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Abstract: In this paper, we propose a new methodology for crack detection and monitoring in
concrete structures. This approach is based on a multiresolution analysis of a sample or a specimen
of concrete material subjected to several types of solicitation. The image obtained by ultrasonic
investigation and processed by a customized wavelet is analyzed at various scales in order to detect
internal cracks and crack initiation. The ultimate objective of this work is to propose an automatic
crack type identification scheme based on convolutional neural networks (CNN). In this context,
crack propagation can be monitored without access to the concrete surface and the goal is to detect
cracks before they are visible. This is achieved through the combination of two major data analysis
tools which are wavelets and deep learning. This original procedure is shown to yield a high accuracy
close to 90%. In order to evaluate the performance of the proposed CNN architectures, we also used
an open access database, SDNET2018, for the automatic detection of external cracks.

Keywords: cracks; wavelets; multiresolution analysis; ultrasound imaging; deep learning; CNN

1. Introduction

Concrete is one of the most widely used man-made materials in the world. Neverthe-
less, the search for simple, effective and low-cost techniques to optimize the performance
of concrete and to control its structural behavior is a real challenge we must meet. In the
interests of safety and economy [1,2], methods for predicting the performance of concrete
structures have become necessary, especially in developing countries. Among the causes of
concrete damage, mechanical overloading appears to be the most common. Micro-cracks
(see, for example, Figure 1a) can be caused by mechanical stresses, often local. These
micro-cracks can evolve and propagate in the structure and cause irreversible damage [3].
For this reason, monitoring of cracks is essential. Operationally, this monitoring is usually
performed by regularly evaluating the beginnings of surface cracks by optical means or
extensometers.

However, with these conventional methods, internal damage is not detectable, hence
the increased use of non-destructive testing to detect cracks at an early stage.

Concrete is a mixture of four main materials: Portland cement, coarse aggregate, fine
aggregate and water, and for industrial use, mineral and chemicals admixtures are added
to accelerate or delay its grip and improve its performance [1,4]. The quantities of these
elements are regulated for a quality required by the purpose of the structure’s construction,
such as long span bridges (see Figure 1b), special underground structures (see Figure 1c),
nuclear power plants (see Figure 2). An excess or a defect in the required quantity of one
of the constituent elements, or an inappropriate vibration of the initial mixed elements
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causes defects such as segregation or premature cracks due to shrinkage of the concrete.
Moreover, the presence of air bubbles causes discontinuities in the material (see Figure 1).
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Figure 1. Examples of cracks in concrete: (a) typical micro-cracking; (b) conventional inspection of 
bridge cracks; (c) cracks along a slab in a mall. 

 
Figure 2. Nuclear power plant: reactor meltdown. 

These defects affect the strength of concrete and its durability [3]. Exposed to aggres-
sive environments or temperature variations, visible and non-visible defects appear, and 
the concrete’s quality and resistance decrease. Under compressive stress, this material be-
haves well, unlike tensile stresses which can cause substantial damage. In a concrete spec-
imen subjected to compressive stress, the constraints are concentrated on rigid elements 
with an appreciable modulus of elasticity. Since this material is heterogeneous, an external 
load creates a complex state within it and a concentration of stresses around air voids [4]. 

Non Destructive Testing (NDT) [5] is a set of methods that are commonly used to 
characterize the state of integrity of structures, without degrading them, either during 
production (e.g., during construction of structures or buildings) or during use or service 
[6,7]. The development of NDT methods began in the 1960s to meet the demands of sectors 
such as nuclear energy, aeronautics and space. NDT gradually widened its field of appli-
cation, moving from the strict field of detection, recognition and dimensioning of localized 
defects to the evaluation of the intrinsic characteristics of materials. The notion of defect 
(or fault) is defined according to the use that will be made of the product (satisfaction of 
the final customer).  

In the case of early detection of concrete cracks and especially in case of internal dam-
age, NDT is the ideal tool not only for the detection of cracks but also for monitoring their 
propagation [8,9]. 

The main objective of this study is to propose an original technique for the detection 
of structural cracks in concrete by using an ultrasonic non-destructive testing system to 
scan the concrete coupled with an evaluation methodology based on multiresolution anal-
ysis and deep learning. 
1. Wavelet-based multiresolution analysis is a tool that allows analysis at multiple 

scales or resolutions and mimics the effect of a microscope [10]; 

(http://creativecommons.org/licenses
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Figure 1. Examples of cracks in concrete: (a) typical micro-cracking; (b) conventional inspection of
bridge cracks; (c) cracks along a slab in a mall.

Electronics 2021, 10, x FOR PEER REVIEW 2 of 22 
 

 

causes defects such as segregation or premature cracks due to shrinkage of the concrete. 
Moreover, the presence of air bubbles causes discontinuities in the material (see Figure 1). 

   

(a) (b) (c) 

Figure 1. Examples of cracks in concrete: (a) typical micro-cracking; (b) conventional inspection of 
bridge cracks; (c) cracks along a slab in a mall. 

 
Figure 2. Nuclear power plant: reactor meltdown. 

