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Abstract: Semantic interoperability of distributed electronic health record (EHR) systems is a crucial
problem for querying EHR and machine learning projects. The main contribution of this paper is to
propose and implement a fuzzy ontology-based semantic interoperability framework for distributed
EHR systems. First, a separate standard ontology is created for each input source. Second, a unified
ontology is created that merges the previously created ontologies. However, this crisp ontology is
not able to answer vague or uncertain queries. We thirdly extend the integrated crisp ontology into
a fuzzy ontology by using a standard methodology and fuzzy logic to handle this limitation. The
used dataset includes identified data of 100 patients. The resulting fuzzy ontology includes 27 class,
58 properties, 43 fuzzy data types, 451 instances, 8376 axioms, 5232 logical axioms, 1216 declarative
axioms, 113 annotation axioms, and 3204 data property assertions. The resulting ontology is tested
using real data from the MIMIC-III intensive care unit dataset and real archetypes from openEHR.
This fuzzy ontology-based system helps physicians accurately query any required data about patients
from distributed locations using near-natural language queries. Domain specialists validated the
accuracy and correctness of the obtained results.

Keywords: semantic; electronic health record (EHR); fuzzy ontology; SPARQL

1. Introduction

With the increasing expansion of medical science, traditional handwriting health
records have not been adequate for recording the massive quantity of information. In-
formation technology (IT) has to play a prime role in the healthcare system redesigning
to improve substantial quality [1]. In the 1960s and 70s, new computer technology was
developed, leading to the development of the electronic health record (EHR). In the same
period, early efforts for EHRs development began [2]. EHR is an electronic repository for
all individual’s lifetime health information [3]. EHRs feed the different healthcare systems
with up-to-date, accurate, digitalized, and complete information about patients, as shown
in Figure 1. EHRs support efficient, quality, and persistent integrated healthcare, improving
the medical domain [4].
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Figure 1. The heterogeneity of electronic health record systems.

Healthcare data by nature are growing quickly, and they are distributed. EHR gets all
patient data together from many heterogeneous systems [5]. The healthcare system all over
the world is specialized, distributed, and interrelated. The different components of eHealth
system must be cooperated and communicated with each other [6]. That is enabled by
using an interoperable mechanism for these health information systems [7]. Achieving
interoperability of different EHRs systems increases workflow performance, enhances the
quality of healthcare, and reduces duplication and costs [8]. EHRs interoperability ensures
a common understanding of manipulated medical information, therefore reducing medical
errors. It coordinates amongst different healthcare providers (hospitals, government, clinics,
general practitioners, etc.) in a fast and better way [8,9].

Many organizational standards have been designed to achieve interoperability in the
EHR environment [10]. From those standards are: DICOM [11], CEN/ISO EN13606 [12],
GEHR [7], openEHR [13], EuroRec [14], and epSOS [15]. Unfortunately, those standards
have many challenges [16,17]. One of them is that there are too many standards, and
adopting one requires huge efforts [18]. In addition, those standards are dynamic and
it is difficult to deal with complex concept descriptions [7]. As a result, EHRs cannot
accomplish their full possibility in helping coordinated care till clinicians and patients are
confirmed that all individual’s records could be retrieved no matter where they are stored.
To achieve this objective, EHRs have to connect records for every patient across the many
offices, hospitals, and other sites where that individual requests care [19]. That could be
achieved by implementing EHR syntax and semantic interoperability. Distributed EHRs
necessitate semantic interoperability, to assure that patients’ EHRs could be shared and
reused by different professionals [20]. The main challenge of any system’s success is in its
conceptualization “description of the system with its practices and their interrelations” [21].
The information in the healthcare domain is distributed, dynamic, and heterogeneous.
Besides, a large amount of data is updated daily. Therefore, the hierarchy structure with
expansion design is an essential required to that system [22]. Ontologies play a significant
role in building distributed, and interoperable, EHR environments, as they provide uniform
semantics and explicit formal models [14,15].

Semantic Web (SW) technologies enable data to be reused and shared among enter-
prises, applications, and community boundaries. SW technologies have many capabilities
that achieve SI in any EHR [23]. Ontology, as the main item in SW, is defined as a data
model that is used to represent a set of concepts in a specific domain and the relationships
amongst those concepts [24]. It defines the used terms in a formal semantic way using
a set of axioms. This enables both machines and humans to understand the meaning of



Electronics 2021, 10, 1733 3 of 27

the exchanged data. In recent years, ontologies are used as formalisms in representing
knowledge in various domains. They are used in many fields as software engineering,
artificial intelligence, building the expert systems’ knowledge base [25], natural language
processing [26], communication between agents through knowledge sharing [27], and
biomedical informatics [24]. Besides, ontologies could be used in helping human beings
communicate, achieving interoperability between software systems, and improving the
quality and design of software systems [28].

The most important advantage of ontologies is that they could agree between many
different parties. They are nearer to become a standard than any other data model [29].
The major disadvantage of it is their incapability in representing and in reasoning im-
precision and uncertainty. However, much of the medical domain knowledge is vague
or fuzzy [30,31], for example, if we need to report that a patient has high systolic blood
pressure. This is difficult because concepts like high, low, and medium are not well and
clearly defined. Hence, crisp ontology is not suitable to deal with such knowledge [32].
Fuzzy logic and fuzzy ontology (FO) could handle that vagueness [33]. It adds more
semantics to the original data using linguistic variables. By using this formulation, we
could report that a patient has a high systolic blood pressure with a degree of 0.9.

In previous work [34], we proposed an ontological architecture that could unify
different EHRs data formats. We focused on the first two stages of the process. We
evaluated different health formats, represented by openEHR’s ADL (Archetype Definition
Language) archetype, relational databases, spreadsheets, XML documents, and CSV files.
The first stage of the proposed architecture converts each different input source to an OWL
ontology. In the second stage, it integrates all those ontologies into a merged crisp one.
The work in this paper expands crisp ontology into a fuzzy ontology. FO enhances the
crisp ontology’s capabilities and improves the medical domain’s accuracy [33]. The main
contributions of this paper are summarized as follows:

1. Propose a framework that could integrate and collect all patient data from distributed
and heterogeneous data sources in a centralized point based on using semantic
web ontologies.

2. Achieve syntax interoperability in distributed EHRs by aggregating data with hetero-
geneous structures. That aggregating and integration were done using the ontology
semantic web concept.

3. Achieve SI in distributed EHRs by fuzzing the united crisp ontology. We made
unification between different heterogeneous formats using crisp ontology. FO could
address semantic meaning for any inconsistent feature by using linguistic terms. For
example, it is popular to utilize translation between people who are not from the
same country and do not speak a similar language.

The remainder of the paper is organized as follows. Some previous studies and related
work are discussed in Section 2. Section 3 includes the proposed FO framework with the
used dataset description. Section 4 contains the experimental results with MIMIC-III and
openEHR distributed datasets and their results. We discuss our evaluation of the proposed
solution in Section 5. Finally, the conclusion and future work are outlined in Section 6.

2. Related Work

Over the past few years, the literature moves towards using ontology for solving
many problems in the healthcare domain. From those studies, there are many relied upon
using ontologies in an interoperability environment. Others extend ontology by fuzzy one
for handling the imprecise nature of the medical domain.

