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Abstract: In recent years, with the development of the communication industry, the need to use 
Ethernet switches to transmit big data has become more urgent, and its protocol standards are iter-
ating towards higher return loss, wider bandwidth, lower impedance fluctuations and insertion 
loss. Based on the research of high-speed backplane with a single channel 25 Gbps transmission rate, 
a novel double grounded planar strip coplanar waveguide design is presented, which significantly 
improved return loss to 20 dB and reduced insertion loss, which meet the loss standard of 
100GBASE-KR4. The resonant cavity model of transmission line reference plane is improved by in-
troducing vias and the parameters of vias in the reference plane are studied to reduce the impact of 
resonance, which improved the transmission –1 dB bandwidth to 60 GHz. Based on equivalent cir-
cuit analysis of differential vias’ joint reverse pad, the parameters related to the differential vias are 
studied, the impedance fluctuation is reduced to 100 ± 3 Ω, which is 70% better than the impedance 
fluctuation standard (100 ± 10 Ω) of 100GBASE-KR4. After optimizing the mathematical model of 
strip coplanar waveguide, reference plane and differential vias, we built a simulation model of the 
backplane passive link which met the 100GBASE-KR4 backplane Ethernet specification. In the ac-
tual test, it was found that the optimized model can improve the link performance. 
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1. Introduction 
With the rapid development of the global Internet, with cloud computing, mega data 

and 5G communication services gradually entering people’s lives, there are greater re-
quirements for data exchange rate and bandwidth. The concept of backplane Ethernet 
first appeared in the IEEE 802.3ap standard issued by IEEE in 2007. At that time, IEEE not 
only proposed the concept of backplane Ethernet, but also released 10GBASE-KR back-
plane Ethernet specification [1] for the proposed concept of backplane Ethernet. In recent 
years, the development of Ethernet is even more amazing, IEEE has successively released 
100G application specifications [2]. The 100GBASE-KR backplane Ethernet specification 
has begun to challenge the single channel rate of 25 Gbps. With the development and 
maturity of Ethernet specification, it can not only be used in switches, routers and other 
network communication equipment, but also be applied to embedded switching equip-
ment such as automation of power distribution networks and intelligent traffic road mon-
itoring systems. 

Due to the development and improvement of single channel rate from 10 Gbps to 25 
Gbps [3–6], the requirements for high-speed system circuit design are also increased. The 
current research and development of high-speed systems mainly focuses on two aspects: 
(1) increasing the transmission rate without sacrificing the reliability and stability of the 
system; (2) the control of production cost [7,8]. To achieve single channel 25 Gbps rate 
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transmission on the circuit, the operating frequency of the system will inevitably exceed 
12 GHz, which means that the traditional circuit interconnection design has difficultly 
guaranteeing the transmission performance of a high-speed system. Signal integrity prob-
lems, such as reflection and crosstalk, in high-speed circuit design have serious impacts 
on circuit performance [9]. 

In order to ensure the high-speed transmission of the backplane passive link with 25 
Gbps transmission rate, and reduce the design time and cost, it is necessary to carry out 
modeling and finite element simulation of the relevant components of the passive link at 
the beginning of the backplane design [10–12]. Compared with the full-wave 3D simula-
tion experiment of single transmission line with 25 Gbps transmission rate carried out by 
Peerouz Amleshi [13], the return loss of single transmission line is 10 dB and the imped-
ance fluctuation is 100 ± 15 Ω. In this paper, the strip coplanar waveguide transmission 
line model is innovatively proposed, which can increase the return loss to 20 dB. Based on 
the equivalent circuit model of the differential vias that is innovatively established, the 
impedance fluctuation can be reduced to 100 ± 3 Ω. The validity of signal transmission is 
guaranteed. 

As the electromagnetic waves will produce resonance when entering the conductor 
cavity, insertion loss fluctuated sharply at the resonance point, leading to the reduction of 
output efficiency. In the simulation of the 40 Gbps signal transmission studied by Chang 
Fei Yee, the −1 dB bandwidth of the signal transmission is 40 GHz, and there is a resonance 
point in the adjacent frequency band after 40 GHz [14]. The mathematical modeling and 
simulation study on the strip coplanar waveguide transmission line reference plane is car-
ried out in this paper, so that the insertion loss had no resonance within the 60 GHz band-
width, and the reliability of signal transmission is guaranteed. 