These defects affect the strength of concrete and its durability [3]. Exposed to aggres-
sive environments or temperature variations, visible and non-visible defects appear, and 
the concrete’s quality and resistance decrease. Under compressive stress, this material be-
haves well, unlike tensile stresses which can cause substantial damage. In a concrete spec-
imen subjected to compressive stress, the constraints are concentrated on rigid elements 
with an appreciable modulus of elasticity. Since this material is heterogeneous, an external 
load creates a complex state within it and a concentration of stresses around air voids [4]. 

Non Destructive Testing (NDT) [5] is a set of methods that are commonly used to 
characterize the state of integrity of structures, without degrading them, either during 
production (e.g., during construction of structures or buildings) or during use or service 
[6,7]. The development of NDT methods began in the 1960s to meet the demands of sectors 
such as nuclear energy, aeronautics and space. NDT gradually widened its field of appli-
cation, moving from the strict field of detection, recognition and dimensioning of localized 
defects to the evaluation of the intrinsic characteristics of materials. The notion of defect 
(or fault) is defined according to the use that will be made of the product (satisfaction of 
the final customer).  

In the case of early detection of concrete cracks and especially in case of internal dam-
age, NDT is the ideal tool not only for the detection of cracks but also for monitoring their 
propagation [8,9]. 

The main objective of this study is to propose an original technique for the detection 
of structural cracks in concrete by using an ultrasonic non-destructive testing system to 
scan the concrete coupled with an evaluation methodology based on multiresolution anal-
ysis and deep learning. 
1. Wavelet-based multiresolution analysis is a tool that allows analysis at multiple 

scales or resolutions and mimics the effect of a microscope [10]; 

(http://creativecommons.org/licenses

/by/4.0/). 

Figure 2. Nuclear power plant: reactor meltdown.

These defects affect the strength of concrete and its durability [3]. Exposed to aggres-
sive environments or temperature variations, visible and non-visible defects appear, and
the concrete’s quality and resistance decrease. Under compressive stress, this material
behaves well, unlike tensile stresses which can cause substantial damage. In a concrete
specimen subjected to compressive stress, the constraints are concentrated on rigid ele-
ments with an appreciable modulus of elasticity. Since this material is heterogeneous,
an external load creates a complex state within it and a concentration of stresses around
air voids [4].

Non Destructive Testing (NDT) [5] is a set of methods that are commonly used to
characterize the state of integrity of structures, without degrading them, either during pro-
duction (e.g., during construction of structures or buildings) or during use or service [6,7].
The development of NDT methods began in the 1960s to meet the demands of sectors such
as nuclear energy, aeronautics and space. NDT gradually widened its field of application,
moving from the strict field of detection, recognition and dimensioning of localized defects
to the evaluation of the intrinsic characteristics of materials. The notion of defect (or fault)
is defined according to the use that will be made of the product (satisfaction of the final
customer).

In the case of early detection of concrete cracks and especially in case of internal
damage, NDT is the ideal tool not only for the detection of cracks but also for monitoring
their propagation [8,9].

The main objective of this study is to propose an original technique for the detection of
structural cracks in concrete by using an ultrasonic non-destructive testing system to scan
the concrete coupled with an evaluation methodology based on multiresolution analysis
and deep learning.

1. Wavelet-based multiresolution analysis is a tool that allows analysis at multiple scales
or resolutions and mimics the effect of a microscope [10];
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2. Deep learning is a type of artificial intelligence where the machine is able to learn
by itself, as opposed to programming where it simply executes predetermined rules.
Deep learning is based on neural networks with several layers of hidden neurons, each
receiving and interpreting information from the previous layer. The most powerful
deep learning architecture is called convolutional neural networks (CNN). CNN is
broadly composed of three types of layers: convolution, pooling and fully connected
layers. CNN receive input images, automatically detect and extract the features of
each of them. This is done by the first two layers, i.e. convolution and pooling. The
third is a fully connected layer that transforms the extracted features into a final
output, such as classification. Moreover, the specific architecture of this network
allows the extraction of features of different complexity, from basic or low level as
edges, corners, texture to the most complex or high level as patterns, objects. The
automatic extraction and prioritization of features, which are adapted to the given
problem, is one of the strengths of CNN. In 2012, at the annual ILSVRC (ImageNet
Large Scale Visual Recognition Challenge) computer vision competition, a new CNN-
based Deep Learning algorithm, named AlexNet, broke all records [11]. CNN has
since then been the best performing model for image classification. This is what
motivated its use in our experiment.

The remainder of this paper is organized as follows.
Section 2 is devoted to the foundations of our approach.

1. It presents and recalls NDT methods and techniques as well as the experimental
set-up used;

2. It introduces the main properties of the wavelet transform and the corresponding
multiresolution analysis;

3. It recalls the foundations of neural networks and CNN-based Deep Learning, and
proposes the adopted architecture to build a classifier for detecting internal cracks
from the obtained spatial-scale images.

Section 3 focuses on the implementation aspect and the analysis of the results.
Finally, Section 4 concludes this study.

2. Materials and Methods
2.1. NDT Methods

The most commonly used NDT methods and techniques [12] are optical NDT [13],
ultrasonic NDT [14], acoustic emission testing [15], radiographic NDT [16–18], eddy-
current testing [19], electromagnetic NDT [20], laser systems [21], sclerometric [22] and
thermographic [23] methods for evaluating the durability of concrete structures by contact
and non-contact. Figure 3 shows the main NDT techniques for concrete structures.

