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Abstract: Emotion-aware music recommendations has gained increasing attention in recent years,
as music comes with the ability to regulate human emotions. Exploiting emotional information has
the potential to improve recommendation performances. However, conventional studies identified
emotion as discrete representations, and could not predict users’ emotional states at time points
when no user activity data exists, let alone the awareness of the influences posed by social events.
In this study, we proposed an emotion-aware music recommendation method using deep neural
networks (emoMR). We modeled a representation of music emotion using low-level audio features
and music metadata, model the users’ emotion states using an artificial emotion generation model
with endogenous factors exogenous factors capable of expressing the influences posed by events
on emotions. The two models were trained using a designed deep neural network architecture
(emoDNN) to predict the music emotions for the music and the music emotion preferences for the
users in a continuous form. Based on the models, we proposed a hybrid approach of combining
content-based and collaborative filtering for generating emotion-aware music recommendations.
Experiment results show that emoMR performs better in the metrics of Precision, Recall, F1, and
HitRate than the other baseline algorithms. We also tested the performance of emoMR on two
major events (the death of Yuan Longping and the Coronavirus Disease 2019 (COVID-19) cases in
Zhejiang). Results show that emoMR takes advantage of event information and outperforms other
baseline algorithms.

Keywords: emotion-aware; hybrid approach; music recommendation; deep neural network; acousti-
cal clue; circadian rhythm; event-related

1. Introduction

The development of the modern Internet has witnessed the thri ving of personalized
services that exploit users’ preference data to help them navigate through the enormous
amount of heterogeneous content on the Internet. Recommender systems are such services
developed to help users filter out useful personalized information [1–3]. In the field of
music recommendations, the large number of digital music content provides a huge op-
portunity for recommenders to suggest music content that meets users’ preferences and
reduces the search cost for users to find their favorite music [4]. Existing music recom-
menders leverage the user-item matrix containing both the users and music items traits [5],
utilizing acoustic metadata, editorial metadata, cultural metadata [6], and even location-
based [7], context-based [8] information to make better recommendations. However, as a
kind of emotional stimulus, music has the power to influence human emotion cognition [9].
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Thus, music recommendations based on the impact on human emotion has received re-
search interest in both academic and commercial sectors. To make music recommendations
emotion-aware, studies focus mainly on the aspects of music emotion recognition [10] and
user’s emotional or affective preference for music [11].

Neurobiological studies and clinical practices have revealed the human brain has
particular substrates to process emotional information in music [12], making recognizing
music emotions critical in utilizing complex human emotion information. Several studies
have proposed methods to recognize music emotions to help make recommendations.
Deng et al. constructed the relational model of the acoustic (or low-level) features of music
to the emotional impact of the music. They utilized the users’ historical playlist data to
generate emotion-related music recommendations [13]. Rachman et al. used music lyrics
data to build a psycholinguistic model for music emotion classification [14].

In addition, studies have proved that individuality has significant impacts on music
emotion recognition [15]. Thus, from the individual perspective of user preferences, studies
have also offered insights into user emotion state representation and emotion preference
recognition. Some studies tried to get the emotional state of the users directly from the users’
biophysical signals. Hu et al. build the link of music-induced emotion with biophysical
signals for emotion-aware music information retrieval [16]. Ayata et al. detected user
emotions for music recommendations by obtaining biophysical signals from the users via
wearable physiological sensors [17]. However, the biophysical data can be expensive to
obtain for a music recommender.

There is strong evidence that the brain mechanisms mediating musical emotion recog-
nition are also dealing with the analysis and evaluation of the emotional content of complex
social signals [18]. Modern social media services provide valuable information about user
preferences and psychological traits [19]. It is not surprising that social media footprints,
such as likes, posts, comments, social events, etc., are being exploited to infer individual
traits. Researchers have turned to rich user activity and feedback data on social me-
dia [20,21] for music emotion preference modeling. Park et al. proposed an emotion state
representation model by extracting social media data to recommend music [22]. Shen et al.
proposed a model to represent user emotion state as short-term preference and used data
from social media to provide music recommendations based on the model [23]. Other
improvements in emotion-aware music recommendations including the context-based
method [24], hybrid approaches [25], incorporation of deep learning methods [26], etc.

Though huge progress has been made to emotion-aware music recommendations,
there are still problems in existing models and methods. Firstly, existing studies tend
to represent music emotion, and user emotion states in a discrete manner, such as the
six Ekman basic emotions used by Park et al. [22] and Polignano et al. [27]. However,
studies have proved that aside from the six basic emotions, there are more categories
of emotions [28], and it is better to model emotion in a continuous way [29]. Secondly,
user emotion state extracted from social media data can only represent user emotion state
or the music emotion preference of the user at some certain time points, as stated by
Shen et al. [23] emotion accounts for a short-term preference that drifts across time [30].
While the recommender should generate recommendations whenever the user enters
the system, there is still a need for continuous emotion state recognition across time.
Thirdly, it has been proven that events, especially major social events, regulate human
emotions [31] while existing studies fail to utilize the information of events to improve
emotion state representation.

In this paper, we proposed an emotion-aware music recommendation method (emoMR)
that utilized a deep neural network. Representing music emotions continuously, generat-
ing user emotion states when no user activity data presents, and capturing event-related
information to refine the emotion states are the three main issues this paper deals with. We
proposed a music emotion representation model by exploiting the low-level features of the
music audio signals and the music metadata to predict the music emotion representations
in a continuous form based on the emotion valence-arousal model [32]. We also proposed
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an emotion state representation model based on the artificial emotion generation model.
Event-related information and implicit user feedback from social media were used as the
exogenous factors of the model. The endogenous factors of the model were constructed
using the human circadian rhythm model. The two proposed models were trained via a
deep neural network architecture (emoDNN) and can generate accurate predictions. We
took a hybrid approach that combines the advantage of both a content-based approach and
collaborative filtering approach to generate recommendations. The results of the experi-
ments show that emoMR outperforms the other baseline algorithms in selected metrics.
Although the length of the recommendation list reduces the performance of the compared
methods, emoMR still has an advantage over other emotion-aware music recommendation
methods. The results also suggest that our method is able to use event-related information
to improve the quality of emotion-aware music recommendations.

The main contributions are summarized as follows:

1. The proposed models represent music emotions and users’ music emotion preferences
under certain emotion states in a continuous form of valence-arousal scores allowing
for complex emotion expressions in music recommendations;

2. Trained models with a deep neural network (emoDNN) that enable the rapid process-
ing of both music emotions and user emotion states even on time points when no user
activity data exists;

3. Incorporated event-related information to allow the hybrid approach to generate
music recommendations considering the influences posed by events on emotions.

