
electronics

Article

Bandwidth-Aware Rescheduling Mechanism in SDN-Based
Data Center Networks

Ming-Chin Chuang 1,*, Chia-Cheng Yen 2 and Chia-Jui Hung 1

����������
�������

Citation: Chuang, M.-C.; Yen, C.-C.;

Hung, C.-J. Bandwidth-Aware

Rescheduling Mechanism in

SDN-Based Data Center Networks.

Electronics 2021, 10, 1774. https://

doi.org/10.3390/electronics10151774

Academic Editor: Danda B. Rawat

Received: 6 June 2021

Accepted: 23 July 2021

Published: 24 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science and Information Engineering, China University of Technology,
Taipei 11695, Taiwan; davidhung419@gmail.com

2 Department of Computer Science, University of California, Davis, CA 95616, USA; ccyen@ucdavis.edu
* Correspondence: speedboy@cute.edu.tw

Abstract: Recently, with the increase in network bandwidth, various cloud computing applications
have become popular. A large number of network data packets will be generated in such a net-
work. However, most existing network architectures cannot effectively handle big data, thereby
necessitating an efficient mechanism to reduce task completion time when large amounts of data
are processed in data center networks. Unfortunately, achieving the minimum task completion
time in the Hadoop system is an NP-complete problem. Although many studies have proposed
schemes for improving network performance, they have shortcomings that degrade their perfor-
mance. For this reason, in this study, we propose a centralized solution, called the bandwidth-aware
rescheduling (BARE) mechanism for software-defined network (SDN)-based data center networks.
BARE improves network performance by employing a prefetching mechanism and a centralized
network monitor to collect global information, sorting out the locality data process, splitting tasks,
and executing a rescheduling mechanism with a scheduler to reduce task completion time. Finally,
we used simulations to demonstrate our scheme’s effectiveness. Simulation results show that our
scheme outperforms other existing schemes in terms of task completion time and the ratio of data
locality.

Keywords: software-defined network; rescheduling; bandwidth-aware; Hadoop

1. Introduction

Recently, several cloud application services [1,2] have been proposed due to an increase
in network bandwidth. Many conceptual applications, such as cloud-based artificial
intelligence services, remote patient–doctor telemedicine, real-time mixed reality, and big
data collection and analysis in industrial Internet-of-Things applications, will be realized in
the near future. In this case, large amounts of data are generated and transmitted through
networks. Many well-known cloud service providers (e.g., Google, Microsoft, Amazon,
Facebook, and Salesforce) have deployed multiple data centers in multiple locations to
provide customers with quick access to their services and improve user experience.

In order to process data efficiently and concurrently on a large scale, an open-source
Hadoop [3] is proposed. Hadoop provides a software framework for distributed storage
and processing of big data using the MapReduce model [4]. One of the challenges in cloud
computing is developing an efficient job management scheme in data centers. A job is
referred to as a request, and local or remote nodes are required to complete the job and
return a result. As the number of job requests increases in the future, the computation load
of data centers will also increase. Although many studies [5–7] have proposed schemes for
improving the performance of Hadoop, these schemes have shortcomings that degrade
their performance. Therefore, this study aims to find an effective task scheduling method
that overcomes the shortcomings of previous methods, further reducing task completion
time (TCT).

Electronics 2021, 10, 1774. https://doi.org/10.3390/electronics10151774 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics10151774
https://doi.org/10.3390/electronics10151774
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10151774
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10151774?type=check_update&version=2

Electronics 2021, 10, 1774 2 of 17

In addition, several research results [8,9] have confirmed that software-defined net-
works (SDNs) [10] can significantly improve the performance of data centers. In reality,
SDNs have also been widely introduced and adapted in the industry. Therefore, our solu-
tion, known as the bandwidth-aware rescheduling mechanism (BARE), is also based on
SDNs. The core idea of the algorithm is to maximize efficiency by comparing remote task
execution time and data migration time, thereby improving data locality and reducing task
execution time. The main contributions of this study are summarized as follows:

• We formulate a scheduling problem for different computation times of tasks for each
node and propose a task splitting and rescheduling mechanism to reduce the TCT and
raise the ratio of data locality (RDL);

• The proposed algorithm uses a prefetching mechanism to further improve the overall
completion time;

• We performed several simulations to evaluate the algorithm’s efficiency. Simulation
results show that the proposed scheme has better performance in terms of TCT and
data locality ratio.

The remainder of this paper is organized as follows: Section 2 provides a review of
related work. Section 3 describes problem formulation. Section 4 describes the proposed
scheduling scheme, and Section 5 shows the algorithm’s performance results. Section 6
contains some concluding remarks.

2. Related Work
2.1. Software-Defined Network (SDN)

An SDN is an emerging network framework that separates the control plane from the
data plane. There are three layers in an SDN architecture: the application, control, and
infrastructure layers. The application layer uses application programming interfaces to
communicate with controllers. The OpenFlow protocol [11] is the first standardized proto-
col defined between the control and infrastructure layers, allowing network administrators
to determine how data flows should be routed between switches and network entities in
networks. With flexibility and central management characteristics, wireless networks can
benefit from SDN evolution to meet the burgeoning 5G capacity. Studies [12–16] surveyed
several kinds of challenges and issues in SDNs. Figure 1 shows the SDN architecture.