In this study, the analysis of the ultrasonic wave propagation [24–26] is performed
using 2 sensors located on opposite sides of the analyzed specimen (see Figures 4 and 5).

Figures 4 and 5 show the devices used experimentally to determine the presence or
absence of cracks in concrete subjected to compression. The ultrasound device used is a
Pundit L200 from the company Proceq. The press used is a 3R monobloc compression press
with a capacity of 2000 kN to 3000 kN adapted to specific tests on concrete specimens of
cylindrical shape. The test specimen is of standardized dimension, cylindrical in diameter
16 cm and height 32 cm. Its weight is 15 kg. The test specimen is over 90 days old. The
charging speed is 0.05 Mpa/s. The signal transit time varies from 32.3 to 71.4 microseconds
when the compressive force varies from 0 to 470 kN.
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Figure 5. Ultrasonic NDT during compression of a concrete specimen.

For our NDT experiments to determine cracks or defects in concrete, the ultrasonic
pulse velocity varies from 3000 m/s (low quality) to 5000 m/s (high quality). For ordinary
concrete, an average value of 3700 m/s (longitudinal wave) and 2500 m/s (shear wave)
have been used for the computation of the wavelengths, the maximum aggregate size and
the minimum lateral dimension test specimen. Figure 6 and Table 1 give the specifications
of the sensors used.
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Figure 6. Some specifications on sensors and their use. (a) Transducer diameter and transducer length; (b) 2 transducers, 2
BNC cable and couplant + calibration rod.

Table 1. Technical specifications of the sensors used in our NDT experiments.

Technology Frequency Wavelength Maximum
Grain Size Bandwidth Pulse Shape Weight

P-wave
transducer 54 kHz ± 5 kHz 68.5 mm 34 mm <10 kHz Square wave 287 g

The originality of our work lies in the fact that we use, on the one hand, the ultrasound-
based NDT method to identify possible cracks and, on the other hand, this method is
combined with a multiresolution analysis based on wavelets to finely analyze cracks and
their size at different scales, especially at the beginning of the concrete cracking process.
The final objective is to automatically classify these cracks by deep learning and to enable
their identification according to type.

2.2. Multiresolution Analysis Based on Wavelets
2.2.1. Concepts of Multiresolution Analysis

The idea of multiresolution analysis [10] of a signal is based on the fact that the signal
is decomposed over a very wide range of scales, an operation that can be compared to a
cartography. At each scale, the signal will be replaced by the most adequate approximation
that can be drawn. By going from the coarsest scales to the finest scales, we get access to more
and more precise representations of the given signal. The analysis is done by calculating
what differs from one scale to another, in other words the details at a given resolution. This
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allows, by correcting a still rather coarse approximation, to reach a representation of better
quality.

An acceptable representation of the data to be visualized should be hierarchical and
should achieve the following objectives [10].

1. Global view at an arbitrary resolution;
2. Exact local view;
3. Progressive transmission by network;
4. Compression.

Moreover, the algorithms achieving these objectives should have a minimal average
computational cost in time and space, typically O(N) where N is the size of the signal
being analyzed. All these characteristics are fulfilled by the hierarchical data representation
based on multiresolution wavelet transform analysis. These multiresolution analysis
methods allow a signal representation at several resolution levels by storing the coarsest
resolution level, as well as the errors between successive levels. This coding by successive
errors, rather than by storing all the levels of resolution, explains the linear cost in space
of multiresolution analysis algorithms. The errors are coded by the detail coefficients.
Each of these coefficients is associated with a basis function, called a wavelet because of
its oscillating behavior, and its locality. The applications that interest us in the context
of visualization result from the selection of certain detail coefficients - and the deletion
of others - after the analysis, and before the synthesis. This selection is based on the
orthogonality and locality properties of the wavelet basis.

The orthogonality properties link the error caused by the suppression of detail co-
efficients with the value of these coefficients: the error will be small if low magnitude
coefficients are suppressed. The locality properties allow to specify the area influenced
by the suppression of a detail coefficient. Thus to obtain a global view at an arbitrary
resolution, we can select the desired percentage of the most significant detail coefficients
(i.e., the largest in absolute value). Compression is based on the same principle. Progressive
transmission is optimized by transmitting the detail coefficients in decreasing order of
magnitude. Finally, an exact local view is obtained by selecting all the detail coefficients
whose area of influence intersects the region to be visualized. These properties explain why
multiresolution analysis has already been successfully used in visualization, for example
for the visualization of volumetric medical data or oceanographic data. In this study,
multiresolution analysis is used for the visualization of cracks in concrete.

Researchers, engineers and practitioners in various fields such as multimedia [27],
telecommunications [28–30], medicine and biology [7,31,32], crack tracking and fracture
detection [8,9,33–35], fluid mechanics [36] thermodynamics [37], astrophysics [38], fi-
nance [39,40] deal daily with data at various scales of analysis, for of classification, segmen-
tation, detection, denoising [41], compression, synthesis or reconstruction, etc. However,
wavelet transform-based multiresolution analysis imposes restrictions that prevent certain
types of visualizations, or even prohibit the visualization of certain types of data. For exam-
ple, the first generation wavelet analysis is not able to produce an analysis according to all
the orientations of an image as only the horizontal, vertical and diagonal components are
taken into account. Hence the emergence of new paradigms called 2nd or 3rd generation
wavelets such as ridgelets [42], curvelets [43], contourlets [44], bandelets [45], etc.

