the features considered most useful by the partici-
pants in this study: a widely used IDE, such as Eclipse, is integrated and it incorporates a
version control system, lock of code regions, and a very rich set of awareness mechanisms.

For future work, we would like to delve more deeply into the role of gender in the
context of collaborative programming, from the point of view of the way they communicate
as well as the formation of groups and the role they play within it.

Author Contributions: Conceptualization, methodology, and investigation C.L. and A.I.M.; writing,
C.L.; writing—review and editing, A.I.M. Both authors have read and agreed to the published version
of the manuscript.



Electronics 2021, 10, 1728 14 of 17

Funding: This research was funded by the Ministry of Economy, Industry and Competitiveness, and
the European Grant Number TIN2015-66731-C2-2-R.

Acknowledgments: We would like to thank to all our students who voluntarily accepted to partici-
pate in this experience.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Questionnaire defined to collect data.

Research Question Item ID Question Possible Answers

RQ1 1
Have you had to do any group and
distance programming activities or

practices during this course?
Yes/No

RQ2 2
What is the size of the groups in
which you have had to program

with your classmates?
2/3/4 or more

RQ3 3
How have you performed group

practices remotely?
(More than one answer can be selected)

(a) I have chosen not to do group practice. I have
chosen or changed (if the subject allowed it) to the

modality of individual work/
(b) We have distributed the practical work of

different subjects so that each member of the group
can work individually on each one of them, and not

have the need to work together on the same
project/program/

(c) We have used version control systems (e.g., Git,
GitHub, . . . ) to work on the same programming

project, but asynchronously (not both at the same
time on the same project/file)

(d) We have made use of video conferencing tools
(MS Teams or similar), sharing the screen or the IDE
(e) We have made use of a synchronous collaborative

software development environment
(f) We have made combined use of some of the

above options

4
Indicate which tools, and how you

have used them, to program in
group with your fellow trainee(s).

open answer

RQ4=
5

I believe that group programming
is best done by dividing the work,
then working autonomously on a
part (e.g., package, file, class, . . . ),

and integrating each contribution to
get the result.

1 (Strongly disagree)/2/3/4/5 (Strongly agree)

6

I consider that group programming
is best done asynchronously (each
member of the group works on the
same code/project, but at different

times), taking turns to avoid
overlapping each other’s work.

1 (Strongly disagree)/2/3/4/5 (Strongly agree)

7

I believe that group programming
is best done synchronously (two
colleagues working at the same

time on the same code), making use
of additional chat, video, or audio

channels to organize and make
decisions together.

1 (Strongly disagree)/2/3/4/5 (Strongly agree)



Electronics 2021, 10, 1728 15 of 17

Table A1. Cont.

Research Question Item ID Question Possible Answers

RQ5 8

Do you consider that there is a need
for the development of new tools

that allow distributed and
synchronous (at the same time)

group programming?

1 (Strongly disagree)/2/3/4/5 (Strongly agree)

RQ6

9

An environment that would allow
distributed and synchronous (at the
same time) programming should
be an evolution of a known IDE

(e.g., Eclipse, Netbeans, . . . )

1 (would not be at all necessary or useful)/2/3/4/5
(would be very necessary or very useful)

10

An environment that would allow
distributed and synchronous (at the
same time) programming should

display connected users
(identified by name, avatar,

availability status, . . . )

1 (would not be at all necessary or useful)/2/3/4/5
(would be very necessary or very useful)

11

An environment that would allow
distributed and synchronous (at the
same time) programming should

have a synchronous
communication tool (chat)

1 (would not be at all necessary or useful)/2/3/4/5
(would be very necessary or very useful)

12

An environment that would allow
distributed and synchronous (at the
same time) programming should
provide the possibility of audio
communication with the partner

1 (would not be at all necessary or useful)/2/3/4/5
(would be very necessary or very useful)

13

An environment that would allow
distributed and synchronous (at the
same time) programming should
have a video channel that would

allow videoconferencing with the
partner while programming.

1 (would not be at all necessary or useful)/2/3/4/5
(would be very necessary or very useful)

14

An environment that would allow
distributed and synchronous (at the
same time) programming should

always visually show or highlight
where the colleague is

writing/working (by colors, icons,
etc.)