The rest of this paper is arranged as follows: Section 2 overviews the related works.
Section 3 explains that the recommendation models consists of the music emotion repre-
sentation model, the emotion state representation model, and the deep neural network
framework. Section 4 demonstrates the experiments and results of comparing emoMR
with baseline algorithms. Section 5 concludes the whole paper.

2. Related Works

Compared to popular recommendation models currently used in music recommen-
dations, emotion-aware music recommenders offer higher quality recommendations by
introducing an additional preference of emotions since music itself has the ability to reg-
ulate human emotions [33]. The striking ability of music to induce human emotions has
invited researchers to retrieve emotional information from the music and exploit emotion-
related data from users for music recommendations. Novel approaches have been forged
to utilize emotion-related data, such as exploiting user interactions to make emotion-aware
music recommendations [34]. In this section, we discuss several works on improving music
recommendations by exploiting emotion-related information.

The first factor of exploiting emotional information in music recommendations is the
representation of emotions. The basic idea behind music emotion representation is using
acoustical clues to predict music emotions. Acoustical clues or low-level audio features of
music can be used to predict human feelings [35]. Barthet et al. proposed an automated
music emotion recognition model using the acoustical music traits of both frequencies and
temporal to aid context-based music recommendations [36]. Several other models such
as the emotion triggering low-level feature model [37], musical texture and expressivity
features [38], and acousticvisual emotion Gaussians model [39] have been proposed for
music recommendations with emotion information. Other studies leveraged the fruit of
music information retrieval [40] and combine low-level audio features with music metadata
such as lyrics [41] and genre [42] to represent music emotions. While acoustical clues are
widely used in music emotion recognition, new types of music have been invented every
year. Combining both the low-level audio features and the descriptive metadata is more
promising in music emotion representation.

The second factor of exploiting emotional information in music recommendations
is the representation of the user’s emotion state. Basically, there are two kinds of ap-
proaches to representing the user’s emotion state. One is to get physiological emotion
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metrics directly from the users, and the other is predicting the user emotion state by the
activity data generated by the user. Although recommenders or personalized systems
can directly ask their users for their current emotion state, it is hard for a user to describe
the emotional status. Therefore, studies have used biophysical signals or metrics (such as
electromyography and skin conductance [43]) to recognize user emotions. Some studies
exploit the technologies used in cognitive neuroscience to represent user emotion states
through electroencephalography (EEG) [44,45] in music-related activities. Ayata et al. even
built an emotion-based music recommendation system by tracking user emotion states
with wearable physiological sensors [17]. The problem with the direct approach is that it is
expensive to obtain the biophysical metrics data from the users, and existing biophysical
signal acquisition equipment might interfere with user experience. The other approach,
however, exploits the user activity data and involves no expensive data acquisition sessions,
which is regarded as more promising. Activities like the operations and interactions on
music systems can be used to represent user emotion states [46,47]. Activities on social
media are a fruitful source of user emotion state representations. Rosa et al. used the
lexicon-based sentiment metric with a correction factor based on the user profile to build
an enhanced sentiment metric to represent user emotion states in music recommenda-
tion systems [48]. Deng et al. modeled user emotions with user activity data crawled
from the Chinese Twitter service, Weibo in music recommendations [49]. A recent study
used implicit user feedback data from social networks to build an emotion-aware music
recommender based on hybrid information fusion [50]. Another study used an affective
coherence model to build an emotion-aware music recommender, utilizing data from social
media to compute an affective coherence score and predict the user’s emotion state [27].
Among the studies that utilized activity data from social media, sentiment analysis is the
dominant technology used to extract and build the emotion state representations.

The third factor of exploiting emotion information in music recommendations is the
recommendation model used for recommendations. As a special kind of recommendation
item, the models used for emotion-aware music recommendations vary according to the
specific research scenarios. Lu et al. used a content-based model to predict music emotion
tags in music recommendations [51]. Deng et al. used a collaborative filtering model
in music recommendations after representing the user emotion state through data from
Weibo [49]. Kim et al. employed a tag-based recommendation model to recommend music
after semantically generating emotion tags [52]. Han et al. employed a context-based model
after classifying music emotion in music recommendations [53]. Besides these models,
hybrid models that combine the advantages of multiple recommendation models have
also been applied in emotion-aware music recommendations, especially those with the
help of deep learning [54]. New information processing technologies such as big data
analysis technologies [55] and machine learning have accelerated music recommendations
in many ways [56]. Therefore, compared to the other models, hybrid approaches can
come up with better performances. Deep learning technology helps improve not only the
recommendation models [57], but also the emotion recognition (representation) [58].

To sum up, although conventional studies exploit both the acoustical clues and meta-
data of music, few have investigated the approach of representing music emotions in a
continuous manner. Existing studies have not proposed a way to represent users’ emotion
states at time points when no user activity data exists. Conventional studies also tend to
ignore the influences posed by events on human emotions. All of these ask for further
investigation.

3. Model Construction

Recommending music regrading the emotional preference of the users calls for the
need to exploit emotional information, which entails identifying the emotional characters
of the music and recognizing the emotional preference of the user under a certain emotional
state. In this section, we first proposed a music emotion representation model, then we
proposed an emotion state representation model. Based on the two models we describe,
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the hybrid approach took by our recommendation process. The general architecture of the
proposed recommendation method (emoMR) is illustrated in Figure 1.

...Recommendation
list generation

Application
Layer

Model Layer

The music emotion representation model The emotion state representation model

emoDNN for music emotion
preference prediction

emoDNN for music emotion
representation

Content-based Approach Collaborative filtering Approach

The hybrid recommendation model

Data Layer
User portrait data Social media data Music Acoustic

data Music Metadata Event data

Figure 1. The general architecture of emoMR.

The general architecture is composed of 3 layers: The data layer, the model layer, and
the application layer from bottom up. The data layer provides data form the model layer
and the application layer generates the recommendation lists upon the model layer. The
details for each of the layers are described as:

1. The data layer. This layer offers 5 kinds of data for further processing. The user portrait
data contains information inherited from conventional recommendation systems, such
as the user profile from the registration system. The social media data contains the
users’ activity data from social media, which is used as implicit user feedback in our
recommendation method. The music acoustic data contains the audio signal data of
the music. The music metadata contains descriptive data of the music, such as the
genre, artist, lyrics, etc. The event data contains public opinion data on certain events.

2. The model layer. In the model layer, the music emotion representation model and
the emotion state representation model generate the music emotion representation
and emotion state representation using data from the data layer. The models are
trained to predict music emotions for the music and the music emotion preferences
for users with a deep neural network (emoDNN). The hybrid recommendation model
combining the content-based and collaborative filtering recommendation approaches
uses the data generated by the trained models to make recommendations.