Figure 7 summarizes the principle of multiresolution analysis for three levels of
resolution based on wavelets. The signal S is first decomposed at the 1st resolution level
into an approximation A1 and a detail D1, then at the 2nd resolution level, approximation
A1 is decomposed into an approximation A2 and a detail D2, and finally at the 3rd resolution
level, approximation A2 is in turn decomposed into an approximation A3 and a detail D3.
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The signal thus analyzed can be written as follows:

S = A3 + D3 + D2 + D1 (1)

2.2.2. Wavelet Transform and Its Discrete Version

In this section, we will make the link between wavelet transform and multiresolution
analysis.

The chosen wavelet, denoted ψ(t), must satisfy the following property:∫
R

tpψ(t)dt = 0, ∀ 0 ≤ p < n (2)

where n controls the number of oscillations of ψ(t).
This relation means that ψ(t) “kills” polynomials of degree p for p < n. The wavelet

transform WX(u, s) of a signal X at time u and scale s is defined by (3).

WX(u, s) =
∫
R

X(t)ψ∗
(

t− u
s

)
dt (3)

where ψ∗denotes the complex conjugate of ψ.
Expressions (2) and (3) show that WX(u, s) is unaffected by a signal that is represented

by a polynomial of degree smaller than n. In contrast, WX(u, s) is sensitive to irregular vari-
ations. This characteristic of the wavelet transform has a major importance in singularity
detection, especially in crack detection and monitoring.

The discrete wavelet transform (DWT) is given by Equation (4).

dX(j, k) = WX

(
u = 2−jk, s = 2−j

)
(j, k) ∈ Z2 (4)

It is obvious that to avoid redundancy, the family {ψj,k}(j,k)∈Z2 must be an orthonormal
basis.

This property of the wavelet makes it possible to obtain a fast wavelet transform.
The fast wavelet transformation is calculated by a cascade of low-pass filtering by h

and high-pass filtering by g followed by a down sampling (see Figure 5).
In Figure 8, aj (or aX(j, k), where k represents time) and dj (or dX(j, k)) are called

respectively approximation coefficients and wavelet coefficients (or details) of the signal at

level j. Moreover, the symbol represents the decimation (down sampling) symbolizing
the conservation of one sample out of two.
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Figure 8 clearly shows that in reality the fast (or digital) wavelet transform is per-
formed iteratively, and the calculation is performed at each resolution. For example, if
we are interested in analyzing the signal with 5 resolutions, in this case the basic pattern
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This approach shows the link between the wavelet transform and multiresolution
analysis.

The example in Figure 9 is intended to show the original signal analyzed at 3 resolu-
tions.
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In Figure 9, it should be noted that the original signal has 1000 samples while the
detail (and approximation) signals have been decimated by a factor of 2 at each level of
resolution. Hence, after 3 levels of resolution, from a signal of 1000 samples, one arrives at
the approximation A3 and the detail D3 which each have only 125 samples.
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2.2.3. Scalogram of the Received Ultrasound Signal

In this work, the scalogram of the investigative ultrasound signal will be used to
determine and analyze cracks in concrete. We can define the scalogram of the signal x(t) by

SX(j, k) = |dX(j, k)|2 ∀ (j, k) ∈ Z×Z (5)

The non-destructive testing (NDT) of the concrete sample is carried out by emitting an
ultrasonic signal, which passes through the concrete sample. Thus, the received ultrasonic
signal undergoes a multi-resolution analysis via a discrete wavelet transform (DWT). A
scalogram is constructed from this transformed ultrasound signal by taking the square
modulus of the DWT.

This scalogram will be assimilated to a space-scale image allowing to localize the crack
in space and at each resolution. The scalogram image will be used as an input to the CNN
architecture which will automatically detect a defect or a possible internal crack.

Figure 10 shows the scalogram of a signal representing the initialization of a crack
materialized by intense energy. This fracture also propagates, even if in a weaker way, to
other scales which can cause in the long term to a rupture.
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2.3. From Neurons to CNN and Deep Learning: Basic Concepts

In this section relating to artificial intelligence based on neural networks, we will recall
the main functions used in our experiment of automatic detection of cracks in concrete
structures.

2.3.1. Fundamental Concepts of Neural Networks Used in Our Experiment: A
Brief Review

An artificial neural network is an intelligent computer system, hardware and/or
software, that automatically processes information for application areas in system identifi-
cation and control (vehicle control, trajectory prediction, process control, natural resource
management), general gaming, pattern recognition (radar systems, face recognition, signal
classification, 3D reconstruction, object recognition, speech recognition, etc.), medical di-
agnosis, finance, data mining, visualization, machine translation, social network filtering,
spam filtering, etc. It consists of a set of interconnected neurons, each with digital inputs
and outputs. The output of an artificial neuron depends on the weighted sum of its input
values and an activation function. An artificial neural network has an input layer (the
data), an output layer (the results), and can have one or more intermediate layers called
hidden layers.

This basic neuron model can be defined by the following operations:
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1. The combination function: in the initial model, it is simply a weighted sum of the
input values.