2.1. Ontology-Based Interoperable Frameworks

Ontologies are highly used in many contexts of different fields. For example, Pan et al. [35]
surveyed a complete analysis about using ontologies in the field of software engineering.
Ontology has been commonly used in biomedical informatics [32–34]. Yang and Li [36]
proposed building an interoperable healthcare system between different medical treatment
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organizations. Ontology-based approach was introduced as an information integration
solution. A virtual database was established to realize hospital information data inte-
gration. The semantic and structural heterogeneity are two main problems caused by
distributed healthcare systems. The semantic heterogeneity problem could be solved using
ontologies. The structure heterogeneity problem would be overcome by using XML-based
data integration with data warehouse. Villaseñor et al. [18] proposed U2MIO (Ubiquitous
User Modeling Interoperability Ontology) mediation model for interoperability in hetero-
geneous EHRs. It reuses SKOS (Simple Knowledge Organization for the Web) ontology in
designing a central concept scheme for ubiquitous user models and one concept scheme for
each profile consumer or supplier. It recollects source documents in RDF, XML, or JSON
formats. When a new source enters to the system, a corresponding skos:ConceptScheme(X)
is designed and added to U2MIO. That task was performed by combining three types of
similarity: string, semantic, and structure similarity.

Kiourtis et al. [37] suggested a multi-step semantic architecture that was executed
with many medical for heterogeneous EHRs’ data standards. The proposed framework
integrated a system to remove space explicit data from ordered EHR datasets, transform
them via ontologies to a CHL (Common Health Language). El Hajjamy et al. [38] developed
a semi-automatic integration approach to convert data from traditional data sources to
ontologies. They converted each different data source into OWL 2 ontology. Based on
syntactic, semantic, and structural similarity, all output local ontologies are merged into a
united ontological model. The authors avoided the redundancy in the merged ontology.
Cristiano et al. [39] presented a method to reach the interoperability between heterogeneous
health systems by the use of ontologies and rules. That method used the OWL features
to map equivalences between mixed openEHR and HL7 records. The dataset used was
composed of heart rate and blood pressure readings of three patients extracted from the
MIMIC-III database. They chose to represent the first five rows of each table in openEHR
while the rest were represented in HL7. Their approach translated HIS structure to OWL
then created bindings between similar structures of each system. SWRL rules were used
to increase the expressivity of the openEHR and HL7 ontology by classifying individuals
based on their properties. These bindings are used by the reasoner to infer additional
knowledge not explicit in the ontology. However, the authors ought to evaluate their
proposition with huger sets of data.

Roehrs et al. [40] proposed an interoperability model “OmniPHR”. It presented a
structural-semantic, unified, and up-to-date vision of PHR “personal health record” pa-
tients and healthcare providers. That model tried to achieve integration and semantic
interoperability between different health standards. It used a real with many adult patients’
medical records. The data was represented by three reference models: HL7 FHIR, openEHR,
and MIMIC-III. The final execution score reached 87.9% F1-score. Duncan et al. [41] pro-
posed OHD (Oral Health and Disease Ontology) as a widespread framework to represent
dental health information. The OHD framework could be used to integrate homogeneous
data from different database systems. Using the OHD’s information, terms, and relations
from multiple dental EHRs could be translated to OWL 2 statements. Those statements
could be stored in a semantic database as a triple store and queried using SPARQL for
extracting information. OHD also supports future system representations. However,
ontology provides a comprehensive understanding of domain terms, crisp ontology is
not suitable for handling uncertain, incomplete, and vague information, and it must be
extended using a fuzzy one [35,42,43]. In the following section, we will manipulate some
studies that depend on using fuzzy ontologies.

2.2. Fuzzy-Based Ontology Systems

FO has been used in many different applications as image interpretation [44], model-
ing human behavior [45], information retrieval, and many other semantic Web applications.
For example, Calegari and Sanchez [42] used FO in improving Information Retrieval (IR)
system. The information retrieval domain involves information organizing, storing, re-
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trieval, and displaying. The authors saw that two-valued-based methods are not sufficient
in handling uncertain, ill-structured, and imprecise knowledge. They extended the query
vector and introduced the Fuzzy Concept Network (FCN) to represent ontology dynamical
behavior. David Parry [43] proposed more specifically medical IR based on fuzzy ontology.
Regarding personalized multimedia IR, Mylonas et al. [46] presented personalized, unified
access to heterogeneous multimedia content in distributed repositories. It focused on
semantic analysis of multimedia metadata, documents, user profiles, and user queries.
Rodríguez et al. proposed an FO model for human behavior recognition [45]. The pro-
posed model was realistic, flexible, more accurate, and allow incomplete real-life queries.
El-Sappagh and Elmogy [25] developed an FO novel (CBRDiabOnto) for diabetes mellitus
diagnosis fuzzy Knowledge-Intensive Case-Based Reasoning system. They enhanced the
case representation and case retrieval critical steps of CBR system. The authors imple-
mented a JAVA user interface for collecting the patient query case description. In addition,
they implemented a framework to fuzzify and code the case description.

Ali et al. [47] proposed a type-2 fuzzy ontology for the Internet of Things (IoT)-based
healthcare to monitor the patient’s body efficiently. The proposed architecture extracted
patient risk factors values, determined the patient’s health condition through wearable
sensors, and then recommended diabetes-specific prescriptions for a smart medicine box
and smart refrigerator food. The combination between fuzzy ontology and type-2 Fuzzy
Logic (T2FL) increased the prediction accuracy of a patient’s condition. The proposed
system could increase the healthcare performance of chronic diseases. It could assist old
patients for long-term care without continuously physicians visiting. Noia et al. [48] pro-
posed a fuzzy ontology to structure the knowledge related to non-functional requirements
(NFRs) for supporting architectural design. FO was able to model their joint interactions
and relations. The authors presented a decision support system built upon fuzzy OWL
2 ontology that could encode 28 pattern families, 109 design patterns, and 37 NFRs and
their mutual relations. Ali et al. [49] combined SWRL (Semantic Web Rule Language)
rules with fuzzy ontology-based sentiment analysis for monitoring transportation activities
(vehicles, accidents, traffic volume, street conditions, etc.). Their main aim is to make a
travelers city-feature polarity map.

After studying the literature, we found that various techniques were proposed to
solve the SI problem in distributed EHRs [37,40,50]. However, most of these studies
suffer from some limitations. From those limitations: Most of the literature is concerned
with using one or more EHRs standards to handle the mentioned problem. However,
using a single standard is insufficient to make unification, especially when the system
is distributed. Other studies neglected the problem of uncertainty and vagueness in the
medical domain [51]. To beat those problems, this paper recommends fuzzy ontology as a
solution after its great success in many other medical and non-medical fields as mentioned
previously. Our proposed framework depends on using ontology to make unification
amongst all distributed data models. Then, fuzzify the unified crisp ontology to handle the
medical uncertainty problem.

3. Materials and Methods
3.1. Fuzzy-Ontology Formulation

Ontology is defined as an explicit, formal, specification of a shared conceptualization [52].
It includes the following components: (concepts “classes”, Individuals, Relations, At-
tributes “data properties”, and Axioms “conditions”). Concepts (C) are a collection of
domain objects. Individuals (I) represent a set of instances or elements in a given class.
Relation (R) represents the interactions between domain individuals; R is ⊆ C1 × C2 × . . .
Cn. Ontology provides a vocabulary for a particular domain by describing its concepts
meanings and their relationships. Ontology enables sharing and reusing of health-related
data. In addition, they make information both machine and human-readable. Ontologies
play a significant role in solving the SI problem among many heterogeneous systems in
distributed organizations, across giving a shared annotation and understanding for the
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common concepts [40,41], thereby providing a uniform way for communication between
different practices in a distributed system and also understanding each other.