In this paper, we study the modeling of transmission line, reference plane and vias, 
and conduct the optimization design including: (1) in order to correct the loss, modeling 
and analysis of transmission line based on strip coplanar waveguide; (2) modeling and 
analysis based on strip coplanar waveguide transmission line reference plane which in-
creased passband width; (3) modeling and analysis of differential vias which reduced im-
pedance fluctuations; (4) the passive link model of high speed backplane is established. 

2. Materials and Methods 
2.1. System Composition 

In this paper, the signal integrity of the passive link on the backplane in the whole 
serial link across the backplane system is studied. The passive link on the backplane 
mainly includes high-speed connector, via and transmission line. The strip coplanar 
waveguide of transmission line, strip coplanar waveguide transmission line reference 
plane and vias are shown in the Figure 1. 
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Figure 1. Schematic diagram of high-speed passive link. 

Three aspects are simulated and optimized: (1) the best height of strip coplanar wave-
guide metal plate is determined by simulation, the insertion loss was reduced and the 
return loss was increased to 20 dB, which meet the 100GBASE-KR backplane Ethernet 
specification; (2) the factor of the transmission line reference plane affecting the resonant 
frequency are deduced, and the optimal parameters are determined by simulation, so that 
the signal transmission bandwidth of −1 dB can reach 60 GHz; (3) an equivalent circuit 
model is established for the differential vias, and the simulation results show that imped-
ance fluctuation with the best via parameters is 100 ± 3 Ω. Simulation guides the design 
of the actual circuit. After integrating the above three aspects of simulation optimization 
design, the actual test is shown in Figure 2. 

 
Figure 2. Environment of actual test. 

2.2. Strip Coplanar Waveguide Transmission Line 
Modeling and Analysis of Strip Coplanar Waveguide 

Coplanar waveguide transmission lines are mainly used in the current backplane de-
sign. There are two kinds of common coplanar waveguide structures, one is the traditional 
coplanar waveguide (CPW) structure [15,16], the other is the coplanar waveguide with 
ground (CPWG) structure, shown in Figure 3a,b, respectively. 
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The electromagnetic field of coplanar waveguide is mainly distributed near the in-
terface between the medium below the transmission line and the air above. Due to the 
existence of alternating electric field between the central metal conduction band and the 
adjacent grounding conductor, the coplanar waveguide transmits TEM wave with no cut-
off frequency. The introduction of adjacent ground conductor planes on both sides of co-
planar waveguide makes it difficult to interfere, which improves the electromagnetic com-
patibility of transmission line [17]. 

Coplanar waveguide supports quasi TEM propagation mode. Coplanar waveguide 
transmission line is more convenient for the interconnection of active or passive devices 
on the surface, and its radiation and crosstalk are also smaller. In addition, the coplanar 
waveguide transmission line also has extremely wide bandwidth and small dispersion, 
but the traditional coplanar waveguide has obvious disadvantages that the loss is rela-
tively large. 

 
Figure 3. Various waveguide structures. (a) Section of traditional coplanar wave; (b) cross section 
of coplanar waveguide with metal substrate; (c) cross-sectional view of ribbon coplanar waveguide. 

With dense wiring, it is impossible to lay all high-speed wiring in the form of CPW 
or CPWG on the top and bottom layers of printed circuit board, especially in the design 
of high-speed backplane, the number of high-speed transmission lines will increase a lot, 
and the inner layer high-speed wiring is inevitable. In this paper, based on the traditional 
coplanar waveguide model, a kind of inner striped coplanar waveguide transmission line 
structure is modeled and analyzed to explore the loss and transmission bandwidth of in-
ner striped coplanar waveguide transmission line. The cross section of the strip coplanar 
waveguide is shown in Figure 3c. The additional upper and lower metal plates make the 
transmission line have better anti-interference and anti-radiation ability, so as to improve 
return loss and reduce insertion loss of the transmission line. 