3. The application layer. In this layer, the proposed method generates music recommen-
dation lists for users.

As emotional stimulus, it can be pretty complex to classify the music into a certain
emotion kind [42]. Things like one piece of music that sound like Joy to one person but
Sad to another, which happens ubiquitously. Perhaps a horrible event had just happened
to the latter. The human cognitive process of emotion is typically complex. A person may
be in several emotional states simultaneously under a certain situation [59]. For example,
one might be in a complex emotional state of both Joy and Fear while playing horror video
games. To express the music emotion characters and human emotion states quantitatively,
we model the emotion using the valance-arousal model [32] which quantifies emotions
by expressing emotions as points in a two-dimensional plane. The model is illustrated in
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Figure 2. The plane’s horizontal axis is depicted by valence ranging from unpleasant to
pleasant, and its vertical axis is depicted by arousal, which indicates the activation or energy
level of the emotion. Therefore, this paper proposes a music emotion representation model
and an emotion state representation model based on the emotion valence-arousal model.

Figure 2. The emotion valence-arousal model.

3.1. The Music Emotion Representation Model

The emotion of a piece of music is the emotional response of the person who listens
to it. However, the actual emotional response is hard to obtain. Thus, our music emotion
representation model takes the approach of generating quantitative representations of the
music emotion by utilizing the features of the music to predict the emotional response.
Aside from other studies which tend to make classifications of music emotion, we represent
it as a tuple Ei = 〈svalence, sarousal〉 in which svalence indicates the emotion valence score and
sarousal indicates the emotion arousal score, Ei indicates the emotion of music i.

For a piece of music, there are 2 sets of features that are exploited:

1. Low-level audio features, which extracted from the audio data;
2. Music descriptive metadata, such as genre, year, artist, lyrics, etc.

3.1.1. Low-Level Audio Features Extraction

Studies have shown that the low-level audio features of pitch, Zero-Crossing Rate
(ZCR), Log-Energy (LE), Teager Energy Operator (TEO), and Mel-Frequency Cepstral
Coefficients (MFCC) can determine the emotional state of music audio signals [60–63]. The
extraction methods for these features are illustrated as follows:

1. Pitch: Pitch extraction calculates the distances between the peaks of a given segment
of the music audio signal. Let Sigi denote the audio segment, k denotes the pitch
period of a peak, and Leni denotes the window length of the segment, and the pitch
feature can be obtained using Equation (1):

Pitch(k) =
Leni−k−1

∑
i=0

SigiSigi+k. (1)

2. ZCR: The Zero-Crossing Rate describes the rate of sign changes of the signal during
a signal frame. It counts the times the signal changes across positive and negative
values. The definition of ZCR is shown in Equation (2),

ZCR(i) =
1

2Lenw
∑
n=1

Lenw|s f (Sigi(n)− s f (Sigi(n− 1))| (2)
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where Lenw is the length of the signal windows and s f (·) is the sign function, and is
defined in Equation (3):

s f (Sigi(n)) =

{
1, Sigi(n) ≥ 0,
−1, Sigi(n) < 0.

(3)

3. LE: This feature estimates the energy of the amplitude of the audio signal. The
calculation can be formulated as Equation (4):

LE(Sigi) = log10

(
Lenw

∑
i=0

Sig2
i

)
. (4)

4. TEO: This feature links to the energy of the audio signal as well, but from a nonlinear
perspective. The TEO of a signal segment can be calculated using Equation (5):

TEO(Sigi) = Sig2
i − Sigi+1Sigi−1. (5)

5. MFCC: The MFCC is derived from a mel-scale frequency filter-bank. The calculation
of MFCC can be obtained by first segmenting audio signals into Lenw frames and
then applying a Hamming Window (HW) defined by Equation (6) to each frame:

HW(n) = 0.54− 0.46cos(2π
n

Lens
), 0 ≤ n ≤ Lens. (6)

Lens is the number of samples in a given frame. For an input signal Sigi, the output
signal Oi is defined as Equation (7):

Oi = Sigi × HW(i). (7)

The output signal is then converted into the frequency domain by Fast Fourier Trans-
form (FFT). A weighted sum of spectral filter components is then calculated with
triangular filters. The Mel spectrum is then obtained by Equation (8):

Mel(i) = 2595× log10

(
1 +

i
700

)
. (8)

The features reveal emotions due to their connections to the polarity and energy of
the emotions. Pitch and ZCR show great discrimination across pleasant and unpleasant
emotions, Log-Energy and TEO measure the energy of different emotions, and MFCC
compacts signal energy into its coefficients. The features describe the music emotion from
both the emotional valence and arousal perspective.

3.1.2. Music Metadata Exploitation

Aside from the low-level audio features, the music also has some important metadata
that suggests additional information about the music. Unfortunately, in the common
practice of the music industry, there is no unified metadata structure standard. Therefore,
we refined the metadata structure in the work [64] and applied it to the music emotion
representation model. We eliminate the notation, attention-metadata, and usage from the
structure, because they are within the user domain and hard to obtain when training the
model. The metadata of rights and ownership, publishing, production, record-info, carrier,
and website are also eliminated due to their irrelevance to the music emotion. Before the
training process, 6 classes of metadata are kept in our structure. They are listed in Table 1.
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Table 1. Music metadata structure.

Class Name Description

M1 Musical information Musical properties of the audio signal, e.g.
duration, key

M2 Performance Descriptions of the people that are involved
in a musical performance, e.g. artists

M3 Descriptor Describing the musical work, e.g. title

M4 Playback rendition Information useful for rendering of the music
file, e.g. relative volume

M5 Lyrics Text of the musical work and related
information, e.g. translated lyrics text

M6 Instrumentation & arrangement Information about the used instruments and
orchestration, e.g. instrument type

The metadata is then represented by Meta = {Mi|i = 1, 2, · · · , 6}. The labels and
categorical metadata are converted into numerical representations. Unlike the other
metadata, the lyrics (M5) contain blocks of long texts instead of labels. To leverage the
texts in the lyrics and represent (M5) as labels, the lyrics texts are processed by stan-
dard Natural Language Processing (NLP) technologies, such as stop-words removal,
tokenization, and Term Frequency-Inverse Document Frequency (TF-IDF) score gen-
eration. The emotion of the lyrics can then be obtained by sentiment analysis. De-
scribed in the work [27], sentiment analysis generates scores for 6 Ekman basic emotions
EE = {Joy, Anger, Sadness, Surprise, Fear, Disgust}. Let S(·) denote the score for a partic-
ular basic emotion, then St = {St(emo)|emo ∈ EE} is the emotion vector of item t. To fit
the emotion vector of the lyrics (the item is lyrics) into our valence-arousal based model
that is M5 =< Valence, Arousal >, and is converted as follows:

1. Normalization: The min-max normalization is used to convert the 6 elements in ST
to values within the range of [0, 1]. Let S̃i(emo) denote the emo score of the ith lyrics
after normalization, and can be described by Equation (9):

s̃i(emo) =
si(emo)− min

1≤j≤n
(sj(emo))

max
1≤j≤n

(sj(emo))− min
1≤j≤n

(sj(emo))
, emo ∈ EE. (9)

2. Calculate valence and arousal: The emotions of Epo = {Joy, Anger, Surprise} are
treated as positive while Ene = {Sadness, Fear, Disgust} are treated as negative. The
valence and arousal values of si can be obtained by Equation (10):

Valence(si) =
1
3 ·
(

∑
epo∈Epo

s̃i(epo)− ∑
ene∈Ene

s̃i(ene)

)
,

Arousal(si) =
1
3 · ∑

emo∈EE
s̃i(emo)− 1.