Much of the knowledge in the medical domain is vague, fuzzy, and uncertain. Un-
certainty is defined as: “The incompetence in determining the meanings of related events
due to complexity, vagueness, deficiency of information about patient’s illness and its
consequences” [53]. Crisp ontology is not suitable to deal with such knowledge [32]. It
can model only relations amongst concepts that might be true or false. FO expands the
classical ontology’s capabilities by improving the applicability and accuracy in the medical
domain [33]. Formally [54], FO could be defined as quadruple of (C, R, I, µF), where C
represents a set of concepts. R ⊆ C × C is a set of fuzzy relations assigned by a fuzzy label
and value, I is a mapping from edges to a set of strings “labels”, and F is the membership
functions µF: R −→ [0, 1].

Vague concepts have blurred and fuzzy boundaries, and classical formalism has
not any fuzzy boundary. Thereby, it could not represent vague concepts. The linguistic
variables in FL are a natural human language term, such as fast, hot, low, and high.
The values of these variables are usually words rather than numbers [55]. In FO, the
membership function µ(x) (MF) value could any real number between 0 and 1. FO permits
defining fuzzy concepts explicitly with trapezoidal, triangular, left-shoulder, and right-
shoulder membership functions [56] as in the following equations. Figure 2 clarifies the
Fuzzy membership functions.

µTrapezoidal(x) =



0 if x ≤ a
x−a
b−a if a ≤ x ≤ b
1 if b ≤ x ≤ c
a−x
d−c if c ≤ x ≤ d
0 if x > d

, (1)

µTriangular(x) =


0 if x < a
x−a
b−a if a ≤ x ≤ b
c−x
c−b if b < x ≤ c
0 if x > c

, (2)

µLeft-shoulder(x) =


0 if x < a
b−x
b−a if a ≤ x ≤ b
1 if x > b

, (3)

µRight-shoulder(x) =


0 if x < a
x−a
b−a if a ≤ x ≤ b
1 if x > b

. (4)

Figure 2. Fuzzy membership functions and equations: (a) Trapezoidal function, (b) Triangular function, (c) Left-shoulder
function, and (d) Right-shoulder function.

FO is defined theoretically as “an ontology which utilizes fuzzy logic for providing
a natural representation of vague and imprecise knowledge, and also reasoning it”. FO
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was built upon the Description logic (DL) language. DL is one of the important tools
that can support the semantic web. Logic, as “the science of reasoning”, is defined as
“the study of how to make formal correct deductions and inferences” [57]. DL [58,59] is
defined as “knowledge representation languages that could be utilized in representing the
application knowledge in a formal and structured well-understood way”. DL is a subset
of FOL (First-Order Logic) [60]. Over the most recent few years, DL has been used in a
broad range of applications as speech recognition [61], natural language processing [62],
and reinforcement learning [63].

DL has Boolean constructors as a conjunction (u), which is interpreted as an intersec-
tion set, and negation (¬) as a complement set, disjunction (∪) as a union set. In addition to,
it includes existential quantifier (∃R.C), and value quantifier (∀R.C). The knowledge base
in DL includes two main components: TBox and ABox. TBox (terminology) introduces
a vocabulary of an application domain. ABox (assertions) contains named individuals
with terms of that vocabulary. Description logics provide their users with the services of
reasoning. It could infer automatically implicit knowledge from explicit one [64]. From
the software DL Reasoning: Pellet [65], HermiT OWL[66], KAON2 [67], Fact++ [68], and
RacerPro [69].

Bobillo and Sraccia [70] used OWL 2 to deal with knowledge imprecision and de-
veloped a fuzzy OWL 2 to represent FO. OWL 2 is built on SROIQ (D) DL [71]. Fuzzy
OWL 2 allows encoding fuzzy data types, fuzzy modifiers, fuzzy concepts, fuzzy roles,
fuzzy axioms (An axiom is the ontology smallest unit. It defines formal relation between
the entities of ontology.), and concrete domain. It is a pair of (∆D,ΦD), where ∆D is a
concrete interpretation domain, and ΦD is a set of concrete predicates [72]. To fuzzify a
crisp ontology, it has to be translated to a language propped by FO reasoner. Fuzzy OWL 2
parsers convert Fuzzy OWL 2 ntologies into fuzzyDL [73] and DeLorean reasoners’ syntax
[74]. The main idea in fuzzyDL depends on roles and concepts that are interpreted as a
subset of an interpretation’s domain. For defining a formal semantics interpretation, I must
be considered. DL associates semantics with roles, concepts, and individuals by utilizing
an interpretation I = (∆I,·I), where ∆I is a domain of (individuals) I, and the function,·I is
an interpretation function that maps:

• Individual names a to domain elements aI ∈ ∆I,
• Class names C to a set of domain elements CI v ∆I,
• Role R to a set of pair of domain elements RI v ∆I×∆I.

The function of interpretation could be extended to concept description by the follow-
ing induced definitions:

• >I = ∆I and ⊥I = φ,
• (¬A) = ∆I/AI,
• (CuD)I = CI∩ DI and (CtD)I=CI∪ DI,
• (∀R.C)I = {a∈ ∆I|∀b.(a,b)∈RI−→ b∈CI},
• (∃R.>)I = { a∈ ∆I|∃b.(a,b)∈RI}.

Axioms in fuzzyDL happen with a certain degree of certainty or completeness. The
satisfaction of a fuzzy axiom I by a fuzzy interpretation I, denoted I |=E, is defined as
follows [73]:

• I|=(t≥α) iff tI≥α,
• I|= (trans R) iff ∀ x,y ∈ ∆I , RI(x, y) ≥ sup z∈ ∆I RI(x, z) ⊕ RI (z, y),

• I|= R1v R2 iff ∀(x, z)∈ ∆I RI
1(z, y) ≤ RI

2(z, y),
• I(inv R1 R2) iff ∀(x, z)∈ ∆ I RI

1 (z, y) = RI
2(z, y).

3.2. Dataset Sources

To implement the proposed framework in a large-scale distributed benchmark dataset,
we used the dataset of the MIMIC-III (Medical Information Mart for Intensive Care) clinical
database. In the MIMIC-III dataset, we do not find any distribution of data formats. All
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tables are represented as an aggregation of Comma-Separated Value (CSV) files. For the
mentioned reason, we had to make two groups of the MIMIC-III dataset. The first group
consists of only MIMIC-III CSV files format as it without adaption. The second one was
CSV files adapted to the MySQL database. On the other hand, we also manipulate the
openEHR ADL archetype data model. The dataset used in this study includes identified
data of 100 patients.

3.2.1. Data Source #1: MIMIC-III CSV Format

We chose three of the most important MIMIC-III tables to prepare the used dataset.
Those tables are PATIENTS, LABEVENTS, and D_LABITEMS. We generated a new col-
lected averaged data for some laboratory tests, called it “PatientTests”. That table contains
the following columns: Subject_id, age, Glucose, Hematocrit, Hemoglobin, INR (interna-
tional normalized ratio), Temperature, and WBC (White blood cells). Each lab test has a set
of ITEMSIDs in the D_LABITEMS table. Table 1 shows a description of the PatientVitals
CSV table used in this study.

Table 1. Overview of PatientTests CSV table.

Column Name Datatype Description

Subject_id Integer Defines a unique identifier for the patient.

Age (years) Double Defines calculated value for the age of the patient. It is calculated from the difference
between DOD “date of death” and DOB “date of birth” from the PATIENTS table.