The single ended strip coplanar waveguide is modeled and analyzed, and its param-
eters are shown in Figure 4c. The modeling of differential coplanar waveguide is similar 
to that of single ended waveguide as shown in Figure 4d. 
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Figure 4. (a) Diagram of traditional coplanar waveguide structure; (b) schematic diagram of traditional differential copla-
nar waveguide structure; (c) single-ended strip coplanar waveguide structure diagram with upper and lower metal plates; 
(d) differential strip coplanar waveguide structure diagram with upper and lower metal plates. 

Characteristic impedance 𝑍  of strip coplanar waveguide, equivalent permittivity 𝜀  of strip coplanar waveguide, phase velocity 𝜈  can be expressed as [18,19]: 
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𝑐 is the speed of light in vacuum. Unit length capacitance 𝐶 of strip coplanar waveguide, 𝐶  is the line capacitance without any medium: 
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where 𝐶  and 𝐶  are upper conductor capacitance, 𝐶  and 𝐶  are the capacitance of the 
lower conductor, which can be expressed as: 
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where 𝐾(𝑘) represents the complete elliptic integral of the first kind. The parameters 𝑘 
depend on the geometry of the transmission line. 

From Equations (5) and (6), it can be concluded that the parasitic capacitance of the 
strip coplanar waveguide is determined by the height of the metal plate, which further 
affects the impedance of the strip coplanar waveguide, the insertion loss [20] and return 
loss [21] will be directly affected. 

2.3. Research on Transmission Line Reference Plane for 25 Gbps Rate Backplane 
Coplanar Waveguide Reference Plane Modeling 

If the electromagnetic wave enters a closed cavity made of conductor, it will be con-
tinuously reflected in the cavity, the electric field and magnetic field will be converted to 
each other, and alternately appear at the corresponding maximum field strength position, 
thus forming a resonance state. There are two shock modes: 𝑇𝐸  and 𝑇𝑀 . The res-
onance frequency of 𝑇𝐸  and 𝑇𝑀  is: 

 𝑓 = √ + +  (8)

where 𝑎, 𝑏 and 𝑙 are the geometrical parameters of the waveguide. 𝑚, 𝑛 and 𝑝 cor-
respond to the change number or half wave number of the field along 𝑎, 𝑏 and 𝑙 direc-
tions, respectively [22]. 

In the finite grounded coplanar waveguide with a metal bottom plate, the adjacent 
finite metal plane of the same layer of the transmission line and the metal plane of the 
bottom plate are regarded as a resonant cavity with an open circuit at the edge. At the 
resonant frequency of the resonant cavity, most of the electromagnetic energy is coupled 
to the adjacent metal plane, and only a small part of the energy continues to propagate 
along the transmission line. Therefore, due to the increase of reflection and radiation, the 
transmission of useful signals is reduced. 

The resonant frequency can be calculated from the size of a side grounded metal 
plane. As shown in Figure 5a, it shows a resonant cavity composed of a side metal plane 
adjacent to the transmission line and a metal bottom plate. Open boundary conditions are 
used in all three plates. The parameters of the simulation of the coplanar waveguide trans-
mission line are shown in Figure 5b,c. 
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Figure 5. (a) Structure of multilayer coplanar waveguide with upper and lower metal plates; (b) sectional view of single-
ended coplanar waveguide transmission line; (c) top view of single-ended coplanar waveguide transmission line. 

As the dielectric substrate in the circuit board is nonmagnetic, its relative permeabil-
ity 𝜇  equals to 1, so permeability 𝜇 in the cavity model is equal to permeability 𝜇  in 
vacuum. In this model, the relative permittivity 𝜀  is known. Therefore, the dielectric con-
stant can be characterized by the relative dielectric constant. 
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In high-speed circuits, the dielectric height h is far less than the wavelength λ, Gen-
erally, the influence of edge field is ignored. The formula is simplified as follows: 

( )
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where L represents the length of the reference plane on the adjacent side of the transmis-
sion line, W represents the width of the reference plane on the adjacent side of the trans-
mission line. When the reference plane of the adjacent side of the transmission line is con-
nected to the metal base plate through the ground via, the boundary conditions of the 
resonator analyzed above will change. The via used for connection is regarded as a metal 
short-circuit plate, and the cavity satisfies the short-circuit boundary condition. In this 
case, the mode parameter m can be an integer or a natural number, while the parameter 𝑛 can only be an integer multiple of 0.5. By modifying the model parameters, the Formula 
(10) is still valid under the condition of short circuit boundary. 