(10)

The music emotion representation model predicts the emotional response, which is a
< Valence, Arousal > vector using the music feature vector. The music feature vector is
composed of the low-level audio features of the music and the metadata of the music. The
vector Vmusic is shown as:

Vmusic = 〈Pitch, ZCR, LE, TEO, MFCC, M1, M2, · · · , M6〉.

Posts and comments of a piece of music reflect the affection and emotional response of
users to the music [50]. Label data can be obtained by exploiting the implicit user feedback
from social network posts and comments using text sentiment analysis and obtain the label
data of < Valence, Arousal > vectors using the conversion method described above to
train the model.
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3.1.3. The Deep Neural Network for the Music Emotion Representation Model

The works by Tallapally et al. [65] and Zarzour et al. [66] provided an approach to
use a deep neural network to predict user ratings, scores, and preferences. The main idea
of building the music emotion representation model with a deep neural network is using
the music feature vector Vmusic to predict the emotional response it brings about. The
response which indicates the user’s emotion-related preference can be quantified by the
< Valence, Arousal > vector. We proposed an approach of emoDNN to predict the vector.
The general architecture is illustrated by Figure 3.

Fe
at

ur
es The 

Input 
Layer

The hidden layers
The 

Output 
Layer

Valence

Arou
sal

Figure 3. The general architecture of emoDNN.

The architecture used two deep neural networks to predict the Valence and Arousal
respectively. Each network consists of an input layer, hidden layers, and an output layer.
The input layer consists of the vector Vmusic within which the features are converted to
numerical representations as mentioned above. The hidden layers can be customized to
investigate the feature-emotion interactions. The output layer is the predicted Valence and
Arousal. The total quantity of nodes in the hidden layers is set by Equation (11) to ensure
the accuracy and training speed of emoDNN [67]:

Nhidden =
√

Ninput + Noutput + τ. (11)

Nhidden is the number of nodes in the hidden layers, Ninput and Noutput indicate the
nodes in the input layer and output layer respectively, and τ is a constant number between
[1, 10]. The loss function is set to Mean Squared Error (MSE) shown in Equation (12):

LOSS(X, Y) =
1
n

n

∑
i=1

(E(xi)− yi)
2 =

1
n

n

∑
i=1

(yi − wxi − b)2. (12)
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E(xi) is the ith actural output while yi is the ith expected output. w is the weight and
b is the bias. To handle over-fitting and gradient disappearance, the activation function is
set to Rectified Linear Unit (ReLU) as shown in Equation (13):

ReLU(z) = max(0, z) =

{
z, z ≥ 0
0, z < 0.

(13)

3.2. The Emotion State Representation Model

The emotion state representation model aims to identify the music emotion preference
of the user in a certain emotion state at arbitrary time points. Recent emotion-aware
recommendation studies use discrete user-generated content from a social network to
identify user emotion [26] or transform emotion to context-aware [8]. These studies fail to
represent a consecutive user emotion state, thus, unable to represent the user emotion state
at an arbitrary time point. For example, a user only interacts with the system and social
media in the morning, traditional methods can not represent the emotion state of the user
at 15:00, because no user feedback data can be utilized at 15:00.

To represent the emotion state of the uses at arbitrary time points, an emotion gen-
eration model was built based on the cognitive theory of emotion [68] and the cognitive
appraisal theory of emotion [69]. The theories suggest that music stimulates the human
cognitive process and evokes emotion which is a cognitive process that consists of several
spontaneous components that happen simultaneously. The model is used to generate
emotions in a consecutive manner [70] artificially. We utilized the model to generate the
emotion state of the user at arbitrary time points. A simplified version of the model is
depicted by Figure 4. We defined the 4 modules in the model according to our need to
generate the emotion state at arbitrary time points:

1. The environment module: It utilizes the information that affects user emotion in the
environment. The information creates a context that can be identified from social
networks and public opinion. This module influences the emotion evaluation of the
user and contributes to the exogenous factors of the emotion state;

2. The experience module is controlled by the characters of the user and contributes to
the endogenous factors of the emotion state;

3. The evaluation module synthesis the output of the exogenous and endogenous factors
and generate the emotion state at arbitrary time points by evaluation;

4. The emotion module identifies the music emotion preference user the emotion state
generated by the evaluation module.

Figure 4. The artificial emotion generation model.

Therefore, building the emotion state representation model can be divided into four
tasks: (1) Model the exogenous factors of the emotion state, (2) model the endogenous
factors of the emotion state, (3) represent the emotion state, and (4) identify the music
emotion preference.
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3.2.1. The Exogenous Factors of the Emotion State

Information from the environment that affects the user emotion has long been inves-
tigated by studies that raise context as an influential factor [8]. The information acts as
a kind of social stimuli and influences user emotion. The influence has been proven by
cognitive attention studies [71] and neuroscience [72]. Among the many types of data,
implicit user feedback information such as rating, review, and clicks were introduced to
address the influences of information from the environment on user emotion [50]. Based
on the social network data used by Polignano et al. [27], we propose three types of data as
the exogenous factors of the emotion state:

1. Events: Events influence user emotions by raising public opinions. Thus, events can
be identified by analyzing the sentiments of the raised public opinions;

2. Posts: Users react to certain kinds of emotions on social networks by posting messages.
Sentiment analysis on posts within a certain time range can utilize posts to describe
user emotion;

3. Comments: Comments within a certain time range reflect user emotional responses.
The sentiments of these comments help distinguish user emotion states.