Glucose Double It measures Glucose in the blood; its values were identified by the following ITEMIDs:
(50809, 50931, 51529).

Hematocrit Double It measures hematocrit in the blood; its ITEMSIDs are (51348, 51369, 51422, 51445, 50810,
51115, 51221, 51480).

Hemoglobin Double This field measures hemoglobin percentage in the blood. Its values were identified by the
following ITEMIDs: (50814, 50852, 50855, 51222, 51223, 51224, 51225, 51226, 51227, 51285).

INR Double Its ITEMID is (51237).
Temperature Double It contains the temperature of the body. Its ITEMID is (50825).
Temperature Double Its ITEMID is (51237).

WBC Double It determines the number of white blood cells in the blood. Its values were identified by the
following ITEMIDs: (51363, 51384, 51439, 51458, 51128, 51300, 51301, 51516, 51517, 51518).

3.2.2. Data Source #2: MIMIC-III MySQL Adapted Database

The second group was adapted to the MySQL database. The chosen tables are ICUS-
TAYS (Defines a single ICU stay), CAREGIVERS (provides information regarding care-
givers), and CHARTEVENTS (Contains some vital sign measurements for identified pa-
tients). ICUSTAYS table includes care unit-related data, such as the name of the care unit,
admission time, time of discharge, and the number of days in each unit. CAREGIVERS
table defines the caregiver’s role during ICU stay. We generated new collected averaged
vital sign data in the CHARTEVENTS table. That table contains the following columns:
row_id, subject_id, icustays_id, cgid, BUN (Blood Urea Nitrogen), GCS Total (Glasgow
Coma Scale), Heart Rate, Resp Rate, SBP “Systolic Blood Pressure”, and DBP “Diastolic
Blood Pressure”. Each event has a set of ITEMSIDs in the D_ITEMS table. For example,
BUN values were identified by ITEMIDs (781, 1162, 5876, 3737, 225624 ), GCS values (198,
220739, 223900, 223901), Heart Rate (211, 3494, 220045, 220046, 220047), Resp Rate (614, 615,
1884, 1635, 3603), SBP (51, 220050, 220059, 220179, 455, 442), and DBP (8368, 8502, 8555,
228151, 220051, 225310).

3.2.3. Data Source #3: Semantic openEHR Archetypes

The openEHR is a not-for-profit foundation. It consists of open specifications, clinical
models, and software that can be used as interoperability solutions for healthcare [13]. The
openEHR archetypes are stored online in Clinical Knowledge Manager (CKM) repository [13].
CKM contains a set of archetypes and templates that could be reused in various health-
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care applications. We chose an archetype with ID openEHR-EHR-CLUSTER.macroscopy_
colorectal_carcinoma. That archetype was used for recording detailed findings of colorectal
cancer found on macroscopic histopathological examination. Figure 3 reveals the mind
map view of this archetype using the LinkEHR manager tool [75,76]. It is a tool that has
been designed by the archetype community to empower the edition of the archetypes. It
works with archetypes with any language. The archetype is composed of a set of nodes
and instances. For example, the node “Tumor dimensions” refers to the maximum tumor
dimensions. “Distance of tumor from dentate line” determines the distance of tumor from
the dentate line. “For rectal tumors” refers to findings related solely to rectal tumors.
“Tumor perforation” refers to perforation of tumor.

Figure 3. openEHR.microscopy_colorectal_carcinoma archetype mind map.

3.3. The Proposed Architecture Model

In this paper, we propose fuzzy ontology as a solution for the SI problem in distributed
EHRs. Our prime aim was to develop a model which could unify all the data stored in
different file systems, structures, and formats. Healthcare by nature includes many different
providers “players”. Each provider makes his own treatment decisions independently by
utilizing his private judgment. Thereby, there must be a way to share data easily among
those different players. Sharing information in different EHRs in a secure and meaningful
way improves patient safety and the healthcare industry as all. We proposed a framework
a semantic ontological architecture that could unify different EHRs data formats as drawn
in Figure 4.

The proposed architecture includes three main layers. The first layer converts each
different input source into an OWL ontology. As mentioned before, EHR is a combination of
patient’s linked data. Many medical data models describe the data structures of information
in EHRs [77]. From those different formats are ADL (Archetype Definition Language),
SQL (Structured Query Language), MACRO-XML, CDA-HL7 (HL7 clinical document
architecture), SPSS (IBM SPSS Syntax file), XLSX (Microsoft Excel format), PDF (Portable
document format), CSV, and ODM-DISC (CDISC operational data model). Those data are
unstructured and distributed, and each data have their format, as well as semantic.

The different parties of EHRs have to cooperate during patient care. Thereby, all those
medical data models must be harmonized to avoid duplicate data entry in healthcare. At
the same time, healthcare providers and physicians oftentimes need access to those data
in an integrated way. This layer aims to make integration and unification amongst all the
existing data models. Our main point of departure is to convert each input source to an
OWL ontology model. We selected ontology, especially, because it has the capability to
unify between many different parties. It increases the intelligence and efficiency of clinical
decision support systems.
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The second stage “Global Unified Ontology” combines two or more ontologies and
builds a new combined one. Its main purpose is to give a unified and single user interface to
all different and heterogeneous data sources, thereby educing all the required information
from local ontologies through the combined one easily. This provides a clear meaning for
the used concepts to high-level users. In ontology merging, all information about input
ontologies components is preserved. There are various techniques and methodologies
utilized in merging ontologies. Such as PROMPT protégé plugin [78], VOAR (Visual and
Integrated Ontology Alignment Environment) web-based [79], and ontology integration
systems (OISs) [80]. The merged ontology must avoid redundancy and conflict between
the same components. It maps an input entity in the first input ontology to an entity in the
second input one.

Figure 4. The proposed fuzzy ontology framework.

The first two stages of the framework were implemented in more detail previously
[81]. This work expands crisp ontology into a fuzzy-based one. The integrated ontology
is fuzzified using the FuzzyOWL2 protégé plug-in to represent uncertain and vague
relationships, attributes, and concepts in real-medical knowledge, thereby facilitating
decision-making efficiency. Our point of departure for using FO is that the medical domain
by nature is error-prone, and FO is more accurate, reusable, and shareable than the classical
in such a vague domain.

To fuzzify the crisp ontology, we will use FuzzyOWL 2 protégé plugin [82]. All the
elements of classical original ontology (concepts, attributes, modifiers, instances, data
properties, object properties, etc.) are fuzzified by assigning a membership value. That
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plug-in allows specification of the fuzzy logic type used, fuzzy modified concepts, and the
definition of fuzzy data types, weighted concepts, fuzzy nominals, weighted sum concepts,
fuzzy modifiers, fuzzy modified roles, and fuzzy axioms. The main idea of fuzzyOWL2
over classical ontology is to expand its elements with OWL2 annotation properties. The
main focus of this paper is to aggregate all the different distributed EHRs formats into a
centralized semantic point query. Physicians can interact directly with the unified fuzzy
ontology. He could use the natural language query regardless all the different low-level
formats. The proposed architecture is described in Algorithm 1.

Algorithm 1: Fuzzy ontology preparation.
Data: Structured heterogeneous data sources i
/* the heterogeneous data sources could be with any format */
Result: Unified fuzzy ontology
begin

for each input system i do
convert i into an ontology format.;

end
Integrate all the constructed ontologies into a global Crisp one. /* Through

Ontologies alignment and Similarity computation. */
Check the consistency of the integrated ontology with Pellet reasoner.
/* Fuzzy ontology creation */
Convert Crisp ontology to global fuzzy using FuzzyOWL2 plugin.
Check the correctness of the integrated fuzzy ontology with FuzzyDL reasoner.

end

4. Results

The proposed framework has three main layers. Those layers are Local ontologies
construction, unified global ontology, and fuzzy integrated ontology. In the next section,
we will manipulate the results of those layers. Besides, we will evaluate the integrated
crisp ontology and integrated fuzzy one by executing some semantic queries.