Due to the influence of via, the equivalent width should be corrected: 
2

2 1,2,3
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(11)

The resonance frequency formula is revised to: 
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2 2

0 2r mn
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   = +   
     

(12)

It can be concluded from Equations (11) and (12), the width of the reference plane W, 
the number of vias on the reference plane k and the diameter of vias VD will affect the 
resonant frequency of the transmission line. The change of the number of vias k is actually 
changing the center distance VVL between the connected vias [23,24]. 

2.4. Research on Via for 25 Gbps Rate Backplane 
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In multilayer printed circuit board design, vias provide electrical connection paths 
between different layers. When the signal frequency is lower than 3 GHz, the parasitic 
effect caused by the via structure has little influence on the transmission performance of 
the circuit and is generally ignored. However, with the increase of operating frequency, 
the existence of vias will make the impedance of the link discontinuous. At the same time, 
the parasitic capacitance and inductance introduced by via parasitic effect will also lead 
to reflection and scattering in the process of signal transmission, which will affect the per-
formance of the link. Therefore, the research on the characteristics of vertical intercon-
nected vias is not only of great significance to the simulation and design of multilayer 
circuit board, but also can better guide the analysis of signal integrity in high-speed digital 
circuits [25–28]. 

Modeling and Analysis 
• Modeling and analysis of differential vias 

The specific parameters of differential vias are shown in Figure 6a. The equivalent 
circuit of differential vias is shown in Figure 6b, the two sides are 𝜋-type equivalent circuit 
with single via, and the middle part is mutual inductance part between two vias. In high 
frequency circuits, the actual shape of the reverse pads with differential vias is the form 
of circular and rectangular joint reverse pads. Then the differential vias of the joint reverse 
pad were analyzed. 

 
Figure 6. (a) Schematic diagram of differential vias section; (b) differential vias 𝜋-type equivalent 
circuit. 

The parasitic capacitance 𝐶  of the joint reverse pad differential vias is expressed 
by Equation (13), and the equivalent coaxial capacitance 𝐶  and equivalent inductive ca-
pacitance 𝐶  of the joint reverse pad differential vias are shown in Equations (14) and 
(15). 𝑅 = ∙      bvia aC C C= +  (13)
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where 𝑡 is the copper foil thickness of the reference layer, 𝑅  is the pad radius of the 
joint reverse pad differential vias, 𝑅  represents the reverse pad radius of the joint re-
verse pad differential vias, 𝑘  is the radial wave number, 𝐻( )() is the second Hankel 
function of order zero, Γ( ) represents the boundary condition. 

The pad diameter and reverse pad diameter of the via will affect the parasitic capac-
itance of the differential vias, and then affect the performance of the vias. 
• Modeling and analysis of via stump 

At present, the high-speed connector package on multilayer printed circuit board ba-
sically adopts to via design, from the top to the bottom. When the signal is transmitted 
from the sub-board to the backplane through the high-speed connector, it will be led out 
from different signal layers in the circuit board, so that the via will leave different lengths 
of stumps. 

Based on the principle of quarter wavelength, the relationship between the length of 
via stump and resonance frequency can be deduced. The relationship between the length 
of through via and wavelength is expressed by the following equation: 

s
1 1
4 4

p
tub

v

v
L

f
λ= ⋅ = ⋅

 
(16)

where 𝐿  is the length of through via residual pile, 𝜆 is the wavelength, 𝑣  is the 
transmission rate of the signal, 𝑓  is the resonant frequency of the via. 

The transmission rate of the signal is 𝑣  which can be expressed by Equation (17), 
and 𝑐 represents the transmission speed of light in vacuum, 𝜀  is the relative permittiv-
ity of the medium around the via: 

p
r

cv
ε

=  (17)

The resonance frequency 𝑓  caused by through via residual pile is: 

s4v
r tub

cf
Lε

=
⋅

 (18)

The depth of the residual pile through the via affects the impedance fluctuation. In 
the current process design, the most commonly used technology is back drilling to remove 
the redundant residual pile in the vias. However, the residual pile cannot be reduced too 
much, which leads to the failure to meet the minimum reserved depth of the connector. 
We study the influence of the depth of vias’ residual pile on impedance. 
• Return via and tear drop. 