Electronics 2021, 10, x FOR PEER REVIEW 2 of 16

In addition, several research results [8,9] have confirmed that software-defined net-
works (SDNs) [10] can significantly improve the performance of data centers. In reality,
SDNs have also been widely introduced and adapted in the industry. Therefore, our so-
lution, known as the bandwidth-aware rescheduling mechanism (BARE), is also based on
SDNs. The core idea of the algorithm is to maximize efficiency by comparing remote task
execution time and data migration time, thereby improving data locality and reducing
task execution time. The main contributions of this study are summarized as follows:
• We formulate a scheduling problem for different computation times of tasks for each

node and propose a task splitting and rescheduling mechanism to reduce the TCT
and raise the ratio of data locality (RDL);

• The proposed algorithm uses a prefetching mechanism to further improve the overall
completion time;

• We performed several simulations to evaluate the algorithm’s efficiency. Simulation
results show that the proposed scheme has better performance in terms of TCT and
data locality ratio.
The remainder of this paper is organized as follows: Section 2 provides a review of

related work. Section 3 describes problem formulation. Section 4 describes the proposed
scheduling scheme, and Section 5 shows the algorithm’s performance results. Section 6
contains some concluding remarks.

2. Related Work
2.1. Software-Defined Network (SDN)

An SDN is an emerging network framework that separates the control plane from the
data plane. There are three layers in an SDN architecture: the application, control, and infra-
structure layers. The application layer uses application programming interfaces to communi-
cate with controllers. The OpenFlow protocol [11] is the first standardized protocol defined
between the control and infrastructure layers, allowing network administrators to determine
how data flows should be routed between switches and network entities in networks. With
flexibility and central management characteristics, wireless networks can benefit from SDN
evolution to meet the burgeoning 5G capacity. Studies [12–16] surveyed several kinds of chal-
lenges and issues in SDNs. Figure 1 shows the SDN architecture.

Figure 1. SDN (software-defined network) architecture.

2.2. Hadoop Default Scheduler (HDS)
In many cases, the Hadoop system is introduced to handle job scheduling and node

assignments. The goal of the Hadoop default scheduler (HDS) [17] is to find an idle node
and assign jobs to it. In Hadoop, the default scheduler assigns jobs to nodes on a first-in,
first-out (FIFO) basis. However, the job size and the capability of nodes are not considered.

Figure 1. SDN (software-defined network) architecture.

Electronics 2021, 10, 1774 3 of 17

2.2. Hadoop Default Scheduler (HDS)

In many cases, the Hadoop system is introduced to handle job scheduling and node
assignments. The goal of the Hadoop default scheduler (HDS) [17] is to find an idle node
and assign jobs to it. In Hadoop, the default scheduler assigns jobs to nodes on a first-in,
first-out (FIFO) basis. However, the job size and the capability of nodes are not considered.
Therefore, processing delays due to job size and the capability of nodes are expected and
have been evaluated [18]. The HDS randomly compares the execution time of two nodes
and then determines the faster node for tasks. The flowchart of the HDS is shown in
Figure 2. In Figure 3, we assume that the HDS splits a job equally into nine tasks (TK),
taking 9 s to process each task and transfer their replicas randomly to four nodes for
processing data. The movement time of each task is 5 s. Since each node has a previous
job to complete, the initial time varies. Note that during the comparison of the nodes’
completion time, Node 4 has the least amount of time for TK9. If Node 4 does not have a
replica of TK9, the scheduler moves TK9 to Node 4 to process the task. In this example, the
total completion time is 39 s. The HDS does not consider that the transmission time of a
file leads to nonoptimal performance.

Electronics 2021, 10, x FOR PEER REVIEW 3 of 16

Therefore, processing delays due to job size and the capability of nodes are expected and
have been evaluated [18]. The HDS randomly compares the execution time of two nodes
and then determines the faster node for tasks. The flowchart of the HDS is shown in Figure 2.
In Figure 3, we assume that the HDS splits a job equally into nine tasks (TK), taking 9 s to
process each task and transfer their replicas randomly to four nodes for processing data. The
movement time of each task is 5 s. Since each node has a previous job to complete, the initial
time varies. Note that during the comparison of the nodes’ completion time, Node 4 has the
least amount of time for TK9. If Node 4 does not have a replica of TK9, the scheduler moves
TK9 to Node 4 to process the task. In this example, the total completion time is 39 s. The HDS
does not consider that the transmission time of a file leads to nonoptimal performance.

Figure 2. Flowchart of the Hadoop default scheduler.

Figure 3. An example of HDS task assignments.

2.3. Balance-Reduce Scheduler
In order to improve the effectiveness of the HDS, a balance-reduce scheduler (BAR)

scheme [5] is proposed. The scheduler is composed of job and task trackers. Leveraging
the Hadoop and centralized scheduler, the BAR method globally adjusts the tasks and
node assignments of a job. As a result, a job is divided into multiple tasks, and the scheduler

Figure 2. Flowchart of the Hadoop default scheduler.

2.3. Balance-Reduce Scheduler

In order to improve the effectiveness of the HDS, a balance-reduce scheduler (BAR)
scheme [5] is proposed. The scheduler is composed of job and task trackers. Leveraging the
Hadoop and centralized scheduler, the BAR method globally adjusts the tasks and node
assignments of a job. As a result, a job is divided into multiple tasks, and the scheduler
effectively assigns them to available nodes. Figure 4 shows the flowchart of the BAR, which
is a two-phase method. The first phase is similar to the HDS method, i.e., it divides and
assigns tasks to each node. In the second phase, the BAR method searches and evaluates
the time of the current nodes and assigns a task with the longest time length to an idle node
with the least time, thereby reducing the total process time. Following the same example as

Electronics 2021, 10, 1774 4 of 17

the HDS, the BAR method considers the time of moving a task from one node to another. It
then keeps TK9 at its original node in the process. Although there is no movement between
nodes, the overall completion time is reduced to 38 s, as shown in Figure 5.