Let Testat be the time point for estimating the user emotion state. Given THrange as
the time range. The events, posts, and comments from the social network (e.g., Weibo,
Facebook, Twitter) are collected and processed by sentiment analysis and converted into
valence-arousal vectors. Especially, the public opinions for the events can be collected by
trends from the social networks (e.g., Weibo top trends). The process has been described in
Section 3.1.2. The exogenous factors at Testat (EXFTestat ) can be described as:

EXFTestat = {sentype}, type ∈ {events, posts, comments}

where sentype =< Valence, Arousal > is a two-element vector, consists of the valence and
arousal scores of the texts for the types. Since trends on social networks tend to have a
longer duration than individual social network activities. The exogenous factors use the
event information neglected in other studies can help decide the user emotion state where
traditional social stimuli such as the implicit user feedback of user rating, review, and clicks
fail to present.

3.2.2. The Endogenous Factors of the Emotion State

Endogenous factors relate to the inherent mechanism of human emotions. Studies
have shown that emotions are regulated by the bio-physical or bio-chemical mechanisms
of the human body [73,74]. The performances of these mechanisms vary over time and can
be described as the circadian rhythm [75]. The circadian rhythm acts as an internal timing
system that has the power of regulating human emotion [76]. Much of human beings’
physiological indicators vary according to the circadian rhythm, such as the hormones,
blood sugar, body temperature, etc. [77]. Thus, it causes oscillation in human emotion.
Figure 5 shows the mRNA and protein abundance oscillation across a certain period of
circadian time (in hours) obtained by the study of Olde Scheper et al. [78].

The circadian rhythm as an endogenous cycle of the human biological process that
recurs in approximately 24-hr intervals can be treated as a smooth rhythm with added
noise. It can be modeled with data from known periods (24 hr each). A study proposed a
cosine fit of the circadian rhythm curve [79]. The cosine model is shown in Equation (14).

CRi = MESOR + A · cos(
2πti

λ
+ ϕ) + σi (14)

where CRi is the value of the circadian rhythm model at time i, MESOR is the Midline
Estimating Statistic of Rhythm [80], A is the amplitude of the oscillation, ti is the time point
(sampling time), λ is the period, ϕ is the acrophase, and σi is an error term.

We use the cosine model to represent the endogenous factors of the user emotion state.
The parameters can be obtained by utilizing the users’ extracted emotional information
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data proposed by Qian et al. [50] across a 24-hr period. Thus, the endogenous factors of the
emotion state can be modeled as:

ENFTestat = {CRi}, i = Testat.

Figure 5. The mRNA and protein abundance oscillation across a certain period of circadian time.

3.2.3. The Emotion State Representation

In the above artificial emotion generation model, the evaluation module is used to
represent the emotion state by synthesizing the exogenous and endogenous factors of the
emotion state. However, user properties such as age, gender influence not only users’
perception and appraisal of exogenous factors [81] but also the endogenous factors of
users [82]. Thus, to represent the emotion state of a user at a certain time, we combine the
exogenous and endogenous factors together with the user properties UPuser that are used
in conventional music recommendation studies [83]. The emotion state representation is
shown as:

Vestat = 〈EXFTestat , ENFTestat , UPuser〉.

3.2.4. The Music Emotion Preference Identification Using Deep Neural Network

Identifying the music emotion preference of a user at a certain time is the main purpose
for constructing the emotion state representation model. We use the same deep neural
network structure (emoDNN) in Section 3.1.3 to learn the model. Section 3.1 has proposed
a music emotion representation model. The emotion of the music can be represented by
a valence-arousal vector. The label values for training the emotion state representation
model is obtained by utilizing the emotion (valence-arousal vector generated by the music
emotion representation model) of the music liked (post, repost, like, positive comment) by
the user at Testat.

The nodes in the hidden layers are tuned to fit the situation for the input vector Vestat.
The loss function and activation function are the same as those for the music emotion
representation model. However, as the endogenous factors introduce a cosine function, the
model cannot be treated as a linear one. Thus, we update the model and add a higher-order
polynomial to fit the model. The model is shown in Equation (15):
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Z(x) =
m

∑
i=0

xi
iwi +

n

∑
j

xjwj + b. (15)

The high order polynomial uses the parameters of the cosine fit model of the endoge-
nous factors to bring the oscillations of the circadian rhythm of the user to the model.

3.3. The Recommendation Process

The emotion-aware music recommendation method proposed in this paper (emoMR)
consists of the following steps in the recommendation process: Music emotion representa-
tion generation, user preference for the music emotion calculation, similarity calculation,
and recommendation list generation. The method is a hybrid recommendation method
that takes both a content-based method and collaborative filtering method into the recom-
mendation process. The process is depicted in Figure 6.

With existing
music emotion

preference
information

Without existing
music emotion

preference
information

Calculating music emotion
representation on music

items

Content-based method 
Get music of similar music

emotion

Calculating music emotion
preference for the current

user emotion state on users

Collaborative filtering method 
Get music with music emotion

preferred by similar music
emotion preference users

Similarity 
Calculation

Recommendation 
list generation

Figure 6. The recommendation process of emoMR.

When a user Useri enters the recommendation process at time Testat, the method first
decides whether there the music emotion preference of the user exists in the system. The
process can then be described as:

1. If the user’s music emotion preference information exists in the system, the music
emotion representation is calculated using the music emotion representation model.
The emoDNN for the music emotion representation model can be trained, and its
parameters can be saved for future use. The emotion representation for the music can
also be stored to accelerate future recommendation cycles.

2. If the user’s music emotion preference information does not exist in the system, the
music emotion preference for the user’s current emotion state is calculated using the
emotion state representation model. The parameters for the trained emotion state
representation model emoDNN and the calculated user music emotion preference can
be stored to accelerate future recommendation cycles.

3. Content-based method is used to get a list of music of similar music emotion to the
music emotion preference at the given time Testat. Add the music emotion vector to
the music feature vector used by existing content-based music recommenders [84].
Calculate the similarities of the music to the emotion preferred music and rank the
similarities to generate a list of music.

4. Collaborative filtering method is used to get the music with the music emotion pre-
ferred by similar music emotion preference users at the given time Testat. Add the
music emotion preference vector of the user’s feature vector. Calculate the similarities
between Useri and other users. Rank the users according to the similarities. The pre-
ferred music lists of the users in the similar user list are ranked by the music emotion
preference of the users. Get Top-K music items from the lists of the users.
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5. Using the generated music list as the recommendation list.

The similarities in the process are calculated by cosine similarity [85] depicted in
Equation (16). Music emotion preference is a significant factor that affects music recom-
mendations. However, conventional music preferences are also significant. Thus, we
combined the music emotion preference and conventional music preferences by adding
the music emotion vectors to the existing feature vectors of the music and adding the
music emotion preference vectors to the existing feature vectors of the users. Therefore,
the results generated by our method take advantage of both conventional preferences and
music emotion preferences:

Sim = Cos(~Vi, ~Vj) =
~Vi · ~Vj

‖~Vi‖ · ‖~Vj‖
=

∑ xi · xj√
∑ x2

i ·
√

∑ x2
j

, xi ∈ ~Vi, xj ∈ ~Vj. (16)

4. Experiments

In this section, the performance of the proposed emotion-aware music recommenda-
tion method emoMR is evaluated experimentally. The performance is compared against
alternative approaches. We introduce the dataset used in the experiments, the experiment
designs, the model training, and the evaluation. We implemented a toy system to control
the experiment procedures and collect metrics data.