When the via is used as the signal transmission path in multilayer printed circuit 
board, the return current of the signal will excite the parallel board mode between the 
power layer and the formation, resulting in the electromagnetic coupling phenomenon. 
The return via can provide an effective return path for the return current of the signal and 
suppress the electromagnetic coupling effect. We studied the influence of number of re-
turn vias and the distance between return via and signal via on impedance. 

For the signal integrity of the link, adding tear drop can smooth the impedance of the 
connection between wire and pad, wire and via, so as to reduce the mutation of imped-
ance and avoid signal reflection caused by impedance mutation during high frequency 
signal transmission. We studied the influence of tear drop angle on impedance. 

The main parameters to be determined in the above discussion are given in the sim-
ulation modeling diagram, as shown in Figure 7. 
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Figure 7. (a) Simulation modeling diagram of circular reverse pad; (b) simulation modeling diagram of joint reverse pad; 
(c) simulation modeling diagram of two return vias; (d) simulation modeling diagram of eight return vias; (e) via tear 
drop simulation modeling diagram. 

2.5. Composition of Backplane Passive Link 
The evaluation of passive link performance is based on 100GBASE-KR4 standard of 

Ethernet backplane published in IEEE 802.3bj. As shown in Figure 8, taking the single 
channel link in 100GBASE-KR4 standard as an example, the passive interconnection chan-
nel of the whole high-speed backplane is defined as the part between TP0 and TP5 and 
the impedance is controlled at 100 ± 10 Ω. 100GBASE-KR4 standard also defines that the 
single channel transmission rate of backplane is at least 25.78125 GBd ± 100 ppm, so that 
the total rate of four channels can achieve the performance of 100G Ethernet transmission 
line. 

 
Figure 8. Schematic diagram of 100GBASE-KR4 single channel link. 

The 100 GBASE-KR4 standard also defines the insertion loss (19) and return loss (20) 
of the whole high-speed backplane link, and the whole link must meet the loss value re-
quired in the standard. The insertion loss of backplane link is defined in 100GBASE-KR4 
standard as follows: 
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where 𝑓 is the signal frequency. 
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A complete backplane passive link is built in ADS for simulation, and a channel in 
the backplane passive link is taken as an example for simulation verification. The model 
consists of two high-speed connectors, two pairs of differential vias and a coplanar wave-
guide transmission line. The connector and transmission line are interconnected by 
klopfenstein tapered transmission line [14,29–31]. The parameters of the high-speed con-
nector are S-parameters provided by the official website of TE Connectivity [32]. The dif-
ferential vias model adopts the traditional circular reverse pad via model and does not 
back drill the via stumps. The transmission line adopts the traditional microstrip coplanar 
waveguide transmission line. The S-parameter models of connector, via and transmission 
line are imported into ADS software for co-simulation. The S-parameter modeling dia-
gram of the constructed complete transmission link is shown in Figure 9, in which the 
circuit stack adopts the 10 layers board stack used in the previous simulation, and the 
transmission line length is set to 5000 mil [33–35]. 

 
Figure 9. Modeling diagram of backplane full link S-parameter model. 

3. Results 
3.1. Simulation Results after Optimization of Each Part 
• Optimal strip coplanar waveguide metal plate height 

The finite element simulation software ADS was used to build the simulation models 
of single ended strip coplanar waveguide with a characteristic impedance of 50 Ω, and the 
differential strip coplanar waveguide with a characteristic impedance of 100 Ω. The die-
lectric material of dielectric substrate is MEGTRON6_R-5775（N）with low loss. In the 
simulation test, the metal plate heights are 4 mil, 4.5 mil, 5 mil and 5.5 mil, respectively. 
The simulation results are shown in Figure 10. 
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Figure 10. (a) Simulation results of insertion loss of single-ended strip coplanar waveguide; (b) simulation results of the 
insertion loss of the differential strip coplanar waveguide; (c) simulation results of return loss of single-ended strip copla-
nar waveguide; (d) simulation results of the return loss of the differential strip coplanar waveguide. 

