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Abstract: To prevent the leakage of image content, image encryption technology has received increas-
ing attention. Most current algorithms are only suitable for the images of certain types and cannot
update keys in a timely manner. To tackle such problems, we propose an adaptive chaotic image en-
cryption algorithm based on RNA and pixel depth. Firstly, a novel chaotic system, two-dimensional
improved Logistic-adjusted-Sine map is designed. Then, we propose a three-dimensional adaptive
Arnold transform for scrambling. Secondly, keys are generated by the hash values of the plain image
and current time to achieve one-image, one-key, and one-time pad simultaneously. Thirdly, we
build a pre-permuted RNA cube for 3D adaptive scrambling by pixel depth, chaotic sequences, and
adaptive RNA coding. Finally, selective diffusion combined with pixel depth and RNA operations is
performed, in which the RNA operators are determined by the chemical structure and properties of
amino acids. Pixel depth is integrated into the whole procedure of parameter generation, scrambling,
and diffusion. Experiments and algorithm analyses show that our algorithm has strong security,
desirable performance, and a broader scope of application.

Keywords: image encryption; RNA; pixel depth; chaotic system; 3D adaptive Arnold transform

1. Introduction

With the increasing use of instant messaging technology, images are widely used for
communication. Meanwhile, some image content contains sensitive information, so image
content security becomes an essential issue for scientists and engineers. As a standard
and effective technology to protect the content security of digital multimedia information,
the image encryption technology plays a significant role in many applications. To better
protect the image content, besides the generation of cipher images, the applicability of the
algorithm and the real-time update of the key are the crucial problems that researchers
must focus on.

After decades of development, various excellent algorithms have emerged. To over-
come the shortcomings of traditional algorithms, scholars have introduced chaos theory to
image encryption. Classic text encryption algorithms such as Data Encryption Standard
(DES), Advanced Encryption Standard (AES), and RSA cannot perform well in image
encryption [1–4]. Matthews proposed that the chaotic system can be used in cryptog-
raphy in 1989 [5]. As a result of its high sensitivity to initial values and parameters,
pseudo randomness, ergodicity, complexity, etc., the chaotic system is extensively uti-
lized in image encryption [6]. Recently, a series of image encryption algorithms have
been proposed based on chaos [7–13]. Liu et al. proposed a multidimensional chaotic
image encryption algorithm based on DNA coding. The traditional three-dimensional (3D)
Lorenz system is improved to form a four-dimensional (4D) hyperchaotic Lorenz system
for chaotic encryption [14]. By generating three new chaotic signals from two nearby
orbits of one-dimensional (1D) chaotic maps, Zhou et al. proposed a simple color image
cryptosystem with a very high level of security [15]. To improve the security of image
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encryption, researchers pay more attention to the high-dimensional chaotic encryption
algorithms [16–20]. Arnold is a classic map usually used to scramble the pixel positions in
many image encryption algorithms [21–24]. In 2020, Wang et al. proposed a hyperchaotic
image encryption algorithm based on bit-level permutation and DNA encoding, in which
the authors employ a six-dimensional hyperchaotic system; the key stream generated by
the hyperchaotic system is related to the plain image. DNA encoding and manipulation
are used to change the pixel values [25].

In recent years, the efficiency of algorithms has also become one of the focuses of
researchers [26–29]. Xian et al. proposed a novel chaotic image encryption algorithm
combining chaotic sub-block scrambling based on spiral transformation and chaotic digit
selection diffusion, which can improve the diffusion efficiency [30]. Considering that only
part of the data in the image is relatively informative, Zhang et al. presented a multiple-
image encryption algorithm based on bit planes and chaos. Since the high bit planes
contain most of the content in the image, Zhang’s algorithm only operates the four high bit
planes. Since the high bit planes are one-half of the original image, Zhang’s algorithm has
excellent efficiency [31]. Liu et al. proposed an image encryption algorithm based on the
region of interest. Different from traditional image encryption schemes, Liu’s algorithm
does not encrypt the whole image. Liu used a histogram of gradient direction, feature
extraction, and support vector machine to separate the region of interest from the whole
image. Then, the pixels in the region of interest are messed up by using the improved
Henon sequence and Joseph sequence. Since the region of interest is only a part of the
original image, Liu’s encryption scheme also has high efficiency [32]. Motivated by the
above discussions, this paper proposes an adaptive chaotic image encryption algorithm
based on RNA and pixel depth. We employ the permutation–diffusion framework.

The main contributions of the paper can be highlighted as follows: (1) A novel chaotic
system—two-dimensional improved Logistic-adjusted-Sine map (2D-ILASM) is designed
on the basis of two-dimensional Logistic-adjusted-Sine map (2D-LASM); (2) We propose a
3D adaptive Arnold transform for scrambling; (3) Keys are generated by the hash values of
the plain image and current time to achieve one-time pad; (4) Selective diffusion combined
with the pixel depth and RNA operations is performed, in which the RNA operators are
determined by the chemical structure and properties of amino acids; (5) We mix the pixel
depth of the plain image in the whole encryption procedure to increase the application
range of the algorithm; (6) Experimental results and algorithm analyses show that our
algorithm has strong security, high efficiency, and broad scope of application.

The rest of this paper is structured as follows. Section 2 introduces the related works.
The theoretical principles of the 2D-ILASM chaotic system, Chen-4D chaotic system, RNA
coding rules and operations, pixel depth, and the 3D adaptive Arnold transform are
described in Section 3. Section 4 provides an adaptive chaotic image encryption algorithm
based on RNA and pixel depth. Experimental results are also performed in Section 4. In
Section 4, the performance of the proposed algorithm is evaluated through various tests.
The discussion is depicted in Section 5. The conclusions are drawn in Section 6.