4.1. Datasets

According to the design of our method, the following data need to be fed to our
method to train the models and generate recommendations: The audio file of the music,
the metadata of the music, the activity data of the users within at least a 24-hr period, and
social media data including posts, comments, and events. Existing datasets such as Netflix,
GrooveShark, Last.fm [86] come up with no emotion-related characters. To train the models
proposed in our work and test the performance of emoMR against other approaches, we
used a hybrid dataset consists of:

1. Data from the myPersonality [27] dataset. This dataset comes with information about
4 million Facebook users and 22 million posts over their timeline. By filtering through
this dataset, we extracted 109 users who post music links and 509 music posted in
the form of music links. This dataset provides not only the user tags but also music
information and implicit user feedback information to aid the training of the music
emotion representation model and the emotion state representation model.

2. Data acquired from music social platform. The platform is a Chinese music streaming
service (NetEase Cloud Music, https://music.163.com (accessed on 12 July 2021)) with
an embedded community for users to share their lives with music. We scraped the
music chart with a web crawler (https://github.com/MiChongGET/CloudMusicApi
(accessed on 12 July 2021) and got 500 high-ranking songs. The metadata and audio
file of the 500 songs and the 509 ones in the myPersonality dataset were acquired. The
music in the myPersonality dataset contained almost English songs and was relatively
old, while the 500 high-ranking songs were mostly Chinese songs. Therefore, the two
datasets have 38 songs in common. We also searched through the community and
acquired 200 users related to the 971 songs and 116,079 user activities, including user
likes, posts, reposts, and comments.

3. Data acquired from the social network (Weibo, https://weibo.com (accessed on 13
July 2021)). We acquired 105,376 event-related data from Weibo. The data were posted
within the time window of the user activities of the music social platform data. We
use this data to insert event-related public opinion information to emoMR.

The ratio of the data for training against testing was around 3:1. The text information of
music metadata and user activities were processed with text sentiment analysis services to
obtain the emotion representation and construct the label data. The text sentiment analysis
services for the English contents were processed by the IBM Tone Analyzer (https://www.

https://music.163.com
https://github.com/MiChongGET/CloudMusicApi
https://weibo.com
https://www.ibm.com/watson/services/tone-analyzer
https://www.ibm.com/watson/services/tone-analyzer
https://www.ibm.com/watson/services/tone-analyzer
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ibm.com/watson/services/tone-analyzer (accessed on 17 July 2021)), and the Chinese
contents were processed by Baidu AI (https://ai.baidu.com/tech/nlp/emotion_detection
(accessed on 17 July 2021)). In particular, the GDPR regulation [87] has placed restrictions
on the exploitation of user data in order to limit illegal use. The third-party dataset and the
datasets acquired from the music streaming and social network services are guaranteed to
be anonymized by the corresponding APIs of the services. The datasets will be used for
our research purpose only and will not be used for commercial purposes.

4.2. Model Training

To train the music emotion representation model and the emotion state representation
model, we use 70% of the training data to train the emoDNNs and 30% of the training
data to test the trained models. We referred to a novel music recommendation system
using deep learning [88] for the hyper-parameter settings and the training process. The
hyper-parameters for the two emoDNNs are listed in Tables 2 and 3. The number of
the hidden layers of the two emoDNNs were set to 5 according to Equation (11) and the
experience derived from Liu et al. [67].

Table 2. Hyper-parameters for the music emotion representation model emoDNN.

Parameter Setting

Training epoch 300
Batch 20

Optimizer Adam
Learn rate 0.05

Table 3. Hyper-parameters for the emotion state representation model emoDNN.

Parameter Setting

Training epoch 500
Batch 10

Optimizer Adam
Learn rate 0.01

The training process uses the above hyper-parameter settings to learn the weights for
the two models. As shown in Figure 7a, the loss function value for the train and validation
sets plunged as the epoch reaches 50. When the epochs reach 300, the loss function values
drop to 0.017 for training and 0.007 for validation. Figure 7b shows the accuracy changes
over different epochs. When the epochs reach 300, the accuracy values reach 0.938 for
training and 0.964 for validation. The output accuracy on the testing set is 97.46%.

As shown in Figure 8a, the loss function value for the train and validation sets plunged
as the epoch reaches 50. When the epoch reaches 300, the loss function values drop to
0.0027 for training and 0.0029 for validation. Figure 8b shows the accuracy changes over
different epochs. When the epochs reach 300, the accuracy values reach 0.871 for training
and 0.813 for validation. The output accuracy on the testing set is 88.81%.

The trained models’ accuracy is 97.46% for the music emotion representation model
and 88.81% for the emotion state representation model. The accuracy is enough for gener-
ating representations and predicting emotion preferences for music in the testing dataset.
Due to the nonlinear nature of the emotion state representation model, which is introduced
by the human circadian rhythm and the stochastically-occurring events, the accuracy of the
emotion state representation model emoDNN is significantly lower than that of the music
emotion representation model. This leaves room for future improvements.

https://www.ibm.com/watson/services/tone-analyzer
https://www.ibm.com/watson/services/tone-analyzer
https://ai.baidu.com/tech/nlp/emotion_detection
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Figure 7. The loss function changes (a) and accuracy changes (b) over different epoches in training
the music emotion representation model.
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Figure 8. The loss function changes (a) and accuracy changes (b) over different epoches in training
the emotion state representation model.

4.3. Baseline Algorithms and Metrics

The main purpose of the experiment is to compare the proposed emoMR with alter-
native approaches. For the comparison, we selected four alternative algorithms as the
baseline algorithms, they are listed below:

1. A typical Content-Based music recommendation algorithm (CB) [89];
2. The Social Content-Based Collaborative Filtering algorithm (SCBCF) [90];
3. The Emotion-Aware Recommender System (EARS) [50];
4. The EMotion-aware REcSys (EMRES) [27].

The four baseline algorithms contain two approaches that do not take emotion infor-
mation into account and two approaches that also utilize emotion information.

CB and SCBCF are alternative approaches that do not take emotion information into
account. They are item similarity-based algorithms that share an easy way of computing
similarity scores and are widely used in music recommendations.