Figure 10a,b shows the comparison of insertion loss. Figure 10c,d shows the compar-
ison of return loss curves. Figure 10a,c shows that, with the increase of the metal plate 
height, the insertion loss of the single-ended coplanar waveguide is gradually improved, 
but the effect of improvement is getting smaller. It can be found at the 30 GHz frequency 
point that the insertion loss results are not significantly different at the heights of 5 mil 
and 5.5 mil. As can be seen from the result of the return loss, the result of the return loss 
is significantly improved with the increase of the height at the beginning. However, when 
the height increased to 5.5 mil, the return loss result deteriorates to the curve of the initial 
height of 4mil. Figure 10b,d shows that, at the single frequency point of 30 GHz, it can be 
found that the difference of differential ended coplanar waveguide insertion loss results 
is less than 1 dB under the metal plate height of 4 mil and 5.5 mil. However, the increase 
of metal plate height on the results of return loss difference effect is obvious, especially 
when the metal plate height increased from 4 mil to 4.5 mil, return loss deteriorated nearly 
20 dB, with metal plate height increase, return loss deterioration continues but the deteri-
orating trend gradually declines. Based on the above analysis, for the single strip coplanar 
waveguide and the differential ended strip coplanar waveguide, the optimal metal plate 
heights are 4.5 mil and 4.0 mil, respectively. The transmission line has better insertion loss 
and return loss performance. 
• Optimal correlation parameters of strip coplanar waveguide transmission line refer-

ence plane 
Simulation analysis was carried out to study the influence of relevant parameters of 

the transmission line on resonance and signal transmission bandwidth. The parameters to 
be determined are: (1) the width of the reference plane W; (2) center distance VVL between 
the connected vias; (3) the diameter of via VD. The value of the VSL is independent of the 
resonant frequency. Due to the need to determine many parameters, this paper used the 
control variable method. The simulation results are shown in Figure 11. In Figure 11a, the 
effect of introducing or not introducing via on insertion loss is compared. In Figure 11b, 
except for the reference plane, width W changes from 40 mil to 100 mil, the other param-
eters of transmission line remain unchanged, VSL = 20 mil, VVL = 30 mil, VD = 10 mil. In 
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Figure 11c, except for the center distance, VVL changes from 15 mil to 90 mil, the other 
parameters of transmission line remain unchanged, VSL = 20mil, W = 40 mil, VD = 10 mil. 
In Figure 11d, except for the via diameter, VD changes from 8 mil to 14 mil, the other 
parameters of transmission line remain unchanged, VSL = 20 mil, W = 40 mil, VVL = 30 
mil. 

 
Figure 11. (a) Comparison of insertion loss of strip coplanar waveguide with via (red line, the best parameters are not 
used) and without via (blue line); (b) comparison of insertion loss of coplanar waveguide with different width W; (c) 
comparison of insertion loss of coplanar waveguide with the center distance between the connected vias VVL under best 
parameter W = 40 mil; (d) comparison of insertion loss of coplanar waveguide with the diameter of vias VD under best 
parameters W = 40 mil, VVL = 30 mil. 

Resonance makes the transmission bandwidth of coplanar waveguide decrease ob-
viously. In Figure 11a, taking −1 dB bandwidth as the evaluation index, the bandwidth of 
coplanar waveguide considering the via is 54.6 GHz, while that without considering the 
via is 40.1 GHz, and the bandwidth is increased by 36.2%. In Figure 11b, when W is re-
duced from 100 mil to 40 mil, the −1 dB bandwidth of the transmission line is increased 
from 36 GHz to 57 GHz, the bandwidth is increased by 58.3%, the optimal value of W is 
40 mil. In Figure 11c, when the VVL is reduced from 90 mil to 30 mil, the −1 dB bandwidth 
of the transmission line is increased from 33 GHz to 60 GHz, the bandwidth is increased 
by 81.8%, the optimal value of VVL is 30 mil. The optimized simulation results are shown 
in Figure 11d, when VD is increased from 8 mil to 12 mil, the −1 dB bandwidth of trans-
mission line is increased from 51 GHz to 60 GHz, the bandwidth is increased by 17.6%, 
the optimal value of VD is 12 mil. Through the finite element simulation method, the best 
parameters for the via in reference plane were determined, and they are VSL = 20 mil, W 
= 40 mil, VVL = 30 mil, VD = 12 mil. Results show that the transmission line has no reso-
nance in DC~60 GHz, and the −1 dB bandwidth reaches 60 GHz, which is 50% higher than 
40 GHz without considering the via parameters. 
• Optimal parameters of differential vias 