1 (would not be at all necessary or useful)/2/3/4/5
(would be very necessary or very useful)

15

An environment that would allow
distributed and synchronous (at the
same time) programming should
give the possibility to lock code

sections, when working
simultaneously on the same code

file

1 (would not be at all necessary or useful)/2/3/4/5
(would be very necessary or very useful)

16

An environment that would allow
distributed and synchronous (at the
same time) programming should

incorporate a version control
system

1 (would not be at all necessary or useful)/2/3/4/5
(would be very necessary or very useful)

17

An environment that would allow
distributed and synchronous (at the
same time) programming should

keep a history or record the
contribution of each member of

the group to the final project.

1 (would not be at all necessary or useful)/2/3/4/5
(would be very necessary or very useful)



Electronics 2021, 10, 1728 16 of 17

Table A1. Cont.

Research Question Item ID Question Possible Answers

18

In relation to the previous question,
do you consider that it would be

necessary or useful to incorporate
any additional feature or

functionality? Indicate which one(s)

open answer

RQ7 19 What is the highest year in which
you are enrolled? 1st year/2nd year/3rd year/4th year

References
1. McGunagle, D.; Zizka, L. Employability Skills for 21st-Century STEM Students: The Employers’ Perspective. High. Educ. Skill

Work-Based Learn. 2020, 10, 591–606. [CrossRef]
2. Exter, M.; Caskurlu, S.; Fernandez, T. Comparing Computing Professionals’ Perceptions of Importance of Skills and Knowledge

on the Job and Coverage in Undergraduate Experiences. ACM Trans. Comput. Educ. 2018, 18, 21. [CrossRef]
3. Association for Computing Machinery (ACM) and IEEE Computer Society Joint Task Force on Computing Curricula Computer

Science Curricula 2013: Curriculum Guidelines for Undergraduate Degree Programs in Computer Science. Available online:
https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf (accessed on 18 July 2021).

4. Faja, S. Evaluating Effectiveness of Pair Programming as a Teaching Tool in Programming Courses. Inf. Syst. Educ. J. ISEDJ 2014,
12, 36–45.

5. Williams, L.A.; Kessler, R.R. All I Need to Know about Pair Programming I Learned in Kindergarten. Commun. ACM 1999, 43,
108–114. [CrossRef]

6. Ying, K.M.; Boyer, K.E. Understanding Students’ Needs for Better Collaborative Coding Tools. In Proceedings of the Extended
Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020. [CrossRef]

7. Phillips, H.; Ivins, W.; Prickett, T.; Walters, J.; Strachan, R. Using Contributing Student Pedagogy to Enhance Support for
Teamworking in Computer Science Projects. In Proceedings of the Computing Education Practice 2021, New York, NY, USA, 7
January 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 29–32.

8. Luxton-Reilly, A.; Simon; Albluwi, I.; Becker, B.A.; Giannakos, M.; Kumar, A.N.; Ott, L.; Paterson, J.; Scott, M.J.; Sheard, J.;
et al. Introductory Programming: A Systematic Literature Review. In Proceedings of the Companion of the 23rd Annual ACM
Conference on Innovation and Technology in Computer Science Education, Larnaca, Cyprus, 2 July 2018; pp. 55–106.

9. Williams, L.A.; Kessler, R.R. Pair Programming Illuminated|Guide Books; Addison-Wesley: Boston, MA, USA, 2003.
10. Sobral, S.R. Is Pair Programing in Higher Education a Good Strategy? Int. J. Inf. Educ. Technol. 2020, 10, 7.
11. Da Silva Estácio, B.J.; Prikladnicki, R. Distributed Pair Programming: A Systematic Literature Review. Inf. Softw. Technol. 2015, 63,

1–10. [CrossRef]
12. Molina, A.I.; Redondo, M.A.; Lacave, C.; Ortega, M. Assessing the Effectiveness of New Devices for Accessing Learning Materials:

An Empirical Analysis Based on Eye Tracking and Learner Subjective Perception. Comput. Hum. Behav. 2014, 31, 475–490.
[CrossRef]

13. Dourish, P.; Bellotti, V. Awareness and Coordination in Shared Workspaces. In Proceedings of the 1992 ACM Conference on
Computer-Supported Cooperative Work—CSCW ’92, Toronto, Canada, 31 October–4 November 1992; ACM Press: New York,
NY, USA, 1992; pp. 107–114.

14. Collazos, C.A.; Gutiérrez, F.L.; Gallardo, J.; Ortega, M.; Fardoun, H.M.; Molina, A.I. Descriptive Theory of Awareness for
Groupware Development. J. Ambient Intell. Humaniz. Comput. 2019, 10, 4789–4818. [CrossRef]

15. UNESCO Education. From Disruption to Recovery 2020. Available online: https://en.unesco.org/covid19/educationresponse
(accessed on 18 July 2021).