Electronics 2021, 10, x FOR PEER REVIEW 3 of 16

Therefore, processing delays due to job size and the capability of nodes are expected and
have been evaluated [18]. The HDS randomly compares the execution time of two nodes
and then determines the faster node for tasks. The flowchart of the HDS is shown in Figure 2.
In Figure 3, we assume that the HDS splits a job equally into nine tasks (TK), taking 9 s to
process each task and transfer their replicas randomly to four nodes for processing data. The
movement time of each task is 5 s. Since each node has a previous job to complete, the initial
time varies. Note that during the comparison of the nodes’ completion time, Node 4 has the
least amount of time for TK9. If Node 4 does not have a replica of TK9, the scheduler moves
TK9 to Node 4 to process the task. In this example, the total completion time is 39 s. The HDS
does not consider that the transmission time of a file leads to nonoptimal performance.

Figure 2. Flowchart of the Hadoop default scheduler.

Figure 3. An example of HDS task assignments.

2.3. Balance-Reduce Scheduler
In order to improve the effectiveness of the HDS, a balance-reduce scheduler (BAR)

scheme [5] is proposed. The scheduler is composed of job and task trackers. Leveraging
the Hadoop and centralized scheduler, the BAR method globally adjusts the tasks and
node assignments of a job. As a result, a job is divided into multiple tasks, and the scheduler

Figure 3. An example of HDS task assignments.

Electronics 2021, 10, x FOR PEER REVIEW 4 of 16

effectively assigns them to available nodes. Figure 4 shows the flowchart of the BAR, which
is a two-phase method. The first phase is similar to the HDS method, i.e., it divides and
assigns tasks to each node. In the second phase, the BAR method searches and evaluates the
time of the current nodes and assigns a task with the longest time length to an idle node
with the least time, thereby reducing the total process time. Following the same example as
the HDS, the BAR method considers the time of moving a task from one node to another. It
then keeps TK9 at its original node in the process. Although there is no movement between
nodes, the overall completion time is reduced to 38 s, as shown in Figure 5.

Figure 4. Flowchart of BAR (balance-reduce scheduler).

Figure 5. An example of BAR task assignments.

2.4. Bandwidth-Aware Scheduling with SDN in Hadoop
Bandwidth-aware scheduling with SDNs in Hadoop (BASS) [6,7] is a method based

on the BAR and Hadoop. BASS treats task efficiency as an NP-complete problem [19–21]
which defines, schedules, and evaluates the cost of tasks and then simulates tasks to an
optimal solution after complex computation. In addition, the BASS method considers the

Figure 4. Flowchart of BAR (balance-reduce scheduler).

Electronics 2021, 10, 1774 5 of 17

Electronics 2021, 10, x FOR PEER REVIEW 4 of 16

effectively assigns them to available nodes. Figure 4 shows the flowchart of the BAR, which
is a two-phase method. The first phase is similar to the HDS method, i.e., it divides and
assigns tasks to each node. In the second phase, the BAR method searches and evaluates the
time of the current nodes and assigns a task with the longest time length to an idle node
with the least time, thereby reducing the total process time. Following the same example as
the HDS, the BAR method considers the time of moving a task from one node to another. It
then keeps TK9 at its original node in the process. Although there is no movement between
nodes, the overall completion time is reduced to 38 s, as shown in Figure 5.

Figure 4. Flowchart of BAR (balance-reduce scheduler).

Figure 5. An example of BAR task assignments.

2.4. Bandwidth-Aware Scheduling with SDN in Hadoop
Bandwidth-aware scheduling with SDNs in Hadoop (BASS) [6,7] is a method based

on the BAR and Hadoop. BASS treats task efficiency as an NP-complete problem [19–21]
which defines, schedules, and evaluates the cost of tasks and then simulates tasks to an
optimal solution after complex computation. In addition, the BASS method considers the

Figure 5. An example of BAR task assignments.

2.4. Bandwidth-Aware Scheduling with SDN in Hadoop

Bandwidth-aware scheduling with SDNs in Hadoop (BASS) [6,7] is a method based
on the BAR and Hadoop. BASS treats task efficiency as an NP-complete problem [19–21]
which defines, schedules, and evaluates the cost of tasks and then simulates tasks to an
optimal solution after complex computation. In addition, the BASS method considers
the bandwidth of each node, and tasks are assigned to nodes that have the bandwidth to
handle such tasks. Then, the Pre-BASS scheme, which adds a prefetching scheme based
on BASS, is proposed. Figure 6 shows the flowchart of BASS and Pre-BASS, and Figure 7
shows an example of task assignments by BASS. TK1 only has a replica on Node 2 and
Node 3, and their process completion times are 18 and 29 s, respectively. From a global
perspective, Node 1 has the least completion time, including movement time for the task.
The total completion time of TK1 is 17 s; this means that Node 1 is the best choice among
the nodes. Therefore, the overall completion time for the BASS method is only 35 s.

With another method [7], leveraging SDN scheduler features, the status of each node
can be prefetched to the SDN scheduler. Then, when a new job arrives, the scheduler
divides the TK evenly, without creating a replica to the node, and assigns the tasks one by
one to the nodes with the shortest completion time. In Figure 8, the movement time of TK1
is not required; the overall completion time of the prefetch method is 34 s, and TK8 becomes
the last task to be completed among all nine tasks. Figure 9 shows the performance of
different methods in terms of completion time. In the figure, the Pre-BASS scheme has the
shortest completion time. However, in the Pre-BASS method, each node still completes the
task at a different time.

2.5. Research Gap

We summarize the research gap as follows:

• In previous studies [5,6,17], the processing time of each task is the same by default.
However, in reality, each node’s performance can differ in multiple ways, that is,
different hardware and processors are used for different nodes. In this study, we
considered the different computation times of tasks on nodes.

• Previous studies [5,6,17] focus on task assignment and scheduling mechanisms. This
study highlights the advantages of splitting tasks and rescheduling mechanisms,
thereby improving network performance.