2. Related Works

Zarebnia et al. used the hybrid chaotic system and cyclic shift to ensure their algorithm
has better security. Utilizing hybrid or high-dimensional hyperchaotic systems, although
the security of image encryption algorithm has been enhanced, the running cost of the
algorithm is also increased due to the numerous parameters [33]. Some researchers have
realized the importance of updating keys timely. Gan et al. proposed a chaotic image
encryption algorithm based on 3D bit-plane permutation. They said the algorithm attains
“one plain image, one key” and “one time, one key” by the hash value of the plain image.
However, the hash value only changes with the plain image but cannot change with the
encryption moment, so the algorithm cannot achieve “one time, one key” [16].

Compared with traditional technologies, DNA and RNA operations have the ad-
vantages of parallelism, lower power consumption, and larger storage. Moreover, after
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being transcribed from DNA, RNA participates in the translation stage. RNA has the
function of controlling protein synthesis through the codon table. This function is equiva-
lent to another coding opportunity and provides more available variables for designing
encryption algorithms. Mehdi et al. proposed a new image security technology based on
the concept of nucleic acid. The cipher image after DNA operations is used as the input
for the RNA stage, thus using the codon truth table and key for RNA for further image
encryption [34]. Mahmud et al. used an RNA sequence and genetic algorithm to propose
an image encryption algorithm based on an evolutionary RNA codon truth table. They first
use Logistic mapping to generate a specified number of initial cipher images. Then, the
codon array is updated by using cryptographic keys and cryptographic RNA tables to form
the initial population of the genetic algorithm [35]. Abdellatif proposed a novel nucleotide
grade color image encryption algorithm, which applied RNA to synthesize amino acids
and isolated exon genes from introns [36]. Zhang et al. used the chaotic system to scramble
the original RNA truth table randomly and then used the complementary rule to generate
four truth tables to replace the RNA bases in the cipher image [37]. Most of the above
algorithms are designed for a single image type, which makes them unable to show ideal
performance when encrypting different types of images.

3. Materials and Methods
3.1. 2D-ILASM Chaotic System

Recently, Zhou et al. [38] presented a novel chaotic system named 2D-LASM, which is
derived from 1D Sine and Logistic maps. Compared to Sine and Logistic maps, 2D-LASM
has a more complex structure, wider chaotic range, and better ergodicity. It is defined as{

xi+1 = sin(πµ(yi + 3)xi(1− xi))
yi+1 = sin(πµ(xi+1 + 3)yi(1− yi))

(1)

where the system parameter µ ∈ [0, 1], the state variables x, y ∈ (0, 1), and the system
is chaotic. When µ = 0.7, the Lyapunov exponents are 0.7884 and 0.7495, the system
is hyperchaotic.

Figure 1a plots the phase diagram of the chaotic system with the initial values x0 = 0.1,
y0 = 0.1, andµ = 0.7. From Figure 1a, it is clear that the system is unable to cover the
entire phase plane, so the security of the algorithm cannot be ensured. To further analyze
the performance of 2D-LASM, we select 10,000 points from chaotic sequence generated
by 2D-LASM. Figure 2a,b show the sequence statistical histograms of 2D-LASM. From
Figure 2a,b, we find that the chaotic sequence is distributed unevenly; most of the data
are concentrated on both sides, while the middle distribution is less. However, for a valid
chaotic system, the numerical distribution of the chaotic sequence should be as close to
uniform as possible.
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The experimental analyses of 2D-LASM shows that it exhibits weak chaotic behaviors
in iteration. Therefore, we improve 2D-LASM by introducing the module operations, which
can weaken those shortcomings and perform a better chaotic performance. The 2D-ILASM
is expressed via Equation (2) as follows:{

xi+1 = mod(sin(πµ(yi + 3)xi(1− xi)), 0.2)
yi+1 = mod(sin(πµ(xi+1 + 3)yi(1− yi)), 0.2)

(2)

where the system parameter µ ∈ [0, 1] and the state variables x, y ∈ (0, 0.2). The phase
diagram of 2D-ILASM is shown in Figure 1b, which is distributed on the entire phase plane.
The sequence statistical histograms of 2D-ILASM are shown in Figure 2c,d. These figures
indicate that chaotic sequences scatter evenly in different intervals.

The ideal pseudorandom sequence used in cryptosystems should possess fine statisti-
cal properties [39]. To analyze the output performance of the 2D-ILASM, the test standard
of NIST SP800-22 is introduced [40,41]. The NIST SP800-22 is a statistical package consist-
ing of 15 test items that are used to verify the randomness of the produced sequences. For
each test, the p-value is expected to fall into [0.01, 1] to accept the sequences as random.
If a p-value for a test is determined to be equal to 1, then the sequence appears to have
perfect randomness. As shown in Table 1, the tested sequences may pass all the test items.
Therefore, the outputs of the 2D-ILASM can be considered randomness and used as key
streams for image encryption. According to the above analyses, 2D-ILASM is suitable for
generating chaotic sequences with excellent properties. In our algorithm, the proposed
chaotic system is used to produce highly random chaotic sequences.
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Table 1. NIST SP800-22 test.

Test Items
p-Value

Results
X Y

Frequency test 0.898977 0.596600 Pass
Frequency test within a block 0.758731 0.291061 Pass
Runs test 0.632272 0.963952 Pass
Test for longest run of ones in a block 0.931298 0.408512 Pass
Binary matrix rank test 0.424943 0.434479 Pass
Discrete Fourier transform test 0.657982 0.349486 Pass
Non-overlapping template matching test 0.342668 0.962718 Pass
Overlapping template matching test 0.144245 0.174696 Pass
Maurer’s “Universal Statistical” test 0.138558 0.148293 Pass
Linear complexity test 0.876999 0.988846 Pass
Serial test * 0.989594 0.263659 Pass
Approximate entropy test 0.825184 0.091003 Pass
Cumulative sums test * 0.976507 0.439422 Pass
Random excursions test * 0.641919 0.553448 Pass
Random excursions variant test * 0.757583 0.467278 Pass

* The average values of multiple tests.