16. García-Peñalvo, F.J. Digital Transformation in the Universities: Implications of the COVID-19 Pandemic. Available online:
https://repositorio.grial.eu/bitstream/grial/2230/1/01.pdf (accessed on 18 July 2021).

17. Crick, T.; Knight, C.; Watermeyer, R.; Goodall, J. The Impact of COVID-19 and “Emergency Remote Teaching” on the UK
Computer Science Education Community. In Proceedings of the United Kingdom & Ireland Computing Education Research
conference, Glasgow, UK, 3–4 September 2020; pp. 31–37. [CrossRef]

18. Khan, S.; Rabbani, M.R.; Thalassinos, E.I.; Atif, M. Corona Virus Pandemic Paving Ways to Next Generation of Learn-
ing and Teaching: Futuristic Cloud Based Educational Model. Available online: https://www.researchgate.net/profile/
Eleftherios-Thalassinos/publication/348730084_Corona_Virus_Pandemic_Paving_Ways_to_Next_Generation_of_Learning_
and_Teaching_Futuristic_Cloud_Based_Educational_Model/links/600d5b2645851553a06824c6/Corona-Virus-Pandemic-
Paving-Ways-to-Next-Generation-of-Learning-and-Teaching-Futuristic-Cloud-Based-Educational-Model.pdf (accessed on 18
July 2021).

19. Chorfi, A.; Hedjazi, D.; Aouag, S.; Boubiche, D. Problem-Based Collaborative Learning Groupware to Improve Computer
Programming Skills. Behav. Inf. Technol. 2020, 1–20. [CrossRef]

http://doi.org/10.1108/HESWBL-10-2019-0148
http://doi.org/10.1145/3218430
https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf
http://doi.org/10.1145/332833.332848
http://doi.org/10.1145/3334480.3383068
http://doi.org/10.1016/j.infsof.2015.02.011
http://doi.org/10.1016/j.chb.2013.04.022
http://doi.org/10.1007/s12652-018-1165-9
https://en.unesco.org/covid19/educationresponse
https://repositorio.grial.eu/bitstream/grial/2230/1/01.pdf
http://doi.org/10.1145/3416465.3416472
https://www.researchgate.net/profile/Eleftherios-Thalassinos/publication/348730084_Corona_Virus_Pandemic_Paving_Ways_to_Next_Generation_of_Learning_and_Teaching_Futuristic_Cloud_Based_Educational_Model/links/600d5b2645851553a06824c6/Corona-Virus-Pandemic-Paving-Ways-to-Next-Generation-of-Learning-and-Teaching-Futuristic-Cloud-Based-Educational-Model.pdf
https://www.researchgate.net/profile/Eleftherios-Thalassinos/publication/348730084_Corona_Virus_Pandemic_Paving_Ways_to_Next_Generation_of_Learning_and_Teaching_Futuristic_Cloud_Based_Educational_Model/links/600d5b2645851553a06824c6/Corona-Virus-Pandemic-Paving-Ways-to-Next-Generation-of-Learning-and-Teaching-Futuristic-Cloud-Based-Educational-Model.pdf
https://www.researchgate.net/profile/Eleftherios-Thalassinos/publication/348730084_Corona_Virus_Pandemic_Paving_Ways_to_Next_Generation_of_Learning_and_Teaching_Futuristic_Cloud_Based_Educational_Model/links/600d5b2645851553a06824c6/Corona-Virus-Pandemic-Paving-Ways-to-Next-Generation-of-Learning-and-Teaching-Futuristic-Cloud-Based-Educational-Model.pdf
https://www.researchgate.net/profile/Eleftherios-Thalassinos/publication/348730084_Corona_Virus_Pandemic_Paving_Ways_to_Next_Generation_of_Learning_and_Teaching_Futuristic_Cloud_Based_Educational_Model/links/600d5b2645851553a06824c6/Corona-Virus-Pandemic-Paving-Ways-to-Next-Generation-of-Learning-and-Teaching-Futuristic-Cloud-Based-Educational-Model.pdf
http://doi.org/10.1080/0144929X.2020.1795263


Electronics 2021, 10, 1728 17 of 17

20. Altebarmakian, M.; Alterman, R.; Yatskar, A.; Harsch, K.; DiLillo, A. The Microgenetic Analysis of Staged Peer Collaboration
for Introductory Programming. In Proceedings of the 2016 IEEE Frontiers in Education Conference (FIE), Erie, PA, USA, 12–15
October 2016; pp. 1–8.