In order to reduce the impedance fluctuation, this paper focuses on building the 
equivalent circuit model of differential vias and optimizing parameters of differential vias 
by simulation in high-speed backplane passive links. The parameters to be determined 
are (1) the diameter of the pad and reverse pad; (2) the depth of the via; (3) the number of 
return vias; (4) the distance between return via and signal via; (5) the tear drop angle. 



Electronics 2021, 10, 1773 14 of 18 
 

 

Since there are many parameters to be determined, the control variable method was 
adopted in this paper, and the final result of simulation is shown in Figure 12b. 

 
Figure 12. (a) Comparison of circular reverse pad (red line) and joint reverse pad (blue line, the best 
parameters are not used); (b) insertion loss of strip coplanar waveguide with optimized vias’ rele-
vant parameters. 

Through the simulation analysis, using joint reverse pad and circular reverse pad, 
the impedance fluctuations are 7 and 15 Ω, respectively, as shown in Figure 12a. There-
fore, the parameters will be optimized based on the joint reverse pads. The best parame-
ters are as follows: pad diameter is 14 mil, reverse pad diameter is 45 mil, via stump depth 
is 20 mil, six return via, distance between return via and signal via is 35 mil, tear angle is 
30 degrees. Figure 12b shows that the impedance fluctuation of differential vias with op-
timal parameters is 100 ± 3 Ω which can be reduced by 70% compared to 100 ± 10 Ω im-
pedance fluctuation of 100GBASE-KR4 standard. 

3.2. Simulation Results of Overall Optimization 
• Traditional design and simulation of backplane passive link 

Figure 13a shows that the simulated link loss curve fluctuates up and down in the 
standard curve within 10 GHz. Figure 13b shows that the return loss curve of the tradi-
tional backplane link is poor in the first half of the whole frequency band, and the loss far 
exceeds the specified value of the standard curve. The reasons for the above phenomenon 
may be due to the excessive loss of the transmission line itself, or the loss caused by the 
via stump and poor return current. To solve the problems in the traditional backplane 
link, an optimization design was carried out. 
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Figure 13. (a) Insertion loss diagram of traditional backplane link S-parameter model; (b) return loss diagram of traditional 
backplane link S-parameter model. 

• Improvement of backplane passive link performance by transmission line and via 
parameters optimization 
The conclusion of the above three parts of optimization is integrated. Using strip co-

planar waveguide transmission line and the metal plate height is 4.5 mil. The parameters 
of reference plane are VSL = 20 mil, W= 40 mil, VVL = 30 mil, VD = 12 mil. Additionally, 
using joint reverse pad shape on differential vias and the parameters of pad diameter is 
14 mil, diameter of reverse pad is 45 mil, via stump depth is 20 mil, six return via, distance 
between return via and signal via is 35 mil, tear angle is 30 degrees. The insertion loss and 
return loss after link optimization are shown in Figure 14a,b. 

 
Figure 14. (a) Insertion loss of backplane link after optimizing via parameters; (b) return loss diagram of backplane link 
after optimizing via parameters. 

The insertion loss and return loss of the link were greatly improved after optimizing 
the design of transmission line and via. Additionally, the link loss meets the specification 
requirements of 100GBASE-KR4. The above simulation results show that the proposed 
method can improve return loss and reduce insertion loss of the backplane passive link. 

3.3. Backplane Passive Link Actual Test Results 
The previous research on the signal integrity of the backplane passive link was used 

to guide the design of the actual test board, and the link channel on the test board was 
optimized according to the simulation results. Finally, the board was used in production 
for actual test verification. The existing vector network analyzer with the frequency of 20 
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GHz in the laboratory was used to test and extract the passive parameters of the test board. 
After the two ports were calibrated by the standard firmware, the S-parameter file of the 
test board in the frequency band of 100 MHz to 20 GHz was extracted through the corre-
sponding test line, and compared with the standard loss curve of 100GBASE-KR4. 