Electronics 2021, 10, 1774 6 of 17

• This study also confirms that the use of a prefetching mechanism can improve perfor-
mance compared with a non-prefetching mechanism.

Electronics 2021, 10, x FOR PEER REVIEW 5 of 16

bandwidth of each node, and tasks are assigned to nodes that have the bandwidth to han-
dle such tasks. Then, the Pre-BASS scheme, which adds a prefetching scheme based on
BASS, is proposed. Figure 6 shows the flowchart of BASS and Pre-BASS, and Figure 7 shows
an example of task assignments by BASS. TK1 only has a replica on Node 2 and Node 3, and
their process completion times are 18 and 29 s, respectively. From a global perspective, Node
1 has the least completion time, including movement time for the task. The total completion
time of TK1 is 17 s; this means that Node 1 is the best choice among the nodes. Therefore,
the overall completion time for the BASS method is only 35 s.

Figure 6. Flowchart of BASS (bandwidth-aware scheduling) and Pre-BASS.

Figure 7. Example of BASS task assignments.

Figure 6. Flowchart of BASS (bandwidth-aware scheduling) and Pre-BASS.

Electronics 2021, 10, x FOR PEER REVIEW 5 of 16

bandwidth of each node, and tasks are assigned to nodes that have the bandwidth to han-
dle such tasks. Then, the Pre-BASS scheme, which adds a prefetching scheme based on
BASS, is proposed. Figure 6 shows the flowchart of BASS and Pre-BASS, and Figure 7 shows
an example of task assignments by BASS. TK1 only has a replica on Node 2 and Node 3, and
their process completion times are 18 and 29 s, respectively. From a global perspective, Node
1 has the least completion time, including movement time for the task. The total completion
time of TK1 is 17 s; this means that Node 1 is the best choice among the nodes. Therefore,
the overall completion time for the BASS method is only 35 s.

Figure 6. Flowchart of BASS (bandwidth-aware scheduling) and Pre-BASS.

Figure 7. Example of BASS task assignments. Figure 7. Example of BASS task assignments.

Electronics 2021, 10, 1774 7 of 17

Electronics 2021, 10, x FOR PEER REVIEW 6 of 16

With another method [7], leveraging SDN scheduler features, the status of each node
can be prefetched to the SDN scheduler. Then, when a new job arrives, the scheduler di-
vides the TK evenly, without creating a replica to the node, and assigns the tasks one by
one to the nodes with the shortest completion time. In Figure 8, the movement time of
TK1 is not required; the overall completion time of the prefetch method is 34 s, and TK8
becomes the last task to be completed among all nine tasks. Figure 9 shows the perfor-
mance of different methods in terms of completion time. In the figure, the Pre-BASS
scheme has the shortest completion time. However, in the Pre-BASS method, each node
still completes the task at a different time.

Figure 8. Example of Pre-BASS task assignments.

Figure 9. Job completion time in different methods.

2.5. Research Gap
We summarize the research gap as follows:

• In previous studies [5,6,17], the processing time of each task is the same by default.
However, in reality, each node’s performance can differ in multiple ways, that is,
different hardware and processors are used for different nodes. In this study, we con-
sidered the different computation times of tasks on nodes.

Figure 8. Example of Pre-BASS task assignments.

Electronics 2021, 10, x FOR PEER REVIEW 6 of 16

With another method [7], leveraging SDN scheduler features, the status of each node
can be prefetched to the SDN scheduler. Then, when a new job arrives, the scheduler di-
vides the TK evenly, without creating a replica to the node, and assigns the tasks one by
one to the nodes with the shortest completion time. In Figure 8, the movement time of
TK1 is not required; the overall completion time of the prefetch method is 34 s, and TK8
becomes the last task to be completed among all nine tasks. Figure 9 shows the perfor-
mance of different methods in terms of completion time. In the figure, the Pre-BASS
scheme has the shortest completion time. However, in the Pre-BASS method, each node
still completes the task at a different time.

Figure 8. Example of Pre-BASS task assignments.

Figure 9. Job completion time in different methods.

2.5. Research Gap
We summarize the research gap as follows:

• In previous studies [5,6,17], the processing time of each task is the same by default.
However, in reality, each node’s performance can differ in multiple ways, that is,
different hardware and processors are used for different nodes. In this study, we con-
sidered the different computation times of tasks on nodes.

Figure 9. Job completion time in different methods.

3. Problem Formalization

This section describes problem formalization. Table 1 shows the notations used in the
study: TKi denotes a task i within a Hadoop job, NDj denotes a node j in a Hadoop data
center, SZi denotes the size of the input split data for TKi assigned to NDj; TMi,j denotes
the data movement time from NDi to NDj; TPi,j denotes the computation time of task i on
node j; TEi,j denotes the execution time of task i on node j; TSi denotes the segmentation
time of task I; NPj denotes the processing capacity of node j; Idlej denotes the time when
NDj becomes idle; Ci,j denotes the completion time of TKi; BWj,k denotes the bandwidth
between NDj and NDk; and BWab denotes the available bandwidth of a link. Based on the
above notations, we obtain the following equations.

TMi,j = SZi/BWi,j, (1)

Electronics 2021, 10, 1774 8 of 17

TPi,j = SZi/NPj, (2)

TEi,j = TMi,j + TPi,j, (3)

Ci,j = TEi,j + Idlej. (4)

Table 1. Notations.