4.1. Local Ontologies Construction

This layer constructs a local ontological model from each input data source. We chose
ontology as it provides a formalized and shareable way of constructing health data. In
addition, it expresses the semantics of domain terms in a natural language comprehended
by machines. Concerning Data source #1, the main table was transformed to an OWL class
“PatientTests”, all 8 columns were mapped into 8 Datatype Properties, and 100 records
were successfully mapped to 100 individuals of the constructed ontology. Nine hundred
and fifty-three axioms, 11 declaration axioms, and 930 logical axioms are generated during
the mapping. Figure 5 would describe the data property, individuals, and OntoGraf of the
ontology constructed. Some of the generated axioms are introduced as follows:

PatientTests vThing u (∀ patienttests.Subject_id.Xsd:int),
u (∀ patienttests.age.Xsd:int),
u (∃patienttests.Glucose.Xsd:long),
u (∀patienttests.Hematocrit.Xsd:long),
u (∃ patienttests.Hemoglobin.Xsd:long),
u (∃patienttests.Xsd:int),
u (∀ patienttests.Temperature.Xsd:long),
u (∃ patienttests.WBC.Xsd:long).

Regarding to Data source #2 “MIMIC-III MySQL adapted database”. Those tables
are ICUSTAYS, CAREGIVERS, and CHARTEVENTS. The database table is represented
as an OWL sub-class of the class Thing (It acts as the set involving all individuals in the
protégé project.). Each tuple/record of a table is mapped to an instance of that table’s
corresponding class. Each attribute is converted to be an instance of datatype properties.
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Each attribute will have the same data type as in the database. The value of this attribute
is mapped as a value of the identical data type. Foreign keys are transformed to object
properties. In the experiment, three tables were mapped into ontology classes with the
same name as RDB. All 300 records were mapped into individuals. All 24 columns were
mapped into Datatype Properties. Figure 6 clarifies a use case scenario of constructing
ontology from a relational database showing how the table is converted to an OWL class,
and field into data property. The constructed ontology contains 2868 axioms, 33 declaration
axioms, and 2799 logical axioms. Some of the generated axioms would be described as
follows:

The caregivers class and its data properties are defined as:

caregivers u (∀caregivers.cgid.Xsd:int),
u(∃caregivers.label.Xsd:string),
u (∃caregivers.description.Xsd:string),
u (∀caregivers.Care.Xsd:string).

The chartevents class and its data properties are defined as:

chartevents u (∀chartevents.cgid.Xsd:int),
u (∀chartevents.hadm_id.Xsd:int),
u (∀chartevents.icustay_id.Xsd:int),
u (∀chartevents.itemid.Xsd:int),
u (∀chartevents.subject_id.Xsd:int),
u (∀chartevents.BUN.Xsd:double),
u (∀chartevents.GCS Total.Xsd:double),
u (∀chartevents.Hear Rate.Xsd:double),
u (∀chartevents.SBP.Xsd:double),
u (∀chartevents.DBP.Xsd:double).

The icustays class and its data properties are defined as:

icustays u (∀icustays.hadm_id.Xsd:int),
u (∀icustays.icustay_id.Xsd:int),
u (∀icustays.subject_id.Xsd:int),
u(∀icustays.outtime.Xsd:int),
u (∀icustays.intime.Xsd:int),
u (∀icustays.first_careunit.Xsd:int).
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Figure 5. The data property hierarchy, individuals, and OntoGraf of the ontology constructed from
PatientTests CSV file.

Figure 6. Use case scenario of constructing ontology from a relational database.

Concerning data source #3, “Semantic openEHR Archetypes”, the constructed on-
tology contains 3612 axioms, 340 declaration axioms, and 2510 logical axioms generated.
Some of the generated axioms are described as follow:
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ARCHETYPEvThing (∀archetype_id.Xsd:string),
u (∀archetype_node_id.Xsd:string),
u (∀archetype_package_uri.Xsd:string),
u (∀archetype_type.Xsd:string),
u (∀parent_archetype.Xsd:string),
u (∀Keywords.Xsd:string),
ARCHETYPE DESCRIPTION vThing,
ARCHETYPE DESCRIPTION ITEM vThing.

4.2. Integrated Crisp Ontology

In this step, we aim to merge all these local existing ontologies into a global unified
crisp one. However, this step might include some conflicts. It might include redundancy
between some entities. In addition, ontology could share concepts with the same syn-
onymies “semantic”. In the experiment, subject_id is the only repeated entity. In protégé,
each entity in the class has a unique IRI; we should rename IRIs of the same entities in
both ontologies to be identical. The IRI of “patienttests.Subject_id” entity is the same IRI
of “chartevents.subject_id” entity. The integrated crisp ontology includes 7439 axioms,
4769 logical axioms, 884 declarative axioms, 451 individuals, and 42 annotation properties.
The class hierarchy of the output united crisp ontology is depicted in Figure 7.

Figure 7. The integrated ontology classes, data properties, and individuals.

4.3. Integrated Crisp Ontology Evaluation

It is an important task to ensure the quality and correctness of the output crisp ontology.
SPARQL [83] is a language used to query data corresponding to the RDF data model. The
output ontology has to be categorized before querying by a reasoner. We used Pellet
reasoner [65] to validate integrated ontology consistency. Table 2 shows some competency
questions, their corresponding using SPARQL query, and results.

In this section, a set of queries were run on the obtained results. Queries in Protégé
can be executed with the assistance of SPARQL. In this step, our main objective is to build
a single data model from many models. For example, Q1 tries to get the results of the main
tests for a specific patient. Some results of the tests are in (PatientTests CSV file), and others
are in (chartevents RDB table). In addition, Q5 depicts a simple query that retrieves all data
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patients (from chartevents table) whose age was very old (from PatientTests table). This
step in the proposed framework achieves syntax interoperability by aggregating data with
different heterogeneous formats and structures.

Ontology evaluation requires queries on it to measure ontology’s quality. However,
we used SPARQL to query the ontology; it has not a complete understanding of the
semantics of OWL [84]. For example, Q2 required the patients with high blood pressure,
and we used a crisp value of SBD larger than 140 or a crisp value of DBP larger than
90. Besides, Q3 required the patients with low hemoglobin blood, and we used a crisp
value for hemoglobin score less than 10. To solve all those problems, we extended the
crisp integrated ontology into an FO. In the following, we will try to achieve semantic
interoperability by using fuzzy logic in the ontology. That is because FO was proposed as a
solution to handle semantic meanings in an inconsistent and uncertain world [85].

4.4. Fuzzification of the Integrated Ontology

The first step of any system fuzzification is to establish the urgent need for fuzziness [86].
Healthcare in nature is complex, fractal, and data types may have many parameters. In ad-
dition, the data may be missing. It is impossible to give an exact description or definition for
medical concepts, concept instances, attributes, data types, and relationships. The bound-
aries are not clear. The medical data may cause many uncertainties in decision-making [87].
Those uncertainties may originate from many areas as: vague test measurements, incom-
plete understanding of biological mechanisms, and uncertainty about normal ranges for
test results. Most medical data is vague and contains different ranges of linguistic values.
To avoid all those problems, integrated crisp ontology must be extended to FO [86,88].
Fuzziness does not affect the original crisp ontology applicability but makes the medical
domain vagueness be explicit. All the elements of classical ontology (concepts, data types,
relations, and axioms) could be fuzzified. The main steps involved of fuzzification the
integrated ontology is clarified in Figure 8. In the following section, we see some examples
of this fuzzification.