2. The activation function: this is what will determine the output value. It is based on
the result of the combination function, as well as on a pre-set threshold. It can, for
example, be a simple “staircase function”, which returns 0 if the weighted sum of the
inputs is lower than the threshold value, and 1 otherwise.

Finally, the result is sent to the output of the neuron. This information can then be
transmitted to several other neurons, via branches with associated weights.

Deep learning is so called because of the structure of the neural network it uses which
consists of a layered configuration of neurons: the higher the number of hidden layers, the
deeper the network. The first layer receives the input data, and the last one provides the
network output. Between the two are the hidden layers.

Each neuron is associated with a set of adjustable parameters that can be adapted by
training. The weights associated with a neuron i with n inputs are represented by a vector
of weights of dimension n: wi ∈ Rn.

The representation and processing power of these neural networks depends on the
functions used at the level of the neurons, but also on the architecture of the network
(number of neurons and type of connection between them).

During the training phase, the neural network modifies the weights of the inputs of
each neuron. This consists essentially of adjusting the weights in a way that allows the
network to correctly classify all the examples of the training set. As this is basically an
optimization problem, a variety of methods can be used to determine these weights.

Neural networks can be used to perform diagnosis. In this context, we assume that the
classes of recognizable diagnoses are known. Making a diagnosis consists in determining
to which class a particular situation belongs (crack/non-crack).

In the following, we will discuss two points to be taken into account in our work:

1. Overfitting

The overfitting issue is mainly related to the inadequate dimensioning of an architec-
ture: For example, the number of hidden layers and/or the number of hidden neurons per
layer is too high. This phenomenon reduces the generalization capacity of the network.

In practice, if the number of hidden neurons is too low, the network has too few
adjustable parameters (it is “under-parameterized”) and cannot capture, during its training
phase, all the dependencies between the input vectors (stimuli) that are presented to it
and the different desired outputs (targets). Conversely, if the number of hidden neurons is
too large, the number of adjustable parameters of the network is also too important. The
network becomes “overparameterized” and can reach several hundred parameters and
a few dozen layers. It then becomes possible, during the training phase, either to model
unnecessarily certain relations which are only the result of statistical fluctuations specific
to the training examples, rather than fundamental dependence relations, or to fall in a
scenario of overfitting. This phenomenon prevents the trained network from correctly
processing the inputs that are later presented to it [46].

2. Properties of input data

It is imperative that the network inputs have a mean close to zero and a variance close
to one. This is why it is necessary to normalize them. Moreover, the amplitude of these
inputs must not be too large in order not to saturate any neuron, which would slow down
its convergence and, in fine, block the training phase of the network.

In the context of this work, the objective is to classify the sample defect as crack or non-
crack. The network calculates a probability value p from its inputs and the crack/non-crack
result will be represented by the probability values p and 1− p respectively.

These final probabilities are calculated by the last layer and the loss function calculate
the classification error. The best performing loss function is based on cross-entropy [47],
and this is what we have adopted in this work. The optimization of this loss function by
stochastic gradient descent [48] allows the learning of the weights in the different layers
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by backpropagation of the gradient. The parameters that minimize the regularized loss
function are progressively calculated for each layer, starting from the end of the network.

2.3.2. CNN and Deep Learning Principle

Artificial intelligence based on neural networks has seen an extraordinary resurgence
of interest after the resounding success at the 2012 ImageNet competition of a new deep
learning architecture-AlexNet. This new model is based on convolutional neural networks
(CNNs).

CNNs process input images where they extract their features and the last layer pro-
vides the “voting” of the classes (in our experiment, there are only 2 classes: crack/noncrack)
that we are after. As for any neural network, its parameters are optimized by minimizing
a loss function. Unlike other machine learning methods, CNNs have the particularity of
using convolution to automatically detect and extract relevant features from the image. As
can be seen in Figure 11, this first operation (Conv) is followed by 3 other operations (BN,
RELU, and Pool), then the process starts again at the 2nd stage of the architecture and so
on. The last stage of the CNN is dedicated to the classification [49–52] and gives as output
probabilities related to the problem treated. In our case, the classification is binary: crack
with probability p versus non-crack with probability 1− p.
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There are in total seven main operations in the CNN architecture as illustrated in
Figure 11.

Figure 11 shows a CNN architecture adapted to our concrete crack detection problem.
This consists of 4 CONV layers, 4 BN layers, 4 RELU layers and 4 Pool layers, followed by
a FC, RELU and Dropout layers. Finally, an FC layer decides, via Softmax activation, the
final classification of the image into crack or non-crack. The numbers mentioned refer to
the output data size of each block in the network.

These operations are described below:
CONV: The convolution layer is the fundamental element of the CNN, and it is

always the first block of the network. The main objective of this convolution is to find
the features by sliding a filter along the image according to a predetermined stride. This
filter is initialized either randomly, or by a priori knowledge, or by transfer learning as
explained later in this section. These filters will be updated during the optimization process
when training. The results of this filtering represent the desired features. Four important
hyperparameters allow to dimension the output volume of the convolution layer [53]:

• Number of convolution kernels or filters or feature detectors. It’s a power of 2 be-
tween 25 and 210. The use of a large number of filters results in a more powerful
model, i.e. it can detect and extract the maximum number of relevant features, but
there is a risk of overfitting due to the increase in the number of parameters.