3.2. Chen-4D Hyperchaotic System

Based on the 3D Chen chaos, a 4D Chen hyperchaotic system has been reconstructed [42].
The 4D Chen hyperchaotic system has high dynamics complexity, a large key space, and
more resistance to exhaustive attacks. The specific equation is as follows:

.
z = a(u− z) + w
.
u = bz− zv + cu

.
v = zu− dv
.

w = uv + ew

(3)

where a, b, c, d, and e are parameters for controlling chaotic coefficients, and, z, u, v, and w
are state variables of the chaotic system. When a = 35, b = 7, c = 12, and e ∈ (0.085, 0.798],
the conditions of the hyperchaotic system are met, and the system is in a hyperchaotic state.
The phase diagrams of the Chen hyperchaotic system are depicted in Figure 3.
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3.3. RNA Encoding Rules and Operations

DNA and RNA are the core materials in the process of biological genetics. A DNA
sequence is composed of four bases, namely A (adenine), C (cytosine), G (guanine), T
(thymine), which are arranged in a certain order. An RNA sequence is also built of four
nucleic acid bases. There is only one different base; that is, U (uracil) in RNA replaces
T in DNA [43]. In the past several years, DNA coding technology is widely used in
image encryption for its excellent characteristics in computing. In RNA coding, two
binary numbers are mapped to one base under the designed coding rule. In biology,
single-stranded RNA synthesizes its complementary strand according to the principle
of complementary base pairing and then forms double-stranded RNA [43]. Based on
the above discussion, we adopt RNA coding and operation in this paper, A and U are
complementary, and C and G are complementary. Following the RNA complementation
rules, we can only get eight coding rules shown in Table 2.

Table 2. Binary coding rules for RNA sequences.

Rule 1 2 3 4 5 6 7 8

00 A A U U C C G G
01 C G C G A U A U
10 G C G C U A U A
11 U U A A G G C C

Analogous to DNA operations and inspired by the RNA complementary pairing
rules, there are six operators in RNA operations: addition, subtraction, add-complement,
sub-complement, XOR (exclusive OR), and XNOR (exclusive NOR). In RNA calculation,
the proposed eight coding rules and six operations make 48 different choices for every
operation between two bases. Tables 3–8 show the addition operation, the subtraction oper-
ation, the add-complement operation, the sub-complement operation, the XOR operation,
and the XNOR operation, respectively, which are designed under the coding rule 1.

Table 3. RNA addition rule.

+ A G C U

A A G C U
G G C U A
C C U A G
U U A G C
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Table 4. RNA subtraction rule.

− A G C U

A A U C G
G G A U C
C C G A U
U U C G A

Table 5. RNA add-complement rule.

+’ A G C U

A U C G A
G C G A U
C G A U C
U A U C G

Table 6. RNA sub-complement rule.

−’ A G C U

A U A G C
G C U A G
C G C U A
U A G C U

Table 7. RNA XOR rule.

XOR⊕ A G C U

A A G C U
G G A U C
C C U A G
U U C G A

Table 8. RNA XNOR rule.

XNOR� A G C U

A U C G A
G C U A G
C G A U C
U A U C U

The three adjacent bases on the messenger RNA chain that determine an amino acid
during protein synthesis are called codons. RNA is composed of four bases, and every
three bases are combined into a codon. In theory, there are 4× 4× 4 = 64 kinds of base
combinations, that is, 64 kinds of codons. Then, m-RNA can be combined with t-RNA,
amino acids can be combined with different polarities, and chemical structures can be
formed, as shown in Figure 4.
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The difference in the structure of amino acids depends on the difference of the side
chain groups. Wang et al. [43] divided amino acid types according to the polarity of amino
acid side chain groups to build the RNA operator controller. In the proposed algorithm,
amino acids are classified according to the chemical structure and properties of the side
chain groups. By the correspondence between the first three bits of the four vertices of the
RNA scrambled image and the codons, the operators used in the selective diffusion are
selected. Due to the different number of codons for each amino acid, to make the RNA
operators distributed in the calculation process more evenly, we consider dividing amino
acids into six types. Each type represents a kind of operator. The specific correspondence is
shown in Table 9.

Table 9. Correspondence between amino acid category and operator.

Category of Amino Acids Operator

Aliphatic hydrophobic amino acid ⊕
Aliphatic hydrophilic amino acid �
Aromatic amino acids +
Stop codon −
Heterocyclic amino acid +′

Start codon −′

3.4. Pixel Depth

Pixel depth refers to the number of bits used to store each pixel, which are measured
in BPP (Bit Per Pixel), and it is also used to measure the resolution of an image. Pixel depth
determines the number of colors each pixel of a color image may have or determines the
number of gray levels each pixel of a grayscale image may have. The more the number
of bits representing the pixel value in the image, the more color types it can express, the
deeper its pixel depth, and the larger its BPP value.

When the BPP of an image is 8 or 16, the maximum number of colors that a single pixel
can express is 28 = 256 or 216 = 65,536, and the range of colors displayed is limited, which
is called grayscale or high color image. When the BPP of an image is 24, the maximum
number of colors that a single pixel can express is 224 = 16,777,216. Use 24 bits to display a
pixel composed of 8 bits that are red, 8 bits that are green, and 8 bits that are blue. Each
color can be displayed completely, so images with 24 bits and above are called true-color
images. When the BPP of an image is 32, 232 = 224 + 28, the common 32-bit color in the
computer field does not represent 232 colors, but an 8-bit (28 = 256 level) transparency is
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added to the 24-bit color. Therefore, the total number of 32-bit colors is the same as 24-bit
colors, and 32-bit colors are called a full-color image.

Pixel depth is one of the properties of the image itself, just like its size. Integrating
pixel depth into the encryption process can increase the security and scope of the algorithm.
In the proposed algorithm, the pixel depth of the plain image participates in the whole
process of parameter generation, scrambling, and diffusion to enhance applicability and
security. Lena images with different pixel depths are shown in Figure 5.
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3.5. 3D Adaptive Arnold Transform

Arnold transform (AT) is a 2D map [44] as shown in Equation (4).[
x′

y′

]
=

[
1 1
1 2

][
x
y

]
modN (4)

where N is the order of the matrix, x, y ∈ {1, 2, · · · , N} are the positions of elements before
applying AT, and x′, y′ ∈ {1, 2, · · · , N} are the positions of elements after applying AT.