Table 2. Ontology evaluation using competency questions.

Question SPARQL Query Result

Q1: Find the results of the main tests
for a specific patient?

SELECT ?age ?Glucose ?HCT ?HMG ?WBC ?TMP ?SBP ?DBP ?GCS
WHERE {
?person pats:patienttests.age ?age;
pats:patienttests.Glucose ?Glucose;
pats:patienttests.Hematocrit ?HCT;
pats:patienttests.Hemoglobin ?HMG;
pats:patienttests.WBC ?WBC;
pats:patienttests.Temperature ?TMP;
pats:chartevents.SBP ?SBP;
pats:chartevents.DBP ?DBP;
pats:chartevents.GCS Total ?GCS;
pats:patienttests.Subject_id 3888. }

1 result

Q2: Find the patients with SBD ≥ 140
or DBP ≥ 90?

SELECT ?subjectID
WHERE {
?person pats:chartevents.Subject_id ?subjectID;
pats:chartevents.SBP ?SBP;
pats:chartevents.DBP ?DBP.
FILTER ((?SBP ≥ 140) (?DBP ≥ 100))}

2 results

Q3: Find the patients with
hemoglobin ≤ 10?

SELECT ?subjectID
WHERE {
?person pats:patienttests.Subject_id ?subjectID;
pats:patienttests.Hemoglobin ?HMG.
FILTER ((?HMG ≤10))}

71 results
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Table 3. Cont.

Q4: Count the young patients who
entered ICU?

SELECT ?subjectID COUNT(?subjectID) AS ?TotalYoung
WHERE {
?person pats:patienttests.Subject_id ?subjectID;
pats:patienttests.age?age.
FILTER ((?age ≤ 30))}

1 result

Q5: Query to get all data for patients
older than 70 years?

SELECT ?Glucose ?HCT ?HMG ?WBC ?TMP ?INR ?SBP ?DBP ?GCS
?BUN
WHERE {
?person pats:patienttests.age ?age;
pats:patienttests.Glucose ?Glucose;
pats:patienttests.Hematocrit ?HCT;
pats:patienttests.Hemoglobin ?HMG;
pats:patienttests.WBC ?WBC;
pats:patienttests.Temperature ?TMP;
pats: patienttests.INR ?INR;
pats:chartevents.SBP ?SBP;
pats:chartevents.DBP ?DBP;
pats: chartevents.BUN ?BUN;
pats:chartevents.GCS Total ?GCS.
FILTER ((?age > 70)) }

50 results

Figure 8. The integrated fuzzy ontology methodology.
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4.4.1. Definition of Fuzzy Data Types, Modifiers, and Concrete Domain

There are many fuzzy elements as lab tests, age, blood pressure, and diagnosis.
SBP and DBP were considered as input parameters to the FO. For each fuzzy value, the
FuzzyOWL2 plugin creates four different fuzzy datatypes (Left-shoulder (k1, k2, a, b),
Trapezoidal (k1, k2, a, b, c, d), Right-shoulder (k1, k2, a, b), and Triangular (k1, k2, a, b, c)),
where a represents the lower limit, and b represents upper limit. Parameters of k1 and K2
represent minimum and maximum inclusive values. To define any Fuzzy data type, its
range (K1, K2) and linguistic variables are annotated. Each data property in the original
ontology is transformed into a fuzzy data type. Firstly, all fuzzy linguistic terms are defined.
Then, a fuzzy concrete role has been defined for each linguistic variable. In the following,
we manipulate some examples of fuzzy data types defined in our integrated ontology:

– Young (Trapezoidal (0, 10, 18, 35)), Middle-aged (Triangular (30, 40, 50)), Old (Right-
shoulder (45, 90)) are linguistic variables used to represent Age (hasAge is a concrete
role and indicates the Age of a patient). It has range of [0, 100]. Three fuzzy concrete
roles were defined: hasyoung, hasmiddle-aged, and old.

– Low.GCS (Triangular (3, 8, 10)), Moderate.GCS (Triangular (8, 12, 15)), Severe.GCS
(Right-shoulder (12, 20)) are linguistic variables used to represent GCS total (has-
GCStotal is a concrete role and indicates the GCStotal of a patient). It has range of
[0, 25]. Three fuzzy concrete roles were defined: hasLow.GCS, hasModerate.GCS, and
hasSevere.GCS.

– Low.DBP (Left-shoulder (50, 70)), Normal.DBP (Trapezoidal (65, 70, 90, 110)), High.DBP
(Right-shoulder (80, 110)) are used to represent DBP feature (hasDBP). It has range of
[0.0, 200.0]. Three fuzzy concrete roles were defined: hasLow.DBP, hasNormal.DBP,
and hasHigh.SBP.

– VeryLow.hemoglobin (Left-shoulder (9, 10)), Low.hemoglobin (Triangular (8, 10, 12)),
Normal.hemoglobin (Triangular (10, 13, 14)), (Right-shoulder (12, 16)) are linguis-
tic variables used to represent Hemoglobin test variable (hasHMG). It has range
of [0.0, 20.0]. Four fuzzy concrete roles were defined: hasVeryLow.hemoglobin,
hasLow.hemoglobin, hasNormal.hemoglobin, and hasHigh.hemoglobin.

– Low.SBP (Left-shoulder (70, 130)), Normal.SBP (Triangular (120, 140, 150)), High.SBP
(Triangular (140, 160, 170)), Veryhigh.SBP (Right-shoulder (160, 190)) are used to
represent SBP (hasSBP). It has range of [0.0, 240.0]. Four fuzzy concrete roles were
defined: hasLow.SBP, hasNormal.SBP, hasHigh.SBP, and hasVeryhigh.SBP Fuzzy
datatype annotation:
<fuzzyOwl2 fuzzyType=“datatype”>,
<Datatype type=“leftshoulder” a=“70” b=“130” />,
</fuzzyOwl2>.

That process is repeated for all linguistic variables and all the features were fuzzified
with the help of medical experts. We have 13 features extracted from LABEVENTS and
CHARTEVENTS MIMIC-III tables, and all of them are numerical. They were determined
by having a concern of previous studies and medical experts. We used MATLAB to define
all the fuzzy membership functions. Table 4 shows more Fuzzy features, their linguistic
terms, MF range, and fuzzy MF parameters. The range, membership function graphics,
and fuzzy sets for WBC, as well as Hemoglobin tests, are clarified in Figure 9. Figure 10
shows an example of a fuzzy datatype. Figure 11 shows an example of some datatype
fuzzification in the resulting integrated ontology.
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Figure 9. Linguistic variables-MF-and fuzzy sets for WBC and Hemoglobin features.

Figure 10. An example of a Hematocrit fuzzy datatype.
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Table 4. List of some fuzzy features, linguistic variables, MF range, and Fuzzy MF parameters.