Figure 15a,b shows the insertion loss curve and return loss curve extracted from the 
test board link. The blue curve is the loss curve required by 100GBASE-KR4 specification, 
the pink curve is the link loss curve designed according to the traditional link on the test 
board and the red curve represents the measured loss curve after the link optimization 
according to the optimization scheme in this paper. By comparing the difference between 
the measured results and the simulation results, the actual curve is not as smooth as the 
simulation curve, and the loss is larger than the simulation results. The difference of the 
measured loss curve mainly comes from the matching between the test line and the con-
nector and the loss caused by the test line itself. Figure 15a shows the insertion loss of the 
optimized curve is improved by more than 30 dB than that of the unoptimized curve at 
11.45 GHz and Figure 15b shows the return loss increased from 5 dB to 15 dB, it can be 
seen that the optimized link insertion loss and return loss are better than the non-opti-
mized link. 

 
Figure 15. (a) Insertion loss diagram of actual test; (b) return loss diagram of actual test. 

4. Discussion 
In in order to meet the Ethernet switch to reach the 100GBASE-KR backplane Ether-

net specification, the signal integrity of the transmission line of the passive link was stud-
ied. This paper innovatively proposed the strip coplanar waveguide transmission line 
model to reduce the insertion loss and improve the return loss. The optimal heights which 
have the greatest influence on loss of single-ended coplanar waveguide and differential 
coplanar waveguide are 4.5 mil and 4 mil, respectively. The return loss in this paper is 20 
dB, which is 10 dB higher than the full-wave 3D simulation experiment of transmission 
line carried out by Peerouz Amleshi [13]. The simulation results show that when the op-
timal parameters are VSL = 20 mil, W = 40 mil, VVL = 30 mil and VD = 12 mil, the −1 dB 
bandwidth has no resonant point in the DC ~ 60 GHz band, which is 50% higher than 40 
GHz bandwidth on the simulation of the 40 Gbps signal transmission studied by Chang 
Fei Yee [14]. 

The equivalent circuit model of differential vias was innovatively established to re-
duce the impedance fluctuation and meet the transmission line impedance matching and 
the finite element simulation was carried out. The optimal parameters are pad diameter 
is 14 mil, reverse pad diameter is 45 mil, via stump depth is 20 mil, six return vias, distance 
between return via and signal via is 35 mil, tear angle is 30 degrees. The impedance fluc-
tuation of differential vias can be reduced to 100 ± 3 Ω, which is 70% better than the im-
pedance fluctuation standard (100 ± 10 Ω) of 100GBASE-KR4. 

The overall simulation results meet the 100GBASE-KR4 backplane Ethernet specifi-
cation, and the validity and reliability of signal transmission can be guaranteed. Actual 
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experimental results show that the performance of the whole transmission link is im-
proved. We can apply similar approach in design and optimization of other 25 Gbps back-
plane systems. 

In this paper, the modeling study of transmission line does not consider the influence 
of copper foil roughness, which is one of the important factors causing transmission loss. 
For the transmission line model of passive link, only the influence of the transmission 
line’s own parameters on the characteristic impedance and loss is considered at present, 
but the interaction between different transmission lines is not considered. Crosstalk be-
tween transmission lines is also an important factor affecting link performance in high 
frequency circuits. 

5. Conclusions 
This paper provides a good research strategy, from the mathematical modeling of the 

hardware circuit to the derivation of the main factors affecting the performance of trans-
mission line, to the use of control variables for the method of finite element simulation of 
the optimal parameters. The backboard link was applied to the Ethernet switch to achieve 
single channel 25 Gbps transmission rate and meet the 100GBASE-KR backplane Ethernet 
specification. The −1 dB bandwidth transmitted in this paper is 60 GHz, which is beyond 
the bandwidth set by the specification, laying a good foundation for the subsequent ap-
plication of the higher version of Ethernet transmission specification. We only built the 
model and simulated the transmission line part of high-speed backplane passive link. 
There remains much more to do in our future work; we will explore the impact of opti-
mizing the size and shape of the reverse pad in different layers on the link performance. 
Additionally, in the actual circuit design, from the transmission line to the via itself is a 
discontinuity, and the subsequent research can carry out the corresponding modeling 
analysis for this discontinuity. 
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