The first three iterations of the 2D-AT in the cycle, shown in Figure 6a–c, failed to hide
the content of the plain image ideally. This situation can be changed after three iterations.
For the above reasons, some image scrambling methods based on 2D-AT usually require
multiple operations to achieve better performance, so the scrambling efficiency may be low.
Due to its 2D characteristics, 2D-AT is mostly applied to grayscale images. When applied
to color images, 2D-AT is mainly used on the RGB components separately—the image is
not treated as a whole, so the scrambling results are not satisfactory.

To overcome the shortcomings of 2D-AT and obtain better scrambling performance, in
this paper, we build the 3D adaptive Arnold transform (3D-AAT) by adding two adaptive
parameters q1 and q2 in 3D-AT. The 3D-AAT is given by x′

y′

z′

 =

 1 1 1
1 q2 + 1 2q2
1 q1 3

 x
y
z

modN (5)

where N is the order of the matrix, x, y, z ∈ {1, 2, · · · , N} are the position of elements before
applying 3D-AAT, q1 and q2 are two adaptive parameters calculated by Equation (10), and
x′, y′, z′ ∈ {1, 2, · · · , N} are the position of elements after applying 3D-AAT.

According to the experimental results shown in Figure 6d,f, we can see that images
with different pixel depths all perform satisfactory results by only one round 3D-AAT.
Therefore, 3D-AAT has an ideal scrambling effect and efficiency and is suitable for scram-
bling images with various pixel depths.
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AT is a periodic map, and the period depends on the size of the image. For example,
an RNA cube is obtained from a 512× 512 plain image with different pixel depths, and
the corresponding periods of 2D-AT and 3D-AAT are shown in Table 10. We can see
from Table 10 that for the same order N, the period of 3D-AAT is much larger than of
2D-AT. Assuming AT’s period is T, if an image is scrambled by AT for t times, then the
image can be recovered by applying T − t times Arnold transform again. In practical
engineering applications, the image order is generally large, and it is inefficient to use the
transformation period to restore the image. Therefore, this paper uses the corresponding
inverse transform to perform the corresponding operation. The 3D inverse adaptive Arnold
transform (3D-IAAT) is shown as Equation (6). x

y
z

 =

 (3− 2q1)q2 + 3 2q2 − 3 q1 − q2 − 1
q1 − 3 2 1− q1
q2 − 1 1− 2q2 q2

 x′

y′

z′

modN (6)

Table 10. Periods of 2D-AT and 3D-AT.

BPP N Period of 2D-AT Period of 3D-AAT

8 102 36 27,937
16 128 96 224
24 146 222 12,607
32 162 108 2457

4. Results
4.1. Proposed Algorithm
4.1.1. Key Generation

Secure Hash Algorithms (SHA) are a kind of hash functions released by the National
Institute of Standards and Technology (NIST), which is mainly used in the integrity security



Electronics 2021, 10, 1770 11 of 28

services [45]. SHA-256 is a commonly used one with an output digest length of 256 bit. To
prevent hackers from inferring the original password through the rainbow table, when
calculating the hash, they cannot calculate the original input only. It is necessary to add
salt to make the same input get different hash values, increasing the hacking difficulty
greatly. In this paper, to strengthen the plaintext sensitivity and security of the algorithm,
we combine the SHA-256 hash value of the plain image and the current computer time
with the external parameters to generate keys jointly.

By combining the hash value of the current computer time and the plain image, one-
image, one-key, and one-time pad can be realized simultaneously. Each parameter in the
proposed algorithm changes with time. Even if the key is leaked, it is secure to transmit
the cipher image of the same plain image next time.

For the plain image with pixel depth d and the computer’s current system time, the
SHA-256 is used to get two hash codes H1 and H2 with 256 bits. H1 and H2 respectively
take the first 128 bits and then integrate them into a 256-bit hash code H , which is divided
into 8-bit blocks, i.e., 

H1 = j1, j2, · · · , j256
H2 = k1, k2, · · · , k256

H = j1, j2, · · · , j128, k1, k2, · · · , k128
H = h1, h2, · · · , h32

(7)

where hi, i = 1, 2, · · · 32 are blocks with 8-bit length. The required key stream is calculated
by Equations (8)–(10), where

{
x′0, y′0, z′0, u′0, v′0, w′0, µ′, e′, t′

}
are the external parameters

input by the user. {x0, y0, µ} are the initial values and control parameter of a 2D-ILASM
hyperchaotic system, {z0, u0, v0, w0, e} are the initial values and control parameter of a 4D-
Chen hyperchaotic system respectively, and {t, q1, q2} are the iterate number and control
parameters of 3D-AAT. 

x0 =
bin2dec(h1�h2�h3�x′0)

255

y0 =
bin2dec(h4�h5�h6�y′0)

255

µ = bin2dec(h7�h8�h9�µ′)
255

(8)



z0 = mod(z′0 + log(h17h18h19h20)/10, m)
u0 = mod(u′0 + log(h21h22h23h24)/10, m)
v0 = mod(v′0 + log(h25h26h27h28)/10, m)
w0 = mod(w′0 + log(h29h30h31h32)/10, m)

e = bin2dec(h9�h10�···h16�e′)+31
360

(9)


t = f loor(bin2dec(h4 � h5 � h6 � t′))
q1 = mod( f loor(d + x0 × 1014), N)
q2 = mod( f loor(d + y0 × 1014), N)

(10)

where mod(·) denotes the modulus after division, bin2dec(·) denotes binary to decimal,
f loor(·) is the rounded-down function, and � denotes the XNOR operation in the bi-
nary system.

4.1.2. Encryption Process

Supposing that Alice is the sender and Bob is the recipient. The encryption flowchart
of the proposed algorithm is shown in Figure 7. The encryption process is described in
detail as follows.
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Step 1: Key generation
Alice reads the current computer time and the plain image I with size m× n and pixel

depth d. The SHA-256 is used to generate the 256-bit hash value H by Equation (7). Alice
randomly selects external parameters

{
x′0, y′0, z′0, u′0, v′0, w′0, µ′, e′, t′

}
as the user’s input keys.