Notations Descriptions

TKi A task i within a Hadoop job

NDj A node j in the Hadoop data center

SZi Size of input split data for TKi assigned to NDj

TMi,j Data movement time from NDi to NDj

TPi,j The computation time of task i on node j

TEi,j The execution time of task i on node j

TSi Segmentation time of task i

NPj Process capacity of node j

Idlej The time when NDj becomes idle

Ci,j The completion time of TKi

BWj,k Bandwidth between NDj and NDk

BWab The available bandwidth of a link

Previous works do not account for the computational capacity of each node, assuming
that the nodes have the same computation capacity. In this study, we consider a more
realistic situation and discuss this part in detail. In Equation (2), the computation time of
task i on node j (i.e., TPi,j) is obtained in order that SZi divided by NPj is TPi,j. Equation (2)
also denotes that each node has a different computational capacity, resulting in each node
having a different TPi,j. In Equation (5), the objective function is to find an available node
that can produce the shortest completion time among all n nodes of the data center:

NDj = argminj Ci,j, (5)

where 1 ≤ j ≤ n. Equation (6) shows the SDN scheduler finding the slowest map or
reducing task TKi to minimize the completion time of an entire job:

min{Ci′,j′ = maxCi,j(1 ≤ i, i′ ≤ m, 1 ≤ j, j′ ≤ n)}, (6)

where m represents the task number of a job and n is the node number of the Hadoop data
center.

4. Proposed Scheme
4.1. Bandwidth-Aware Rescheduling

This section describes the proposed scheme BARE for SDN-based data centers. BARE
includes four parts: global information collection, the task assignment scheme, the task
splitting scheme, and the task rescheduling algorithm. Figure 10 shows the proposed BARE
architecture. The dotted line represents control signaling, and the solid line represents data
flow. One job can be divided into many small tasks. The scheduler module is responsible
for scheduling tasks. If a task has a different priority, it is put in different queues. The
number of block replicas is set to three, which is the default setting in Hadoop. Since most
cloud computing systems are implemented on virtual hardware [22,23], data transfer cost
significantly influences system performance [24,25].

Electronics 2021, 10, 1774 9 of 17

Electronics 2021, 10, x FOR PEER REVIEW 8 of 16

BWab The available bandwidth of a link

4. Proposed Scheme

4.1. Bandwidth-Aware Rescheduling

This section describes the proposed scheme BARE for SDN-based data centers. BARE

includes four parts: global information collection, the task assignment scheme, the task

splitting scheme, and the task rescheduling algorithm. Figure 10 shows the proposed

BARE architecture. The dotted line represents control signaling, and the solid line repre-

sents data flow. One job can be divided into many small tasks. The scheduler module is

responsible for scheduling tasks. If a task has a different priority, it is put in different

queues. The number of block replicas is set to three, which is the default setting in Ha-

doop. Since most cloud computing systems are implemented on virtual hardware [22,23],

data transfer cost significantly influences system performance [24,25].

Figure 10. BARE architecture.

4.2. Global Information Collection

This section introduces the global information collection behavior of the centralized

network monitor. In this study, we assume that each node periodically updates its infor-

mation, and new job requests are held in the waiting queue. Node information includes

the computational capacity of the node, the bandwidth between node i and node j, the ex-

pected idle time, and the current workload. The network monitor then passes the infor-

Application layer

Infrastructure layer

Control layer

Node 1

SDN controller

Node 2 Node 3

1

2

1

3

3

4

Data

transfer

Data

transfer

Block

Replicas

Scheduler Module

Northbound API

Southbound API

QoS policy

Network Monitor

Figure 10. BARE architecture.

4.2. Global Information Collection

This section introduces the global information collection behavior of the centralized
network monitor. In this study, we assume that each node periodically updates its informa-
tion, and new job requests are held in the waiting queue. Node information includes the
computational capacity of the node, the bandwidth between node i and node j, the expected
idle time, and the current workload. The network monitor then passes the information to
the scheduler module. In addition, the scheduler module manages new job requests accord-
ing to the scheduling policy. When the scheduler module obtains sufficient information, it
can compute the value of TMi,j, TPi,j, TEi,j, and Ci,j through Equations (1)–(4).

4.3. Task Assignment Scheme

The main scheduling challenge in MapReduce is the requirement to place the compu-
tation close to data. Therefore, we hope that data are computed at the local node to increase
throughput. Figure 11 shows the Hadoop MapReduce architecture. After selecting a job,
the scheduler picks the map task with data closest to the slave. The priority order of task
assignment is as follows. Node locality is ranked above rack locality, and rack locality is
ranked above a remote node. The scheduler chooses another rack or other remote nodes to
compute the data when the local node is overloaded. In the task assignment phase, our

Electronics 2021, 10, 1774 10 of 17

BARE scheme is similar to the Pre-BASS scheme. BARE also uses the prefetching scheme to
guarantee that the allocated tasks are optimal in terms of completion time. Then, the sched-
uler checks each remote task and allows its input split data to be prefetched/transferred
before the available idle time, as early as possible. The final decision depends on the
real-time residue bandwidth and computational capacity of the node. Note that when
BARE prefetches a data block, it always moves the block starting with the least loaded
node storing the replica to minimize the impact on overall performance.

Electronics 2021, 10, x FOR PEER REVIEW 9 of 16

mation to the scheduler module. In addition, the scheduler module manages new job re-
quests according to the scheduling policy. When the scheduler module obtains sufficient
information, it can compute the value of TMi,j, TPi,j, TEi,j, and Ci,j through Equations (1)–(4).

4.3. Task Assignment Scheme
The main scheduling challenge in MapReduce is the requirement to place the com-

putation close to data. Therefore, we hope that data are computed at the local node to
increase throughput. Figure 11 shows the Hadoop MapReduce architecture. After select-
ing a job, the scheduler picks the map task with data closest to the slave. The priority order
of task assignment is as follows. Node locality is ranked above rack locality, and rack lo-
cality is ranked above a remote node. The scheduler chooses another rack or other remote
nodes to compute the data when the local node is overloaded. In the task assignment
phase, our BARE scheme is similar to the Pre-BASS scheme. BARE also uses the prefetching
scheme to guarantee that the allocated tasks are optimal in terms of completion time. Then,
the scheduler checks each remote task and allows its input split data to be prefetched/trans-
ferred before the available idle time, as early as possible. The final decision depends on the
real-time residue bandwidth and computational capacity of the node. Note that when BARE
prefetches a data block, it always moves the block starting with the least loaded node storing
the replica to minimize the impact on overall performance.