Fuzzy Feature MF Shape MF Range MF Fuzzy Parameters

Age (years) Young [≤30] Trapezoidal (0, 10, 18, 35)
Range (0–100) Middle-aged [30–50] Triangular (30, 40, 50)

Old [≥45] Right-shoulder (45, 90)
Glucose Low.glucose [≤120] Left-shoulder (50, 120)
(mg/dL) Medium.glucose [100–220] Trapezoidal (100, 120, 200, 220)
Range (0–350) High.glucose [≥220] Right-shoulder (200, 250)
Hematocrit Low.HCT [≤30] Left-shoulder (20, 30)
(%) Medium.HCT [20–45] Trapezoidal (20, 35, 40, 45)
Range (15–60) High.HCT [≥40] Right-shoulder (40, 50)
Hemoglobin VeryLow.hemoglobin [≤10] Left-shoulder (9, 10)
(mmolL) Low.hemoglobin [8–12] Triangular (8, 10, 12)
Range (0–20) Normal.hemoglobin [10–14] Triangular (10, 13, 14)

High.hemoglobin [≥12] Right-shoulder (12, 16)
INR Low.INR [≤15] Left-shoulder (0, 15)
Range (0–50) Medium.INR [13–27] Trapezoidal (13,15, 25, 27)

High.INR [≥25] Right-shoulder (25, 45)
Temperature Low.Tmp [≤36] Left-shoulder (34, 36)
(°C) Medium.Tmp [35–37] Triangular (35, 36, 37)
Range (34–42) High.Tmp [36–38] Triangular (36, 37, 38)

veryHigh.TMP [≥37] Right-shoulder (37, 39)
WBC Verylow.WBC [≤4] Left-shoulder (2, 4)
(×103 cells/µ L) Low.WBC [2–8] Trapezoidal (2, 4, 6, 8)
Range (0–20) Normal.WBC [6–12] Trapezoidal (6, 8, 10, 12)

High.WBC [≥10] Right-shoulder (10, 16)
BUN Low.BUN [≤4] Left-shoulder (4, 10)
(mg/dL) Moderate.BUN [8–22] Trapezoidal (4, 10, 15, 22)
Range (0–40) High.BUN [≥10] Right-shoulder (20, 25)
GCS Total Low.GCS [3–10] Triangular (3, 8, 10)
Range (0–25) Moderate.GCS [8–15] Triangular (8, 12, 15)

Severe.GCS [12–20] Right-shoulder (12, 20)
Heart Rate Low.HR [≤100] Left-shoulder (100, 120)
(beats/minute) Medium.HR [100–180] Triangular (100, 150, 180)
Range (0–500) High.HR [≥150] Right-shoulder (150, 200)
Resp Rate Low.RR [0–12] Triangular (0, 8, 10)
(breaths/minute) Medium.RR [10–25] Triangular (8, 15, 25)
Range (0–80) High.RR [23–60] Triangular (20, 40, 60)
SBP Low.SBP [<130] Left-shoulder (70, 130)
(mmHg) Normal.SBP [120–150] Triangular (120, 140, 150)
Range (0–240) High.SBP [140–170] Triangular (140, 160, 170)

Veryhigh.SBP [≥170] Triangular (140, 160, 170)
DBP Low.DBP [≤70] Left-shoulder (50, 70)
(mmHg) Normal.DBP [65,110] Trapezoidal (65, 70, 90, 110)
Range (0–200) High.DBP [≥90] Right-shoulder (80, 110)

After fuzzifcation of all the features, fuzzy modifiers are assigned. Fuzzy modifier
allows utilizing real-world linguistic words (like very, little, low, mild, slightly, and recently)
in which fuzzy data types could have a degree of membership. It improves the expres-
siveness of ontology and its semantic query. It can express vagueness in measurements.
We defined a fuzzy modifier “very” as linear (0.85) and “verylow” as linear (0.1). Fuzzy
modifier could be utilized to generate new fuzzy properties as very (Veryhigh.SBP) means
patient has very very High.SBP. Figure 12 depicts a definition of a fuzzy modifier.

––Fuzzy modifier very annotation,
<fuzzyOwl2 fuzzyType=“modifier”>,
<Modifier type=“linear” c=“0.85” />,
</fuzzyOwl2>.
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Figure 11. An example of fuzzification of some datatypes in the integrated ontology.

Figure 12. Examples of fuzzy modifier definition.

After defining fuzzy data types and fuzzy modifiers, a fuzzy data property (fuzzy
concrete domain) has been defined for each fuzzy created variable.

– Fuzzy concrete domain hasveryLow.Hemoglobin annotation:
<fuzzyOwl2 fuzzyType=“role”>

<Role type=“modified” modifier=“verylow” base=“patienttests.Hemoglobin”/>
</fuzzyOwl2>

– Fuzzy concrete domain hasLow.Hemoglobin annotation:
<fuzzyOwl2 fuzzyType=“role”>

<Role type=“modified” modifier=“low” base=“patienttests.Hemoglobin”/>

</fuzzyOwl2>
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– Fuzzy concrete domain hasveryLow.WBC annotation:
<fuzzyOwl2 fuzzyType=“role”>

<Role type=“modified” modifier=“verylow” base=“patienttests.WBC”/>

</fuzzyOwl2>

Table 5 summarizes the metrics associated with the integrated fuzzy ontology, whose
consistency has been validated and checked using fuzzyDL Reasoner. A snapshot of the
integrated FO data property hierarchy, fuzzy data types, and individuals is shown in
Figure 13.

Table 5. Metrics of the integrated fuzzy ontology.

Metrics

Axioms 8376
Logical axioms 5232

Class count 27
Object property count 3
Data property count 58

Individuals count 451
Individuals count 451

Declarative axioms 1216
Annotation axioms 113

Data property assertion axioms 3204
Datatype property axioms 138

Fuzzy data types 43

Figure 13. The integrated fuzzy ontology data property hierarchy, and fuzzy data types.

4.4.2. Integrated Fuzzy Ontology Validation

After building a crisp ontology and fuzzifying it, the evaluation process is needed to
ensure that the integrated FO represents the vagueness correctly and appropriately. The
consistency of the ontology has been checked using Pellet and HermiT 1.3.7 reasoners.
Its structure was accurately corrected. In addition, we used fuzzyDL reasoner [73] for
querying and reasoning of the resultant FO. Table 6 shows some queries to ensure the
skillfulness and performance of the output fuzzy integrated ontology.
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Table 6. Fuzzy ontology evaluation using competency questions.

Question FuzzyDL Query Result

Q1: Extract the old age patient with high
blood pressure

hasAge only (patienttests.age.value only (hasOld value veryold)) and
hasSBP some (chartevents.SBP.value some (hasSBP value
hasVeryhigh.SBP)) and hasDBP some (chartevents.DBP.value some
(hasDBP value hasHigh.DBP))

5 instances

Q2: Extract the young patients with very
low hemoglobin score?

hasAge only (patienttests.age only (hasYoung value young)) and
hasHMG some (patienttests.Hemoglobin some (hasHMG value
hasVerylow.hemoglobin))

4 instances

Q3: Extract the patients with low
hemoglobin and very low WBC score?

hasHMG some (patienttests.Hemoglobin some (hasHMG value
hasVerylow.hemoglobin)) and hasWBC some (patienttests.WBC some
(hasWBC value hasVerylow.WBC))

34 instances

Q4: Query to get all number of patients
older than 70 years hasAge only (patienttests.age.value only (hasOld value veryold)) 55 instances

Q5: Find all the patients with high blood
pressure?

hasSBP some (chartevents.SBP.value some (hasSBP value
hasveryhigh.SBP)) and hasDBP some (chartevents.DBP.value some
(hasDBP value hasHigh.DBP))

6 results

We fuzzified the integrated crisp ontology to solve the vagueness problem in the
medical domain. As noticed, Q5 in Table 2 returns 50 instances, whilst the same query (Q4)
in Table 6 returns 55 instances for the same query. Q5 in Table 2 gets the patients older
than 70 years only (by numerical). Q4 in Table 6 gets the older patients (e.g., 70 is old with
a percentage of 0.85, 65 is older with a percentage of 0.7, 79 is old with a percentage of
0.9). In addition, if the physician wants the answer to the following query “find the old
patients with Hypertensive-Stage 2 disease (that happened when SBD > 140 or DBP > 90)”,
or if they want to get the very young patients with very low hemoglobin percentage, if
they do not know the exact numbers for the required features, they will retrieve incorrect
and imprecise answers. The two examples show the urgent need to model vagueness and
imprecision problems between medical features. At the same time, the FO was proposed
to handle all those limitations. The integrated fuzzy ontology used linguistic variables
(natural language query instead of numerical usage) in extracting the required information.