The parameters {x0, y0, µ, z0, u0, v0, w0, e, t, q1, q2,} are generated by Equations (8)–(10).
Step 2: Chaotic sequence generation
Alice iterates the 2D-ILASM system 1000 + m× n× d/2 times with the initial values

x0, y0 and control parameter µ, discarding the first 1000 values to obtain the excellent
randomness. Two chaotic sequences X, Y are produced. Then, the 4D-Chen system iterates
1000 + mn times with the initial values z0, u0, v0, w0 and control parameter e to generate
four chaotic matrices Z, U, V, W with the equal size of m× n.

Step 3: Encoding rule generation
Calculate

r1 = mod(d + f loor(x0 × 1014), 8) + 1 (11)

r2 = mod(d + f loor(y0 × 1014), 8) + 1 (12)

r3 = mod(d + f loor(z0 × 1014), 8) + 1 (13)

r4 = mod(d + f loor(u0 × 1014), 8) + 1 (14)

r5 = mod(d + f loor(v0 × 1014), 8) + 1 (15)

r6 = mod(d + f loor(w0 × 1014), 8) + 1 (16)

where mod(·) denotes the modulus after division and f loor(·) is the rounded-down func-
tion. {r1, r2, r3, r4, r5, r6,} are the encoding and decoding rules that need to be used in
subsequent operations.

Step 4: RNA cube generation
Alice uses the RNA coding rule r1 to encode the plain image I, and a 3D RNA matrix

I3D of size m × n × d/2 is obtained. Using one RNA code as the layer thickness and
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stratifying I3D, we can get RNA layered images IR
j , j = 1, 2, · · · , d/2 with the same size

m× n and corresponding vectors are V1
j , j = 1, 2, · · · , d/2, respectively. After that, Alice

connects V1
j into a long vector V1 by Equation (20) and calculates

[X′, p1] = sort(X(j)), j = 1, 2, · · · , d/2 (17)

I1
j = IR

p1(j), j = 1, 2, · · · , d/2 (18)

[Y′, p2] = sort(Y(k)), k = 1, 2, · · · , m× n× d/2 (19)

V1 = [V1
1 V1

2 · · · V1
j ] (20)

V2(k) = V1(p2(k)), k = 1, 2, · · · , m× n× d/2 (21)

l = ceil( 3
√

m× n× d/2) (22)

where sort(·) is the sorting function, ceil(·) is the function that rounds toward positive
infinity, X′, Y′ are the sorting sequences, and P1, P2 are the indexes recording the elements
arrangement in X′, Y′. The scrambling result V2 of V1 is obtained by Equation (21). Finally,
she upscales the dimension of V2 to produce the scrambled RNA cube I2

3D with size l× l× l
after zero padding. This operation aims to initially scramble the plain image and generate
a cube for the next 3D-AAT. The schematic diagram of RNA cube generation is shown in
Figure 8.
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Step 5: Adaptive 3D scrambling operation
Alice utilizes t times 3D-AAT into RNA cube I2

3D obtained in Step 4. Let I3
3D be the

corresponding result. After converting I3
3D into a 1D RNA sequence V3 and deleting

the previously added zero codes, Alice uses rule r2 to decode the code-deleted 1D RNA
sequence V4. Then, she performs a dimension upscaling operation on V4 to produce the
scrambled image I4 with size m× n. At this point, the scrambling stage is completed. The
parameters of 3D-AT are also used as keys.
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Step 6: Operator controller generation
Six RNA operation rules: addition, subtraction, add-complement, sub-complement,

XOR, and XNOR are defined in Section 3.3. Alice applied the RNA theory in biology to
construct the RNA amino acid sequence generation table, as shown in Figure 4. Moreover,
the corresponding relationship between the RNA amino acid sequence generation table
and the RNA operator is designed, i.e., the operator controller, as shown in Table 9.

Step 7: Operator selection
The four vertices of the scrambled image I4 are chosen respectively, the first six bits of

their pixel values are used as control parameters, and the RNA coding rule r3 is exploited
to encode them. Utilizing the distribution of the parameter’s RNA values in the amino acid
sequence generation table shown in Figure 4, Alice checks the operator controller Table 9
to select four out of six operators, namely operator 1, operator 2, operator 3, and operator 4.
The selected operators participate at the subsequent diffusion stage.

Step 8: Selective diffusion
Alice segments scrambled image I4 every 8 bits into images I4

i , i = 1, 2, · · · , d/8 and
then uses RNA coding rule r4 on I4

i to obtain I5
i . Z1, U1, V1, W1 are the results of encoding

the chaotic matrices Z, U, V, W by rule r5. She selects operators under the corresponding
relationship in Step 7. According to the operation rule in Step 8, the chaotic RNA matrices
Z1, U1, V1, W1 and the scrambled RNA image I5

i are diffused as follows:
Z1 (operator1) U1 (operator2) I5

1 (operator3) V1 = Ie
1

U1 (operator2) I5
2 (operator3) Ie

1 = Ie
2

V1 (operator3) I5
3 (operator4) Ie

2 = Ie
3

W1 (operator4) I5
4 (operator1) Ie

3 = Ie
4

(23)

where Ie
i , i = 1, 2, · · · , d/8 are the diffused RNA images. Then, Ie

i are merged into the
cipher RNA image Ie. Finally, Alice decodes Ie by rule r6 into the cipher image Ic.

4.1.3. Decryption Process

The decryption is the inverse procedure of encryption. When the SHA-256 value
H, the pixel values of the four vertices of the scrambled image, and external parameters{

x′0, y′0, z′0, u′0, v′0, w′0, µ′, e′, t′
}

are sent by Alice, Bob can decrypt the cipher image Ic with
pixel depth d. The decryption flowchart is shown in Figure 9.