Figure 11. Hadoop MapReduce architecture.

Figures 3, 5, 7, and 8 show that Pre-BASS has a better result because it uses the
prefetching scheme. Moreover, the scheduling algorithm needs to reduce the movement
time of the task (i.e., TMij). Algorithm 1 shows the task assignment algorithm of BARE. The
main differences between BARE and Pre-BASS are their detailed consideration of TPi,j, task
splitting, and rescheduling procedure. The computational capacity of each node is different.
However, the BASS scheme assumes that each node has the same computational capacity.
Therefore, we only modified this part in the task assignment procedure.

Algorithm 1: BARE algorithm
INPUT:
Given the submitted job with m tasks TKi, Idlej, TPij, data size SZi, and the n nodes NDj in
a Hadoop cluster.
EXECUTE:

SDN controller performs the prefetching scheme

FOR (i=1 to m)

Figure 11. Hadoop MapReduce architecture.

Figures 3, 5, 7 and 8 show that Pre-BASS has a better result because it uses the
prefetching scheme. Moreover, the scheduling algorithm needs to reduce the movement
time of the task (i.e., TMij). Algorithm 1 shows the task assignment algorithm of BARE.
The main differences between BARE and Pre-BASS are their detailed consideration of TPi,j,
task splitting, and rescheduling procedure. The computational capacity of each node is
different. However, the BASS scheme assumes that each node has the same computational
capacity. Therefore, we only modified this part in the task assignment procedure.

4.4. BARE Rescheduling

In this study, we propose an improvement scheme for reducing the completion time
in SDNs. The BASS method divides every job equally into multiple tasks using the SDN
scheduler. In previous studies [5,6,17], the processing capacity of every node is the same
by default. However, in reality, a node’s performance can differ in multiple ways; that is,
different hardware and processors are used in different nodes, and many users use the
bandwidth at the same nodes. The above factors influence the length of time required to
complete a single task. It is important to understand how to manage the TP of each task for
each node while also improving the completion time. Based on the FIFO HDS structure,
the last two tasks are factors that influence the overall completion time. Referring to the
task workflows in Section 2 for the four models, TK9 is the last task to complete, and only
the Pre-BASS model has TK8 as the last task to complete. Therefore, we chose to focus on
the last two tasks to reduce overall completion time. Concerning the split ratio, the SDN
controller’s decision is based on the TP of each node. Figure 12 shows an example of BARE.
To easily present the advantages of BARE rescheduling, we assume that the TP of each
node is the same (i.e., TP is 9 s). In the same environment, our scheme has the best result.
In the figure, we split the last two tasks into four subtasks:TK8-1, TK8-2, TK9-1, and TK9-2.
The subtasks are then moved to nodes with the least completion time to reduce the overall
completion time of a job. In this case, the TCT of BARE is 32 s. It can be inferred that the

Electronics 2021, 10, 1774 11 of 17

advantages of BARE are more obvious if we consider the different TPs of each node. The
following algorithm is added to the original BASS algorithm, as shown in Algorithm 2.
Table 2 describes the notations.

Algorithm 1: BARE algorithm

INPUT:
Given the submitted job with m tasks TKi, Idlej, TPij, data size SZi, and the n nodes NDj in a
Hadoop cluster.
EXECUTE:

SDN controller performs the prefetching scheme
FOR (i=1 to m)

Application layer module starts to:

(1) Network monitor collects global information and talks to the scheduler module
(2) Scheduler module computes the idle time
(3) Assign a task to the node (priority: local node > rack node > remote node)

• TEnew > TMi,j+TPnew → without change
• TEnew =TMi,j+TPnew → without change
• TEnew < TMi,j+TPnew → change

IF (task completion time of each node < threshold)
Without change

ELSE

(1) Perform the task splitting
(2) Rescheduling

End IF
End FOR
Return the assignment results for all m tasks.

Algorithm 2: Task splitting and rescheduling algorithm

With job scheduler task assignment to split last 2 tasks:
TKm-1 = STKm-1_1 + STKm-1_2

TKm-2 = STKm-2_1 + STKm-2_2
for (z= 1, 2) do

Find NDloc with available idle time Idleloc for STKm-z_2
Find NDminnow with available idle time Idleminnow for STKm-z_2
If (NDminnow != NDloc && Idleloc > Idleminnow + (1-SPm-z)TM + (1-SPm-z)TP)
Assign STKm-z_2 to NDloc ≡ NDminnow
end if
end for

In this case, the difference in TP is solved because the last two tasks are evenly split
into four subtasks in BARE. Then, an evaluation for the node with the least completion time,
the subtask movement time, and the processing time is performed. After the evaluation,
if a new node with the second portion of the subtask can complete the task faster than
the original node, the second portion of the subtask is transferred to the new node. This
evaluation is performed twice for the last two tasks. Note that the new evaluation time Ci,j
includes (1 − SPm-z)TMi,j + (1 − SPm-z)TPi,j + Idleminnow.

Electronics 2021, 10, 1774 12 of 17

Electronics 2021, 10, x FOR PEER REVIEW 11 of 16

Figure 12. Example of BARE (bandwidth-aware rescheduling).