• Filter size. Usually 3× 3 filters are used, but 5× 5 or 7× 7 are also used depending
on the application. Keep in mind that these filters are 3D and also have a depth
dimension, but since the depth of a filter at a given layer is equal to the depth of its
input, it will be omitted.



Electronics 2021, 10, 1772 12 of 22

• Stride controls the overlap of the receptive fields. The smaller the stride, the more the
receptive fields overlap and the larger the output volume. This is in fact the sliding
step of the filter.

• Zero-padding is sometimes convenient for putting zeros on the edge of the input
volume. The size of this zero-padding is the third hyperparameter. This padding
allows to control the spatial dimension of the output layer volume.

BN: Batch Normalization consists in normalizing (zero mean and unity variance) the
inputs (or the activation of the previous layer) in order to speed up the training step and
reduce the generalization error.

RELU: Rectified Linear Unit is the non-linear operation. Its role is to cancel the
negative values in input.

Pool: (Max)Pooling or subsampling is an operation to reduce the size of images.
Several possibilities of pooling exist, in our case, this operation is reduced to keeping only
the maximum value in each patch of each feature map of size 2× 2 or 3× 3. The results are
down sampled or pooled feature maps that highlight the most present feature in the patch.
The objective of this operation is to reduce the number of parameters and therefore reduce
the computational burden. Such an approach improves the performance of the network
and prevents overfitting.

FC: Fully Connected layer is the last layer in any neural network. The fully connected
layer is applied to a previously flattened input where each input is connected to all neurons.
Such a layer is used to optimize objectives such as class scores. In our experiments, the
image that has undergone a pooling operation will be followed by a flattening, i.e., putting
the lines of the image one after the other to obtain a columnar “image”.

Dropout. Dropout method is used in CNN to randomly “deactivating” neuron
outputs (with a predefined probability, e.g., 0.5 for the hidden layers and 0.8 for the input
layer) during the training phase. This amounts to simulating a set of different models
(bagging) and training them jointly (although none of them is trained end-to-end). As
each neuron is possibly inactive during a learning iteration, this forces each unit to learn
independently of the others. Dropout is therefore a technique that is designed to prevent
overfitting.

Softmax. The softmax step can be seen as a generalization of the logistic function
which takes as argument a vector of scores x ∈ Rn and which returns a vector of proba-
bilities p ∈ Rn through a softmax function at the end of the architecture. It is defined as
follows:

p =

 p1
...

pn

 où pi =
exi

∑n
j=1 exj

(6)

In our work, Softmax is the final activation function of our neural network used to
normalize the output of the network to a probability distribution over the predicted output
classes.

2.3.3. Residual Network Principle

In CNN, the depth of the network, i.e., the succession of layers in the network, allows
the extraction of features of different levels of complexity, from basic or low-level features
such as edges, corners, texture to the most complex or high-level features such as patterns,
objects, etc.

However, He et al. [54] have shown that a significant increase in the number of layers
does not necessarily lead to better performance. They show, using the CIFAR-10 and
ImageNet datasets, that a 56-layer network gives a higher error than a 20-layer network.
This highlighted that the deeper network has a higher training error, and thus test error.
These authors show that the degradation of training accuracy is not due to overfitting, but
indicates that not all systems are similarly easy to optimize.
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He et al. address the degradation problem by introducing a deep residual learning
framework called ResNet. Instead of hoping each few stacked layers directly fit a desired
underlying mapping, they explicitly let these layers fit a residual mapping.

Formally, denoting the desired underlying mapping as H(x), they let the stacked
nonlinear layers fit another mapping of f (x) = H(x)− x. The original mapping is recast
into f (x) + x. He et al., hypothesize that it is easier to optimize the residual mapping than
to optimize the original, unreferenced mapping. To the extreme, if an identity mapping
were optimal, it would be easier to push the residual to zero than to fit an identity mapping
by a stack of nonlinear layers.

The formulation of f (x) + x can be realized by feedforward neural networks with
“shortcut connections” (see Figure 12). Shortcut connections are those skipping one or
more layers.
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In Figure 12, the shortcut connections simply perform identity mapping, and their
outputs are added to the outputs of the stacked layers. Identity shortcut connections add
neither extra parameter nor computational complexity. The entire network can still be
trained end-to-end by stochastic gradient descent with backpropagation, and can be easily
implemented using common libraries (e.g., Caffe [55]) without modifying the solvers.

To illustrate this notion, consider the case where the weights and biases of an ordinary
neural network are initialized to 0. Each layer starts with the “zero” function. In contrast,
in the same situation, ResNet essentially starts with the identity function since the input is
passed directly to the output—it learns what is left (residuals) after the identity function is
added. Hence the name residual network or ResNet!

These deep residual networks can easily benefit from gains in accuracy due to a
significantly increased depth that can exceed 1000 layers (see Figure 13), producing results
that are significantly better than those of previously used networks.
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Sometimes shortcut connections are not represented in a ResNet configuration to
simplify it, because shortcuts do not always occur symmetrically between layers.
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2.3.4. Transfer Learning Concept

Training deep convolutional neural network models on very large datasets can take
days or even weeks. One way to shorten this process is to reuse pre-trained model
weights that have been developed for standard computer vision reference datasets, such as
ImageNet image recognition tasks. The best performing models can be downloaded and
used directly, or integrated into a new model for computer vision problems.