EARS and EMERS are the two algorithms that also utilize emotion information. They
demonstrate not only the ability to use item similarities but also the ability to use social
network information and hybrid approaches. The two algorithms incorporate social
network data to exploit the implicit user feedback in music recommendations and are
emotion-aware.



Electronics 2021, 10, 1769 17 of 25

To test the performance of emoMR against the baseline algorithms, we leveraged a
variety of metrics commonly used in music recommendation method performance compar-
isons [8]. The metrics are: Precision, Recall, F1, and HitRate [27] listed by Equations (17)–(20).
Precision is the fraction of recommended music pieces that are relevant. Recall is the frac-
tion of relevant music pieces that are recommended. F1 is the harmonic mean of precision
and recall. HitRate is the fraction of hits.

Precision =
|Mrec ∩Mpick|
|Mrec|

(17)

Recall =
|Mrec ∩Mpick|
|Mpick|

(18)

F1 =
2× Precision× Recall

Precisioni + Recall
(19)

HitRate =
Nhits

TOP− N
(20)

where Mrec is the music recommended in the recommendation list and Mpick is the music
actually picked by the user. If a piece of music is contained in a recommendation list
for Useri then it is a hit, Nhits is the number of hits, and TOP− N is the number of Top-
N recommendations.

4.4. Results

To assess the performance of our emoMR, we compared the Precision, Recall, F1, and
HitRate of emoMR against those of the baseline algorithms. As the recommendation task
was set to Top-N recommendations to suit the output of the above methods, we believe the
N in Top-N has a significant influence on the performances of the methods. Therefore, the
comparison was first given by a top-10 recommendation task which is a common practice
among the recommendation systems of various music streaming services. Then, the
performance variations were compared by changing the N from 5 to 20 to test the influence
of N in Top-N. Finally, to test the event-related emotion utilization ability of emoMR, we
compared the performances of the methods on two top-10 recommendation tasks using
data within the time range of two major events on Chinese social media platforms.

4.4.1. Performance Comparison in the Top-10 Recommendation Task

We compared the performance of emoMR against the baseline algorithms of CB,
SCBCF, EARS, and EMRES in the 4 metrics on a top-10 recommendation task. The results
are shown in Figure 9.

The results show that emoMR outperforms the other baseline algorithms in all 4 met-
rics. The performance of the plain Content-Based algorithm (CB) is the worst. The SCBCF
algorithm outperforms the CB algorithm due to its ability to exploit social network data
and the hybrid approach it incorporates. The EARS, EMRES, and emoMR exploit not only
the social network data but also information related to emotions. However, the EARS
cannot utilize the low-level audio features, and the MERES takes a content-based-like
approach. Thus, they fail to fuse more information than emoMR.

The results suggest that compared to the second-highest performance algorithm
EMERS, emoMR improved 4.06% of Precision, 15.95% of Recall, 11.82% of F1, and 37.36%
of HitRate. Compared to EARS, emoMR’s Precision, Recall, F1, and HitRate were 10.81%,
32.92%, 25.25%, and 105.00% higher than those of EARS, respectively. The Precision, Recall,
F1, and HitRate of emoMR were 16.47%, 78.68%, 57.09%, and 257.14% higher than those of
SCBCF, respectively. Compared to CB, emoMR improved 203.97% of Precision, 165.85% of
Recall, 144.02% of F1, and 400.00% of HitRate.



Electronics 2021, 10, 1769 18 of 25

0

5

10

15

20

25

CB SCBCF EARS EMRES emoMR

P
re
ci
si
on
(%
)

0

2

4

6

8

10

12

CB SCBCF EARS EMRES emoMR

R
ec
al
l(
%
)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

CB SCBCF EARS EMRES emoMR

F1
(%
)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

CB SCBCF EARS EMRES emoMR

H
it
R
at
e(
%
)

Figure 9. The performance comparison of the methods in the top-10 recommendation task.

4.4.2. Performance Comparison in the Top-N Recommendation Tasks

The performance of the five methods was also evaluated in Top-N tasks where N
varies from 5 to 20 to reveal the influence of N on the performance. The results are shown
in Figure 10.

The results show that as N varies from 5 to 20, the Precisions of the five methods
decrease, whilst the Recalls, F1s, and HitRates increase. As the lengths of recommendation
lists increase, and the precision drop, which means the tail items of the recommendation
list contribute less to the quality of the recommendation. The precision of the emotion-
aware algorithms also outperforms those non-emotion-aware algorithms. The increment in
Recalls and F1s all suggest that increase the length of the recommendation list increases the
advantages of emoMR over the other four algorithms. However, the HitRates suggests that
EMRES outperforms emoMR on top-5 recommendations and that top-10 recommendations
observe the greatest advantage of emoMR on EMRES in HitRate.

The comparisons under the top-5 recommendation task suggest the following results:
The Precision of emoMR is 3.53%, 12.50%, 18.78%, and 90.24% higher than those of EMRES,
EARS, SCBCF, and CB, respectively. The F1 of emoMR is 0.61%, 13.70%, 19.39%, and
101.76% higher than those of EMRES, EARS, SCBCF, and CB, respectively. The Recall of
emoMR has no significant advantage over EMRES in this situation, while it is 13.95%,
19.51%, and 104.16% higher than those of EARS, SCBCF, and CB, respectively. The HitRate
of emoMR is 2.53% lower than EMRES while it is 71.11%, 140.62%, and 305.26% higher
than those of EARS, SCBCF, and CB, respectively. Besides, emoMR still has an advantage
over MERES in HitRate as the length of the recommendation list increases. Meanwhile,
emoMR keeps leading the performance as the N in Top-N goes beyond 5.
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Figure 10. The performance comparison of the methods in the Top-n recommendation tasks.

4.4.3. Performance Comparison in Recommending Top-10 Items during Event-Related
Time Ranges

The two major events are: (1) EVT1—the death of Yuan Longping “Father of hybrid
rice” (22–25 May 2021) and (2) EVT2- imported Coronavirus Disease 2019 (COVID-19)
cases in Zhejiang (9–12 June 2021). We grab the data from Weibo trends during the events’
time ranges. The performance results are shown in Figure 11.

The results show that the performance of emoMR significantly outstands the baseline
algorithms in Precision, Recall, F1, and HitRate when recommending within certain event
time ranges. The advantages of emoMR over other algorithms are even bigger compared
to the top-10 recommendation performance, unaware of the major events.

EVT1 caused a general sad atmosphere in the Chinese social media platform of Weibo
as the breaking news of Yuan Longping’s death started to go viral. For EVT1: Compared to
the second highest performance algorithm EMERS, emoMR improved 7.03% of Precision,
18.55% of Recall, 14.51% of F1, and 48.64% of HitRate. Compared to EARS, emoMR’s
Precision, Recall, F1, and HitRate were 13.90%, 35.29%, 27.79%, and 157.01% higher than
those of EARS, respectively. The Precision, Recall, F1, and HitRate of emoMR were 23.83%,
94.91%, 69.99%, and 310.44% higher than those of SCBCF, respectively. Compared to CB,
emoMR improved 115.15% of Precision, 194.87% of Recall, 116.92% of F1, and 461.22%
of HitRate.