Algorithm 2: Task splitting and rescheduling algorithm
With job scheduler task assignment to split last 2 tasks:
 TKm-1 = STKm-1_1 + STKm-1_2
 TKm-2 = STKm-2_1 + STKm-2_2
for (z= 1, 2) do
 Find NDloc with available idle time Idleloc for STKm-z_2
 Find NDminnow with available idle time Idleminnow for STKm-z_2
 If (NDminnow != NDloc && Idleloc > Idleminnow + (1-SPm-z)TM + (1-SPm-z)TP)
 Assign STKm-z_2 to NDloc ≡ NDminnow
 end if
end for

Table 2. Notations.

Variables. Meaning
TKm-z, z = 1, 2 The last 1 or 2 tasks among the split job
SPm-z, z = 1, 2 Split ratio, 0 ≦ SPm-z ≦ 1

STKm-z_1 The first portion of the subtask from TKm-z, TP = SPm-z%
STKm-z_2 The second portion of the subtask from TKm-z, TP = (1 − SPm-z)%

In this case, the difference in TP is solved because the last two tasks are evenly split
into four subtasks in BARE. Then, an evaluation for the node with the least completion
time, the subtask movement time, and the processing time is performed. After the evalu-
ation, if a new node with the second portion of the subtask can complete the task faster
than the original node, the second portion of the subtask is transferred to the new node.
This evaluation is performed twice for the last two tasks. Note that the new evaluation
time Ci,j includes (1 − SPm-z)TMi,j + (1 − SPm-z)TPi,j + Idleminnow.

5. Performance Evaluation
This study considers two performance metrics: the TCT and RDL. We compared the

BARE scheme with the HDS, BAR, BASS, and Pre-BASS schemes. Table 3 shows the sim-
ulation parameters. We set the number of tasks from 10–100, the number of node ranges
from 10–100, and the initial workload of each node from 10%–80%. The bandwidth between
nodes was 100–1000 Mb/s, the data size was 100–1000 MB, and the number of block replicas

Figure 12. Example of BARE (bandwidth-aware rescheduling).

Table 2. Notations.

Variables Meaning

TKm-z, z = 1, 2 The last 1 or 2 tasks among the split job

SPm-z, z = 1, 2 Split ratio, 0 5 SPm-z 5 1

STKm-z_1 The first portion of the subtask from TKm-z, TP = SPm-z%

STKm-z_2 The second portion of the subtask from TKm-z, TP = (1 − SPm-z)%

5. Performance Evaluation

This study considers two performance metrics: the TCT and RDL. We compared
the BARE scheme with the HDS, BAR, BASS, and Pre-BASS schemes. Table 3 shows the
simulation parameters. We set the number of tasks from 10–100, the number of node
ranges from 10–100, and the initial workload of each node from 10%–80%. The bandwidth
between nodes was 100–1000 Mb/s, the data size was 100–1000 MB, and the number of
block replicas was three. Each simulation test was run 10 times, and we used the average
value for comparison.

1. TCT: A shorter TCT means better system performance. We hope the request of the
user can be completed as fast as possible.

2. RDL: The priority order of task assignment is as follows. Node locality is ranked
above rack locality, and rack locality is ranked above a remote node; this is because
the performance of node locality is the best. If the RDL is high, it also means the
scheduling algorithm is better. Equation (7) shows the RDL.

RDL =
numbers o f data locality

numbers o f total data
. (7)

Electronics 2021, 10, 1774 13 of 17

Table 3. Simulation parameters.

Parameters Values

Number of tasks 10–100

Number of nodes 10–100

The initial workload of each node 10%–80%

Bandwidth between nodes 100–10,000 Mb/s

Data size 100–1000 MB

Block replicas 3

Figures 13–15 show the TCT performance with different parameters, including band-
width, data size, and the number of nodes. Figure 13 shows that BARE has the best result.
The HDS does not use the bandwidth as a parameter for task allocation. BAR is based on
the allocation of the HDS and attempts to adjust the latest task completed on a job. If the
latest task completed in other nodes can be completed in advance, the task is redistributed
to reduce the job completion time. BASS also uses network bandwidth as a parameter
for task assignment. Before task assignment, however, the maximum bandwidth in a
network needs to be sliced by time. Compared with BARE, this is an additional task, and
BARE makes full use of a network’s maximum capacity. The remaining bandwidth is more
suitable for actual scenarios. In addition, when the bandwidth is sufficiently large, the data
movement time (i.e., TMij) from node i to node j approaches zero. Therefore, the TCT of
all methods will be drastically reduced. Figure 14 shows a trend that the TCT decreases
when nodes are added; this is because more nodes can reduce the amount of workload.
According to the results, BARE significantly reduces the TCT using task splitting and
rescheduling mechanisms. Note that more nodes signify more cost. Performance and cost
are a trade-off problem. This issue is beyond the scope of our study. Figure 15 shows that
the bigger the data size, the longer the TCT. BARE is proven to have the best results. In a
large data size environment (i.e., data size is 1000 MB), BARE improves the performance of
the HDS, BAR, BASS, and Pre-BASS by 45%, 31%, 12%, and 10%, respectively. The task
splitting and rescheduling mechanisms can effectively shorten the TCT.

Electronics 2021, 10, x FOR PEER REVIEW 13 of 16

Figure 13. Effect of bandwidth on TCT (number of nodes is 30). TCT: task completion time.

Figure 14. Effect of node number on TCT (bandwidth is 400 MB/s).

Figure 15. Effect of data size on TCT (bandwidth is 400 MB/s).