Transfer learning involves using models trained on one problem as a starting point
for a related problem.

Transfer learning is flexible, allowing pre-trained models to be used directly, as feature
extraction preprocessing, and embedded in entirely new models.

Keras provides convenient access to many high-performance models on ImageNet
image recognition tasks, such as ResNet.

In summary, the objective of transfer learning is to accelerate the training process by
introducing knowledge gained by a neural network that has handled a similar problem.
Such a use also avoids overfitting.

Nowadays, we can easily retrieve one from the Internet, especially from Deep Learning
libraries. For our part, we use the ResNet50 architecture found in the Keras library in
transfer learning.

3. Results and Discussion
3.1. The Proposed Methodology

Figure 14 shows an outline of the proposed methodology to automatically detect
internal cracks in a concrete specimen via a combination of non-destructive testing (NDT),
multiresoluution analysis and classification stages. As depicted in the figure, the method-
ology consists of 3 main steps, starting with the NDT of the concrete specimen which
produces an ultrasonic signal that detects the presence of an internal defect. This signal
then proceeds to step 2 and undergoes a multiresolution analysis via a discrete wavelet
transform (DWT).
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A scalogram is constructed from the transformed ultrasonic signal to provide a space-
scale image allowing to localize the crack in space and at each resolution. The scalogram
image is then fed into step 3 of the method consisting of the CNN block which extracts the
relevant scalogram image features that identify the type of internal defect and eventually
classifies it as a crack or a non-crack.
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3.2. Wavelet Used for Multiresolution Analysis

We chose wavelet Daubechies10, noted Db10, to have the largest number of vanishing
moments (see relation (2)), here p = 10, for a given support width i.e., a number of
coefficients of the corresponding filters equal to 20 [10].

In other words, this wavelet used for multiresolution analysis (or wavelet transform)
perfectly analyzes the ultrasound signal since there will be a strong correlation between
the analyzed signal and this wavelet. Moreover, visually, there is a strong resemblance
between the received ultrasound signal and the Db10 wavelet (For comparison, see the
ultrasonic signal in Figure 14).

This Daubechies wavelet, Db10, is shown in Figure 15. It is an orthogonal wavelet and
widely used to detect signal discontinuities and cracks in structures, which justifies its use
in our case.
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Figure 16 shows the impulse responses g and h respectively of the low-pass and
high-pass filters associated with Db10 (See also Figure 8 which shows the principle of
multiresolution analysis using filters g and h).
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3.3. Metrics and Data Used

To achieve our goal of classifying cracked/non-cracked concrete images, it is necessary
to use evaluation measures or metrics to assess the performance of our approach.

Accuracy is the ratio of the number of correctly predicted cracked and uncracked
images to the total number of input images. Therefore, Accuracy is the number of correct
predictions/total number of predictions, and it is defined by:

Accuracy =
TP + TN

TP + FP + TN + FN
(7)

where TP (True Positive) and TN (True Negative) refer to images with and without cracks,
which are correctly classified. FP (False Positive) and FN (False Negative) refer to images
with and without cracks that are misclassified.

Precision or confidence is the number of images correctly assigned to the “cracks”
class compared to the total number of images predicted as belonging to the “cracks” class
(total predicted positive). Precision can be interpreted as an indicator of robustness. It is
defined as:

Precision =
TP

TP + FP
(8)

Recall or sensitivity is the number of images correctly assigned to the “crack” class
compared to the total number of images belonging to the “crack” class (total true positive).

Recall =
TP

TP + FN
(9)

Fβ score subtly combines precision and recall and corresponds to a weighted harmonic
mean and is defined as:

Fβ =
(

1 + β2
) Precision× Recall

β2Precision + Recall
(10)

where β is a coefficient to arbitrate between precision and recall. If β is set to the value 1, it
means that precision and recall have the same weight. This leads to the F1 score defined as:

F1 = 2
Precision× Recall
Precision + Recall

= 2
TP

2TP + FP + FN
(11)

In this work, we propose two methodologies that depend on the nature of the concrete
crack: internal or external. In this context, two sources of crack images were then used to
develop an automatic detector of possible cracks.

1. The first source is derived from ultrasonic non-destructive testing images of internal
cracks analyzed by wavelets. The multiresolution images are then classified into
cracks/no cracks by deep learning. This original three-step approach is our main
contribution. The procedure for obtaining these images is described in Section 3.1. In
fact, these images are obtained by multiresolution analysis of the ultrasound signal
that passed through the concrete specimen. As shown in Expression (5), it is the
square modulus of the wavelet transform or scalogram of the received ultrasound
signal. Figure 17 shows some examples of images or scalograms where the defect or
crack is represented by a high intensity on the scalogram (yellow-red color).

2. The second source of images comes from SDNET2018 dataset [56].

SDNET2018 is an important database that can be used for crack detection in concrete
structures. As shown in Figures 18 and 19 several configurations are considered.
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3.4. Implementation Aspect and Results Analysis

For the two data sources, i.e., on the one hand, the images obtained experimentally by
NDT and multiresolution analysis, and on the other hand, the images of the SDNET2018
dataset, we selected 1000 images with cracks and 1000 images without cracks: 1600 im-
ages for the training phase and 400 images for the test phase. The size of each image is
256 × 256 pixels RGB.