4.2. Experiments

Plain images of size 512 × 512, including grayscale image Lena with pixel depth
8BPP, grayscale image Lena with pixel depth 16BPP, and color image Baboon with pixel
depth 24BPP as shown in Figure 10, are tested by the proposed encryption algorithm. The
computer configuration used in the experiments is shown as follows: Intel(R) core (TM)
i5-8265U CPU, 1.80 GHz processor, 8 GB RAM. We utilize standard test images as the exper-
imental images. At 15:31 on 10 December 2020, we used 8BPP Lena as an example, whose
corresponding hash value H is listed as H= 9390454675d1f5e55b046d30f05a8ea1532c6b269a
303ac19d3d0a906bb5e250. The external parameters are shown in Table 11. The corre-
sponding cipher images are shown in Figure 11. It can be seen from the results that the
plain images are encrypted into noise-like images by the proposed algorithm. Exper-
imental results illustrate that the cipher images appear to be noisy so that people can
hardly get any meaningful information visually. Therefore, the proposed algorithm has
an excellent encryption effect. The decrypted images are identical to the plain images in
Figure 10, respectively.
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, the pixel values of the four vertices of the scrambled image, and external parameters 
{ }0 0 0 0 0 0 , ,x y z u v w e tμ′ ′ ′ ′ ′ ′ ′ ′ ′, , , , , ,  are sent by Alice, Bob can decrypt the cipher image 

cI  with 
pixel depth d . The decryption flowchart is shown in Figure 9. 
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Table 11. The external parameters.

Component Values

External parameters
x′0 = 0.9865, y′0 = 1.4335, z′0 = 1.4977, u′0= 0.5501,
v′0 = 2.5159, w′0 = 1.3714, µ′ = 1.6686, e′ = 0.2759,

t′ = 2.5568
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4.3. Algorithm Analyses

An excellent image encryption algorithm can resist several commonly used attacks,
such as the brute-force attack and differential attack. This section gives detailed figures,
tables, and descriptions to measure the performance of the proposed algorithm. The
decryption results with the wrong key, 3D histograms of plain images and cipher images,
adjacent pixel correlations of cipher images, and resistance to cropping and noise attacks
are presented in figures. The key space, chi-squared test results, correlations between
plain images and cipher images, information entropy, time complexity, and resistance to
differential attacks are presented in numbers and tables as follows. We also compare it
with some similar algorithms.

The average encryption time of the 512 × 512 grayscale images was 0.9274 s. The
comparison results of the 512 × 512 8BPP Lena are shown in Table 12.

Table 12. Encryption time and comparisons (512 × 512 8BPP Lena).

Algorithms Time (Unit: Seconds)

Proposed algorithm 0.9274
Ref. [46] 0.6840
Ref. [47] 2.7113
Ref. [48] 16.2561

4.3.1. Key Space Analysis

The key space is equivalent to the number of all available keys in an algorithm. For an
excellent encryption algorithm, its key space should be so large that it cannot be cracked
by the brute-force attack. The required keys are composed of 256-bit hash value H and
external parameters

{
x′0, y′0, z′0, u′0, v′0, w′0, µ′, e′, t′

}
. If the calculation accuracy is 10−14, then

the key space for the proposed algorithm is about 1014×9 × 2256 ≈ 1.1579× 10203 ≈ 2674,
which is greatly larger than the required value 2100 in the cryptosystem.

years =
Key Combinations× 1000

FLOPS
× 31536000 (24)

Considering the actual technology, the fastest supercomputer today (Summit) is capa-
ble of 200 PFLOPS (1015 floating-point operation per second) or 200,000 trillion calculations
per second. According to Equation (24) [45], even with five times the most powerful com-
puting power at present, it will take 1.2359× 10196 years to crack the encryption system
with the key space of 2674. Therefore, the key space of the proposed algorithm is huge
enough to resist the brute-force attack.

4.3.2. Key Sensitivity Analysis

An effective and robust encryption algorithm should be sensitive enough to even the
slightest changes in its keys. The incorrect outcome will be produced when we use the key
after any slightest changes to decrypt the cipher image. By subtracting the error images,
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the attacker cannot extract any clues related to the cipher image. As shown in Figure 12,
(a) is Lena’s cipher image encrypted with the keys (x′0 = 0.9865, y′0 = 1.4335, z′0 = 1.4977,
u′0 = 0.5501, v′0 = 2.5159, w′0 = 1.3714, µ′ = 1.6686, e′ = 0.2759, t′ = 2.5568), while (b) is the
decrypted image of decrypting (a) with correct keys, which is exactly the same as the plain
image. Figure 12c–f show the decryption results with the error keys respectively, where
the only minimal difference is between the wrong key and the correct key. Assuming the
attackers subtract the error decrypted image pairwise to analyze information to help crack
the cipher image, any information of the plain image will not be disclosed to them. The
corresponding results are shown in Figure 12g–l. Therefore, the proposed algorithm is
highly sensitive to the keys.
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Figure 12. Key sensitivity test: (a) Initial encryption; (b) Decryption with correct keys; (c) Decryption with x0
′ =

0.986500000000001; (d) Decryption with y0
′ = 1.433500000000001; (e) Decryption with z0

′ = 1.497700000000001; (f) De-
cryption with u0

′ = 0.550100000000001; (g) Image of subtraction between (c,d); (h) Image of subtraction between (c,e);
(i) Image of subtraction between (c,f); (j) Image of subtraction between (d,e); (k) Image of subtraction between (d,f);
(l) Image of subtraction between (e,f).

4.3.3. Histogram Analysis

The histogram can reflect the statistical characteristics of the distribution of pixel
values. For an ideal encryption algorithm, the histogram of the cipher image should always
be uniform [45]. Figure 13 shows the 3D histograms of the plain images and the cipher
images with various pixel depth. The experimental results show that the histograms of the
cipher images are evenly distributed, which are completely different from the plain images
and no longer present any statistical characteristics of plain images.
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4.3.4. Chi-Squared Test

The chi-square test can produce quantitative numerical results to analyze the distribu-
tion of cipher images more accurately while avoiding visual deception. We use the formula
in an article [49] for comparative analysis as follows:

χ2 =
255

∑
i=0

(qi − q)2

q
(25)

where qi represents the times the pixel value i appears in the image. q is the theoretical
value, which is defined as:

q =
m× n

256
(26)

where m and n are the size of the image. The larger χ2 is, the more the pixel values deviate
from the average level, and the more uneven the pixel distribution is. Table 13 provides χ2

values of the corresponding test results, we can see that the χ2 value of the cipher image is
much smaller than that of the plain image.