EVT2 brought public panic emotion to social media as people were worried about a
new round of the outbreak of the pandemic. For EVT2: Compared to the second highest
performance algorithm EMERS, emoMR improved 10.25% of Precision, 18.94% of Recall,
15.95% of F1, and 48.63% of HitRate. Compared to EARS, emoMR’s Precision, Recall,
F1, and HitRate were 13.75%, 36.14%, 28.43%, and 159.04% higher than those of EARS,
respectively. The Precision, Recall, F1, and HitRate of emoMR were 27.97%, 98.24%, 74.03%,
and 318.46% higher than those of SCBCF, respectively. Compared to CB, emoMR improved
119.38% of Precision, 175.60% of Recall, 156.24% of F1, and 433.33% of HitRate.



Electronics 2021, 10, 1769 20 of 25

0

5

10

15

20

25

CB SCBCF EARS EMRES emoMR

P
re
ci
si
on
(%
)

0

2

4

6

8

10

12

14

CB SCBCF EARS EMRES emoMR

R
ec
al
l(
%
)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

CB SCBCF EARS EMRES emoMR

F1
(%
)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

CB SCBCF EARS EMRES emoMR

H
it
R
at
e(
%
)

EVT1 EVT2

Figure 11. The performance comparison of the methods in recommending top-10 items during
event-related time ranges.

4.5. Discussions

The results suggest that emoMR outperforms all the other baseline algorithms in
the top-10 recommendation task. As studies suggest that more information fusion helps
improve recommendation performance of Top-N tasks [16], we believe that is why emoMR
outperforms the other algorithms. The results of the significant performance gaps between
emotion-aware methods (emoMR, EMERS, and EARS) and emotion-unaware methods
(SCBCF and CB) also indicate that the ability to utilize emotion-related information helps
recommendation methods to gain advantages in music recommendations.

Our method outperforms the other baseline algorithms as the length of the recom-
mendation list expands. Although the HitRate of EMERS exceeded emoMR in top-5
recommendations, emoMR still has its advantages in HitRate back in top-5 through top-20
recommendations. We believe the advantages of emoMR are gained by allowing more
emotion variations to show up in the recommendation list. The music of similar music
emotions and the users of similar music emotion preferences are ranked by the correspond-
ing similarities. A longer recommendation list means a wider range of similarities which
will include more emotion variations.

The advantages of emoMR in recommending top-10 items during event-related time
ranges mark the unique ability of emoMR to utilize events information in emotion-aware
music recommendations. As studies suggest that the brain mechanisms mediating musical
emotion recognition are also dealing with the analysis and evaluation of the emotional
content of complex social signals [18], social events are able to trigger the emotion cognition
process. The events bring emotion-related information by public opinion. The sentiments
of event-related public opinions were a critical part of the exogenous factors of the emotion
state representation model. The results suggest that emoMR is able to utilize public opinion
information during major events to refine the emotion state representation model by
offering more information to the exogenous factors.

5. Conclusions

The development of personalized services on the Internet has called for new tech-
nologies to improve service quality. To improve the recommendation quality of the music
recommenders, researchers have started introducing new information that has not been
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exploited to make better suggestions. This paper proposed an emotion-aware hybrid music
recommendation method using deep learning (emoMR) to introduce emotion information
into music recommendations. Experiment results show that emoMR performs better in
the metrics of Precision, Recall, F1, and HitRate than the other baseline algorithms in the
top-10 recommendation task. Meanwhile, emoMR keeps its advantage over other baseline
algorithms as the length of the recommendation list increases. We also tested the perfor-
mance of emoMR on two major events (the death of Yuan Longping and the COVID-19
cases in Zhejiang). Results show that emoMR takes advantage of the events information
and outperforms the other baseline algorithms. Our work contributes to the development
of recommenders that include novel aspects of information. Our work can also be applied
to a wide range of fields [91] to promote user satisfaction. Our innovative works in this
paper are as listed as follows:

1. The proposed method predicts music emotions in a continuous form, enabling a more
precise and flexible representation of music emotions than traditional discrete represen-
tations. By modeling the music emotion representation into a < Valence, Arousal >
vector based on the emotion valence-arousal model using low-level audio features and
music metadata, we build a deep neural network (emoDNN) to predict the emotion
representations for the music items. Compared to the discrete representations of music
emotions in other studies, our model predicts the music emotion in a continuous form
of valence and arousal scores.

2. The proposed method predicts users’ music emotion preference whenever it needs
while traditional methods can only generate predictions at time points when user
feedback data are present. By modeling the users’ emotion states using an artificial
emotion generation model with endogenous factors generated by the human circadian
rhythm model and exogenous factors consisted of events and implicit user feedback,
we use the emoDNN to predict the users’ music emotion preferences under the
emotion states represented by the model. Benefiting from the continuity of the human
circadian rhythm, the model is able to predict continuously across time regardless of
the absence of user feedback data at a given time point.

3. The proposed method can utilize event information to refine the emotion generation,
which provides a more accurate emotion state description than traditional artificial
emotion generation models. With the introduction of events in the exogenous factors
of the user emotion state representation model, emoMR is able to express the influence
of events (especially major social events) on user emotions.

4. The proposed method employs a hybrid approach of combining the advantages of both
content-based and collaborative filtering approaches to generate the recommendations.
Theoretically, our findings will contribute to the theory of emotion recognition by
reflecting the cognitive theory of emotion [68] and the cognitive appraisal theory of
emotion [69] with social signals.

We acknowledge some limitations in our study that allows for opportunities for future
research and list them as: (1) Although the accuracy of the emotion state representation
model is acceptable, there is still room for improvements compared to the accuracy of
the music emotion representation model. Future works can benefit from improving the
accuracy of the emotion state representation model. (2) Limited by the research paradigm
and the designed model, our method is unable to predict the emotion of a person at a given
time point. Future works can benefit from designing an intermediate output of emotion
prediction to aid the recommendation process and validate the accuracy of the recommen-
dation. (3) Limited by the approaches of the study and the dataset used, our study did not
take users with minority personal traits such as bipolar traits into consideration which is a
compelling choice. Future works can benefit from taking humanistic care for minorities. (4)
The proposed method utilized the human circadian rhythm model to generate emotion
state representations that need at least user activity data of a 24-hr time period. Future
works can benefit from exploiting other models that require fewer data.
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