For the SDNET2018 dataset, these are images of concrete bridges and it was possible
to introduce various changes, such as lighting conditions and crack surface texture, to test
and evaluate the generalization of the model.

All experiments are run on TensorBook equipped with a Super GPU 2080. It is
equipped with Lambda Stack which is a software tool to manage installations of Ten-
sorFlow, Keras, PyTorch, Caffe, Caffe 2, Theano, CUDA and cuDNN. Its specifications are:

Display: 16.1′′ FHD (1920 × 1080).
Storage: 1TB NVME SSD
RAM: 64 GB (2666 MHz).
Processor: Intel i7-8750H (6 cores, 16x PCI-e lanes).
Graphics: NVIDIA 2080 (8 GB).
Operating System: Ubuntu 18.04 (Bionic) with Lambda Stack and Windows 10 Pro

also available.
In this high performance laptop computer all TensorFlow Keras Pytorch Caffe Theano

frameworks specially designed for deep learning are pre-installed. It is optimized for
performing TensorFlow training tasks with its powerful Pascal GTX.

ResNet [54] is a neural network that won the ImageNet competition in 2015, while
AlexNet [11] won the same competition in 2012. These are the two networks that were
used in our experiments due to the fact that they are behind the explosive emergence of
Deep Learning and thus their reputable performance. Therefore, these two architectures
are central to the performance evaluation of the proposed crack detection technique.

In this work, we have used the Keras library to load the pre-trained network ResNet50
(see the concept of transfer learning in Section 2.3.4). ResNet50 in Figure 20 is a restricted
version of ResNet. Its architecture, shown in Figure 16, requires more than 23 million
trainable parameters.
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Classical Adam optimization of stochastic gradient descent was used for training [57].
Table 2 shows the results from the NDT procedure based on multiresolution analysis

to detect internal cracks in a concrete structure.

Table 2. NDT-Multiresolution Analysis: Comparison of two model’s crack detection results.

Model Accuracy Precision Recall F1

AlexNet 0.8855 0.8921 0.8840 0.8881

ResNet50 0.9068 0.9178 0.9091 0.9099

Table 3 shows the results from SDNET2018 dataset.

Table 3. SDNET2018: Comparison of two model’s crack detection results.

Model Accuracy Precision Recall F1

AlexNet 0.9182 0.9322 0.9241 0.9284

ResNet50 0.9691 0.9691 0.9704 0.9798

In both tables, two deep learning architectures are compared in terms of Accuracy,
Precision, Recall and F1 score.

Table 2 shows that the performance of the ResNet50 architecture is superior to that of
AlexNet. This was expected but the difference is not significant. It should be noted that
the accuracy of the proposed method which is the detection of internal cracks from NDT
followed by a wavelet-based multiresolution analysis is capped at 90%.

In contrast, Table 3 shows high performance and the difference between the ResNet50
and AlexNet architectures is clearer.

We did not compare the accuracy between the “visible cracks” and “invisible defects”
methods because they are two different approaches.

We just compared the architectures chosen and used them for 2 different image sources.
Although the performance of the methodology for detecting invisible defects is inferior to
that for visible cracks, the fact remains that without our methodology, it would have been
difficult to guess that there are internal cracks or defects.

The apparent limitation of the NDT-Mutiresolution analysis method is due to the fact
that the crack is internal and is more difficult to detect than a surface crack. However, the
proposed method, based on NDT and multiresolution analysis, is very efficient since it
allows the detection of an invisible crack by optical means which would mitigate many
disasters in sensitive structures.

The cost of our investigations is low since the method merely requires the use of an
on-site a portable ultrasonic device and an ordinary processor, either a DSP card or a laptop
since we implement an architecture that has already learned to detect and follow possible
internal cracks or the beginning of cracks.

4. Conclusions

In this work, we proposed an original method for the detection and monitoring cracks
in concrete structures. This method focuses on internal cracks or on the beginning of cracks
invisible from the outside.

Such cracks are detected by ultrasonic NDT and analyzed by wavelets providing a
space-scale image allowing to localize the crack in space and at each resolution.

The wavelet chosen for this multiresolution analysis is the Daubechies10 wavelet. This
presents a strong correlation with the analyzed signal. Moreover, visually, there is a strong
resemblance between the received ultrasound signal and the Db10 wavelet.

Furthermore, this wavelet is orthogonal and widely used to detect signal discontinu-
ities and cracks in structures.
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The resulting multiresolution image corresponding to the square modulus of the
wavelet transform of the received ultrasound signal is then subjected to a crack/non-crack
classification process based on Deep Learning (AlexNet, ResNet).

We have shown that it is possible to reach an accuracy of 90%. Such a result is very
positive and shows that our approach is inevitable when it comes to “securing” vital
economic structures such as nuclear power plants and dams where the initialization of an
optically invisible crack can cause major disasters.

The cost of such a protocol is low and is of the order of $5000 since the method only
requires the use of an on-site portable ultrasonic device and an ordinary processor, either a
DSP card or a laptop computer since we are implementing an architecture that has already
learned how to detect and track possible internal cracks or where the crack starts.
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