Table 13. Test about the pixel histogram.

Images Component χ2
cipher Average χ2

255 Results

Lena (8BPP) - 236.56 236.56 Pass
Lena (16BPP) - 258.36 258.36 Pass

R 278.47 293.25 Pass
Baboon (24BPP) G 232.33 249.16 Pass

B 236.69 Pass
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4.3.5. Information Entropy Analysis

Information entropy is a measure of the indeterminacy of image information. The
information entropy of an ideal cipher image should be close to 8 [50]. The information
entropy of the gray image is described as

H(m) = −
255

∑
i=0

P(mi) log2 P(mi) (27)

where mi is the i th gray level for the digital image I with 256 gray levels, and P(mi) is the
emergence probability of mi. Table 14 shows the entropy of plain images and cipher images
with various pixel depth and also includes comparison with other algorithms. Therefore,
the proposed algorithm can effectively resist the statistical attack.

Table 14. Shannon entropy.

Images Plain Image Proposed Algorithm Ref. [51] Ref. [46] Ref. [47]

Lena (8BPP) 7.44557 7.99935 7.9979 7.9979 7.99934
Lena (16BPP) 7.46533 7.99932 - - -

Baboon (24BPP) 7.36642 7.99934 7.9976 7.99911 7.99932

4.3.6. Differential Attack Analysis

Differential attack is often used to test the plaintext sensitivity of image encryption
algorithms [49]. In the encryption procedure, the ideal encryption algorithm should
respond powerfully to the slight changes in the plain image. The Number of Pixels Change
Rate (NPCR) reflects the number of changed pixels in the cipher image after the plain
image is changed. The Unified Average Changing Intensity (UACI) measures the average
difference intensity of pixel values between two cipher images, which correspond to
the original image and the changed original image. To evaluate the ability to resist the
differential attack, we employed the NPCR and UACI as the indicators for evaluating the
differential attack. NPCR and UACI are defined by

NPCR =

m
∑

i=1

n
∑

j=1
f (i, j)

m× n
× 100% (28)

UACI =

m
∑

i=1

n
∑

j=1
|I′(i, j)− I ′′ (i, j)|

255×m× n
× 100% (29)

where I′(i, j) is the cipher image of the plain image, I ′′ (i, j) is the cipher image of the
modified plain image, and f (i, j) is defined by

f (i, j) =
{

0 I′(i, j) = I ′′ (i, j)
1 I′(i, j) 6= I ′′ (i, j)

. (30)

Even if two images are very similar, such as only one-bit difference, their hash values
of SHA-256 are completely different [51]. Since the keys are related to the hash value,
their values are very sensitive to the plain image. In the experiment, a pixel I(68, 189)
of the plain image is chosen. To test the ability to resist the differential attack, the gray
value of this pixel is changed to 200. The corresponding experimental results are shown
in Figure 14 and Table 15. For the proposed algorithm, compared with standard values
NPCR = 99.6094% and UACI = 33.4635%, our results are closer to theoretical values than
similar algorithms, as shown in Table 15, and they demonstrate that a slight change to
the plain image will result in a great change in the cipher image. Therefore, the proposed
algorithm has an excellent ability to resist the differential attack.
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Figure 14. Cipher images and decrypted images of plain images with one-pixel difference: (a1) Lena (8BPP); (a2) Cipher
image of (a1); (a3) Cipher image of (a1) changed by one pixel; (a4) Decryption of (a2); (a5) Decryption of (a3); (b1) Lena
(16BPP); (b2) Cipher image of (b1); (b3) Cipher image of (b1) changed by one pixel; (b4) Decryption of (b2); (b5) Decryption
of (b3); (c1) Baboon; (c2) Cipher image of (c1); (c3) Cipher image of (c1) changed by one pixel; (c4) Decryption of (c2); (c5)
Decryption of (c3).

Table 15. NPCR and UACI values of the cipher images (%).

Images
NPCR UACI

Proposed Ref. [48] Ref. [52] Ref. [53] Proposed Ref. [48] Ref. [52] Ref. [53]

Lena (8BPP) 99.6132 99.57 99.5636 99.6101 33.4236 33.33 33.4417 33.4745
Lena (16BPP) 99.6145 - - - 33.4572 - - -

Baboon (24BPP) 99.6021 99.57 99.6293 99.6113 33.4768 33.47 33.3796 33.4928

4.3.7. Encryption Quality Analysis

The encryption quality of cipher images is often quantitatively verified by mean square
error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM). The
specific formulas of them are defined as follows [45]:

MSE =
1

M× N

M

∑
i=1

N

∑
j=1

[P(i, j)− E(i, j)]2 (31)

PSNR = 20 log10(
255√
MSE

) (32)

SSIM =
(2PE + C1)(2σPE + C2)

(P2
+ E2

+ C1)(σ2P + σ2E + C2)
(33)
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where
C1 = (K1L)2 (34)

C2 = (K2L)2 (35)

P =
1

M× N

M

∑
i=1

N

∑
j=1

P(i, j) (36)

E =
1

M× N

M

∑
i=1

N

∑
j=1

E(i, j) (37)

σP =
1

M× N

M

∑
i=1

N

∑
j=1

[P(i, j)− P]2 (38)

σE =
1

M× N

M

∑
i=1

N

∑
j=1

[E(i, j)− E]2 (39)

σPE =
1

M× N

M

∑
i=1

N

∑
j=1

[P(i, j)− P][E(i, j)− E] (40)

where M × N is the size of the image, P is the plain image, E is the cipher image, P is the
mean of the plain image, E is the mean of the cipher image, σP is the standard deviation
of the plain image, σE is the standard deviation of cipher image, and σPE is the cross-
correlation of the plain image and cipher image. L is the dynamic range of the pixel values
(for grayscale images, L = 255) with K1 = 0.01 and K2 = 0.03.