21. Molina, A.I.; Gallardo, J.; Redondo, M.Á.; Bravo, C. Assessing the Awareness Mechanisms of a Collaborative Programming
Support System. Dyna 2015, 82, 212–222. [CrossRef]

22. Lu, Y.; Mao, X.; Wang, T.; Yin, G.; Li, Z. Improving Students’ Programming Quality with the Continuous Inspection Process: A
Social Coding Perspective. Front. Comput. Sci. 2020, 14, 145205. [CrossRef]

23. Grupo Computer Human Interaction and Collaboration (CHICO). Available online: https://blog.uclm.es/grupochico (accessed
on 18 July 2021).

24. Bravo, C.; Duque, R.; Gallardo, J. A Groupware System to Support Collaborative Programming: Design and Experiences. J. Syst.
Softw. 2013, 86, 1759–1771. [CrossRef]

25. Ortega, M. Computer-Human Interaction and Collaboration: Challenges and Prospects. Electronics 2021, 10, 616. [CrossRef]
26. Lacave, C.; García, M.A.; Molina, A.I.; Sánchez, S.; Redondo, M.A.; Ortega, M. COLLECE-2.0: A Real-Time Collaborative

Programming System on Eclipse. In Proceedings of the 2019 International Symposium on Computers in Education (SIIE), Tomar,
Portugal, 21–23 November 2019; pp. 1–6.

27. Schez-Sobrino, S.; García, M.Á.; Lacave, C.; Molina, A.I.; Glez-Morcillo, C.; Vallejo, D.; Redondo, M.Á. A Modern Approach to
Supporting Program Visualization: From a 2D Notation to 3D Representations Using Augmented Reality. Multimed. Tools Appl.
2021, 80, 543–574. [CrossRef]

28. Shadish, W.R.; Cook, T.D.; Campbell, D.T. Experimental and Quasi-Experimental Designs for Generalized Causal Inference; Houghton
Mifflin: Boston, NY, USA, 2001; ISBN 978-0-395-61556-0.

29. Ying, K.M.; Rodríguez, F.J.; Dibble, A.L.; Boyer, K.E. Understanding Women’s Remote Collaborative Programming Experiences:
The Relationship between Dialogue Features and Reported Perceptions. Proc. ACM Hum. Comput. Interact. 2021, 4, 1–29.
[CrossRef]

30. Revelo Sánchez, O.; Collazos, C.A.; Redondo, M.A. A Strategy Based on Genetic Algorithms for Forming Optimal Collaborative
Learning Groups: An Empirical Study. Electronics 2021, 10, 463. [CrossRef]

31. Sobral, S.R. Pair Programming and the Level of Knowledge in the Formation of Pairs. In Trends and Applications in Information
Systems and Technologies; Advances in Intelligent Systems and Computing; Rocha, Á., Adeli, H., Dzemyda, G., Moreira, F.,
Ramalho Correia, A.M., Eds.; Springer International Publishing: Cham, Switzerland, 2021; Volume 1367, pp. 212–221. ISBN
978-3-030-72659-1.

http://doi.org/10.15446/dyna.v82n193.53497
http://doi.org/10.1007/s11704-019-9023-2
https://blog.uclm.es/grupochico
http://doi.org/10.1016/j.jss.2012.08.039
http://doi.org/10.3390/electronics10050616
http://doi.org/10.1007/s11042-020-09611-0
http://doi.org/10.1145/3432952
http://doi.org/10.3390/electronics10040463

	Introduction 
	Research Questions 
	Method 
	Participants and Context 
	Measure Instrument Design 
	Variables 

	Results 
	Sample Description 
	RQ1: Need for Group Programming Activities in a Distributed Way 
	RQ2: Size of the Existing Programming Groups 
	RQ3: How Have They Approached Group Programming TASKS? 
	RQ4: Which Was the Students’ Subjective Perception of the Different Strategies Adopted for Group Programming? 
	RQ5: Do Students Require Tools That Support Distributed and Synchronous Group Programming Activities? 
	RQ6: Which Features and Functionalities Should Be Useful for Students to Support Synchronous Distributed Programming Activities? 
	RQ7: Are There Significant Differences in the Students’ Needs Depending on the Enrollment Year or the Size of Their Programming Groups? 

	Discussion 
	Conclusions 
	
	References