5. Discussion

The main objective of this work and all other previous works [34,89] is to develop a
framework or methodology to extract EHRs patient’s data widespread in many different
locations with many different formats. EHRs are an information system that collects
individuals’ health information from birth to death. It could be certified, registered, and
shared between different healthcare providers [90]. EHRs improve care quality by making
healthcare data available and accessible when and where needed, reducing medical errors,
sharing information between healthcare providers, and providing an effective means of
communication. In modern years, the EHRs growth has been famed as an efficient and
viable model for genetic research [91].

The adoption and development of EHRs is not an easy matter and includes many
barriers [92]. From those barriers are the lack of EHRs standards in exchanging information
[16], lack of integration amongst different health systems, and complexity and dynamic
nature of healthcare. Another barrier is the heterogeneity problem, which means that the
same health data could be presented by different models and in different ways. There are
many different data models used to store EHRs data. From those data models are relational
databases with all different software (i.e., Sybase, Oracle, MySQL, and PostgreSQL), Excel
sheets, XML documents, CSV files, and many other EHRs standards (i.e., openEHR, HL7,
ASTM, ISO 13606). On the other hand, it is not practical for all healthcare organizations to
agree on one standard system [16].
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In 2009, the SemanticHEALTH project [93] referred to health professionals and re-
quired access to complete and detailed health patient records. In addition, achieving
interoperability in distributed EHR systems perfects the patients’ care quality and supports
public health. On the other hand, the early detection of diseases requires a health-delivery
system that can monitor health status. SI in EHR is needed to improve healthcare quality,
patient care safety, effectiveness, and productivity. According to the Medicare Services
Centers [94], “EHRs do not accomplish their advantages only by exchanging data from the
paper shape into the advanced frame. EHRs can just convey their advantages when the
data and the EHR are organized, and its meaning is clear and understandable”. SI enables
decision support systems by integrating patient information from multiple sources.

Our main interest is to establish a single unified and homogeneous data model from
all heterogeneous EHRs models. Most previous works [95] concerned with using one or
more EHRs standards to handle the mentioned problem. However, using a single standard
is insufficient to make unification, especially when the system is distributed. Successful
EHRs require multiple parties and systems to cooperate. Ontology was proposed to achieve
that goal. This is because ontology could be used as metadata that defines a vocabulary of
used variables with an explicit cleared semantic. Thereby, ontology enables both machine
and human data readable. On the other hand, ontology plays a significant role in SW
success [96] since they enable recognizing knowledge representation, reusing and sharing
that knowledge. Crisp ontology achieves the desired goal to some degree. It has been
noted in the few recent times that classical ontology and its languages are not convenient to
deal with imprecise and vagueness knowledge, that is a fundamental for several real-world
applications [97]. Thereby, by extending a crisp ontology to FO, the medical vagueness
problem cloud be solved.

We fuzzified our integrated ontology to accommodate the linguistic variables. The
framework provides a more consistent, reliable, and comprehensive EHRs interoperable
environment. It could help physicians and specialists to retrieve patient-required data
with a more natural language query. In addition, it improves healthcare performance by
making the correct decision based on the correct and aggregated information reachable
at the ideal time. To the best of our knowledge, this is the first implemented framework
that uses ontology-based on fuzzy to handle the problem of interoperability in distributed
EHRs. It could integrate many different EHRs formats. In addition, it handles the medical
vagueness problem.

To the best of our knowledge, this is the first implemented framework that uses
ontology-based on fuzzy to handle the problem of interoperability in distributed EHRs.
Table 7 compares the proposed model with the literature studies in terms of used data
formats, interoperability level, and methodology. The criteria of “Standard” points out
whether EHRs standards were used or not.

Table 7. Comparison with the literature studies.

Dimension Berges et al. [98] da Costa et al. [39] Gaynor et al. [99] Mylka et al. [51] El Azami et al. [100] Shi et al. [101] Proposed

EHRs formats RDB, ADL MIMIC-III, openEHR,
and HL7

EHRs standards RDB, XML and LDAP Different RDBs any DBMS DB, Excel, CSV, XML,
and openEHR ADL

methodology Ontologies-mapping Ontologies + SWRL
Rules

Interoperability matrix
and Flow Graph

Ontology-based Ontology-based
Mediation Mdiation ontology Fuzzy-ontology

Standard Yes No Yes No No No Yes
Interoperability level Full (Syntactic and

Semantic)
Syntactic Syntactic Semantic Syntactic Semantic Full

Handling vague and
imprecise problems

Yes No No No No No Yes

Implemented/theoretical
framework

Implemented Implemented Theoretical Implemented Implemented Theoretical Implemented

Year 2011 2019 2013 2012 2012 2010 —

Although the proposed framework moves toward achieving full interoperability in
distributed EHRs, it contains many limitations. Firstly, it had to handle an unstructured
EHRs data model to increase our implementation scope. Unfortunately, most EHRs clinical
data are unstructured and still not computable [102]. EHRs contain three main types of
data structured (coded data, such as RDB, Lab tests, Diagnosis codes), semi-structured
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(e.g., XML model), and unstructured information. Most of EHRs data is unstructured
by nature (free-text clinical notes, radiology reports, medical imaging as MRI “Magnetic
Resonance Imaging”). Structured and semi-structured formats are simple to retrieve
whereas unstructured data requires additional tools, such as Natural Language Processing
(NLP), to be retrieved. Handling unstructured data is an urgent issue for achieving
successful and complete EHRs. Secondly, we may use one of the modern technologies,
such as deep learning, beyond FO to achieve our main goals. Solares et al. [103] showed
the strength of RNN (Recurrent Neural Networks) as a deep learning architecture to deal
with EHRs temporal natural. Thirdly, we need to create a graphical user interface of the
implemented framework to be easy to use. Fourthly, we intend to measure the sensitivity
of our proposed model.

6. Conclusions

SI is considered a more complex problem in health informatics. This paper proposes
a fuzzy ontological intelligent system for integration and SI in distributed EHRs. We
evaluated different EHRs data formats. These are as follows: MIMIC-III CSV files, MIMIC-
III adapted MySQL database, and openEHR ADL archetype model. Our main idea is based
on converting each data format to an ontology representation (RDF or OWL). This phase
is prepared for any other EHR structure and format. Then, we integrated all the output
ontologies into a unified crisp ontology. In the final stage, we extended the crisp ontology
to an ontology-based on fuzzy logic. We used SPARQL and fuzzyDL query language to
evaluate some queries. FuzzyDL was more comprehensive in its results as it relies on
linguistic variables rather than numbers. Further development of the framework will
concentrate on the limitations of this work, as discussed previously.
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