Currently, the cipher image with a large MSE value, a PSNR lower than 10 dB, and an
SSIM close to 0 means an efficient pseudorandom ciphertext and has a structural difference
with its plain image. As shown in Table 16, the indicators of the proposed algorithm are
relatively close to ideal values.

Table 16. Encryption quality analysis.

Encrypted Image MSE PSNR (dB) SSIM

Lena (8BPP) 7757 9.2338 0.0106
Lena (16BPP) 65,535 7.9416 0.0103

Baboon (24BPP) 8562 8.8047 0.0089

4.3.8. Correlation Analysis

The strong correlation of adjacent pixels is an important feature of digital images [34].
Therefore, the correlation of adjacent pixels is one of the important criteria for evaluating
the performance of an image encryption algorithm. To analyze the performance of the
algorithm in the pixel correlation test, we conducted corresponding experiments. The
correlation coefficient of each pair is defined by

rx, y = E((x− E(x))(y− E(y)))D(x)D(y) (41)

where E(x) and D(x) are the mathematical expectation and variance of the data x, respec-
tively. They are defined by

E(x) =
1
N

N

∑
i=1

xi (42)

D(x) =
1
N

N

∑
i=1

[xi − E(x)]
2

(43)

For the proposed algorithm, 40,000 pairs of adjacent pixels are randomly selected
from the plain images and the cipher images. For all plain images and cipher images with
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various pixel depth, Figures 15–20 reflect their horizontal, vertical, and diagonal relevance
for adjacent pixels, respectively. For the proposed algorithm, Table 17 lists the adjacent
pixels of the plain image and the correlation coefficients of their corresponding cipher
images. Experimental results show that the correlation coefficients of the plain images
are close to 1, whereas the correlation coefficients of the cipher images are close to 0 in all
directions. Therefore, the proposed algorithm can destroy the correlation between adjacent
pixels well and protect the content of the plain image.
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Table 17. Correlation coefficient values of adjacent pixels.

Algorithms Images Components
Plain Images Cipher Images

H V D H V D

Lena (8BPP) - 0.9719 0.9849 0.9591 0.0024 −0.0017 0.0011
Lena (16BPP) - 0.9726 0.9839 0.9604 0.0056 0.0012 0.0054

Proposed R 0.9427 0.8758 0.8503 0.0012 −0.0030 −0.0012
Baboon (24BPP) G 0.9139 0.8170 0.7770 0.0017 0.0011 0.0008

B 0.9489 0.8936 0.8691 0.0043 −0.0006 −0.0018
Ref. [51] Lena (8BPP) - 0.9276 0.9574 0.9231 0.0009 −0.0028 −0.0027
Ref. [46] Lena (8BPP) - 0.9329 0.9650 0.9066 0.0017 0.0019 0.0008
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4.3.9. Robustness Analysis

Destroying the integrity of ciphertext is a common method in hacker attacks, which
can prevent the recipient from obtaining plaintext information successfully. Cropping and
noise attacks are the two most common methods [30]. In this section, cipher images that
have been damaged in different ways and degrees are used as samples to participate in
the test, and the results are satisfactory. In the cropping attacks test, we set 12.5%, 25%,
and 50% of cropping in a cipher image. As shown in Figure 20, the attacked cipher images
still contain considerable plaintext information after being decrypted. In the noise attacks
test, salt and pepper noises with strengths of 2%, 10%, and 20% were mixed into the cipher
image respectively, and the decryption results are shown in Figure 21.
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4.3.10. Time Complexity Analysis

The size of the plain image is m× n. For our algorithm, two stages mainly consume
time. One stage is the generation of random sequences. A Chen-4D hyperchaotic sys-
tem and 2D-ILASM chaotic systems iterates multiple rounds to generate six sequences
{X, Y, Z, U, V, W} whose longest length is m× n× d/2. Therefore, the complexity of this
stage is O(m× n× d/2). The other stage is the adaptive RNA coding and operation, in-
cluding six RNA coding and four RNA operation steps. The complexity of this stage is still
O(m× n). Finally, the complexity for the proposed algorithm is O(m× n× d/2), which
means that its complexity is linear. In summary, the proposed algorithm’s time complexity
is determined by the size and the pixel depth of the plain image.

5. Discussion

As we envisioned, integrating the current time and pixel depth into the encryption
algorithm can update keys timely while making the algorithm self-adaptive to solve the
problems of some algorithms. Since the proposed algorithm operates at the RNA base
level throughout, it is time-consuming to a certain extent. Though the encryption speed
of the proposed algorithm meets the basic requirements of image encryption algorithms
and is faster than some existing ones, it is still not enough for real-time encryption. The
proposed algorithm is only for one image. We may extend it to multiple-image encryption
in subsequent research. In theory, the proposed algorithm can be utilized for images with
greater pixel depth (such as remote sensing images). However, this has already involved
the research field of hyperspectral image processing and has not been carried out in this
paper. The experimental results have been able to prove the performance of the proposed
algorithm. The authors will focus on the aforementioned problems to conduct deeper
research.

6. Conclusions

This paper proposes an adaptive, chaotic image encryption algorithm based on RNA
and pixel depth to enhance encryption performance and applicability. This paper designs
a novel chaotic system called “2D-ILASM” and the 3D-AAT for scrambling, and keys are
generated from the hash values of the plain image and current time; then, a pre-permuted
RNA cube is constructed for 3D adaptive scrambling finally. RNA operation is introduced
to realize the selective diffusion effect of RNA bases. Through the experimental results
and algorithm analyses, the proposed algorithm is suitable for images with different
pixel depths, updates the keys in real time, and has sufficient security to resist various
attacks, such as the brute-force attack, differential attack, and statistical analysis attack, etc.
Furthermore, this algorithm can extend to multiple images. Therefore, when people need
to transfer different types of valuable images at the same time, the proposed algorithm is
the better choice to ensure applicability, security, and the transmission privacy.
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