Figures 16–18 show the performance of the RDL with different parameters. Typically,
the processing time of a task is short when data are allocated to the local node. Therefore,
the RDL is a key factor for scheduling algorithms in data centers. The RDL of BARE and
Pre-BASS is high because they use a prefetching mechanism in the task assignment phase.
The prefetching scheme guarantees that the allocated tasks are all optimal in terms of
completion time. Generally, the TCT reduces when tasks are assigned to the same local
node. Figure 16 shows that the bandwidth of the link increases (i.e., signifying that TMi,j
decreases), and the RDL is slightly decreased. When the movement time and processing
time of other rocks are less than the processing time of the local rack, the data are not
processed locally and are then transferred to other racks (i.e., it means the RDL decreases).
Interestingly, we can observe a specific situation taking place. When the bandwidth is
sufficiently large, the overall execution time and RDL are reduced; this is because the data
movement time is close to zero. Therefore, when the execution time of the remote node,

0
20
40
60
80

100
120
140
160

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1,
00

0
5,

00
0

10
,0

00

TC
T

(s
)

Bandwidth (Mb/s)

HDS
BAR
BASS
Pre-BASS
BARE

110
115
120
125
130
135
140
145
150

10 20 30 40 50 60 70 80 90 100

TC
T

(s
)

Number of node

HDS
BAR
BASS
Pre-BASS
BARE

0

50

100

150

200

250

TC
T

(s
)

Data size (MB)

HDS
BAR
BASS
Pre-BASS
BARE

Figure 13. Effect of bandwidth on TCT (number of nodes is 30). TCT: task completion time.

Electronics 2021, 10, 1774 14 of 17

Electronics 2021, 10, x FOR PEER REVIEW 13 of 16

Figure 13. Effect of bandwidth on TCT (number of nodes is 30). TCT: task completion time.

Figure 14. Effect of node number on TCT (bandwidth is 400 MB/s).

Figure 15. Effect of data size on TCT (bandwidth is 400 MB/s).

Figures 16–18 show the performance of the RDL with different parameters. Typically,
the processing time of a task is short when data are allocated to the local node. Therefore,
the RDL is a key factor for scheduling algorithms in data centers. The RDL of BARE and
Pre-BASS is high because they use a prefetching mechanism in the task assignment phase.
The prefetching scheme guarantees that the allocated tasks are all optimal in terms of
completion time. Generally, the TCT reduces when tasks are assigned to the same local
node. Figure 16 shows that the bandwidth of the link increases (i.e., signifying that TMi,j
decreases), and the RDL is slightly decreased. When the movement time and processing
time of other rocks are less than the processing time of the local rack, the data are not
processed locally and are then transferred to other racks (i.e., it means the RDL decreases).
Interestingly, we can observe a specific situation taking place. When the bandwidth is
sufficiently large, the overall execution time and RDL are reduced; this is because the data
movement time is close to zero. Therefore, when the execution time of the remote node,

0
20
40
60
80

100
120
140
160

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1,
00

0
5,

00
0

10
,0

00

TC
T

(s
)

Bandwidth (Mb/s)

HDS
BAR
BASS
Pre-BASS
BARE

110
115
120
125
130
135
140
145
150

10 20 30 40 50 60 70 80 90 100

TC
T

(s
)

Number of node

HDS
BAR
BASS
Pre-BASS
BARE

0

50

100

150

200

250

TC
T

(s
)

Data size (MB)

HDS
BAR
BASS
Pre-BASS
BARE

Figure 14. Effect of node number on TCT (bandwidth is 400 MB/s).

Electronics 2021, 10, x FOR PEER REVIEW 13 of 16

Figure 13. Effect of bandwidth on TCT (number of nodes is 30). TCT: task completion time.

Figure 14. Effect of node number on TCT (bandwidth is 400 MB/s).

Figure 15. Effect of data size on TCT (bandwidth is 400 MB/s).

Figures 16–18 show the performance of the RDL with different parameters. Typically,
the processing time of a task is short when data are allocated to the local node. Therefore,
the RDL is a key factor for scheduling algorithms in data centers. The RDL of BARE and
Pre-BASS is high because they use a prefetching mechanism in the task assignment phase.
The prefetching scheme guarantees that the allocated tasks are all optimal in terms of
completion time. Generally, the TCT reduces when tasks are assigned to the same local
node. Figure 16 shows that the bandwidth of the link increases (i.e., signifying that TMi,j
decreases), and the RDL is slightly decreased. When the movement time and processing
time of other rocks are less than the processing time of the local rack, the data are not
processed locally and are then transferred to other racks (i.e., it means the RDL decreases).
Interestingly, we can observe a specific situation taking place. When the bandwidth is
sufficiently large, the overall execution time and RDL are reduced; this is because the data
movement time is close to zero. Therefore, when the execution time of the remote node,

0
20
40
60
80

100
120
140
160

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1,
00

0
5,

00
0

10
,0

00

TC
T

(s
)

Bandwidth (Mb/s)

HDS
BAR
BASS
Pre-BASS
BARE

110
115
120
125
130
135
140
145
150

10 20 30 40 50 60 70 80 90 100

TC
T

(s
)

Number of node

HDS
BAR
BASS
Pre-BASS
BARE

0

50

100

150

200

250

TC
T

(s
)

Data size (MB)

HDS
BAR
BASS
Pre-BASS
BARE

Figure 15. Effect of data size on TCT (bandwidth is 400 MB/s).

Figures 16–18 show the performance of the RDL with different parameters. Typically,
the processing time of a task is short when data are allocated to the local node. Therefore,
the RDL is a key factor for scheduling algorithms in data centers. The RDL of BARE and
Pre-BASS is high because they use a prefetching mechanism in the task assignment phase.
The prefetching scheme guarantees that the allocated tasks are all optimal in terms of
completion time. Generally, the TCT reduces when tasks are assigned to the same local
node. Figure 16 shows that the bandwidth of the link increases (i.e., signifying that TMi,j
decreases), and the RDL is slightly decreased. When the movement time and processing
time of other rocks are less than the processing time of the local rack, the data are not
processed locally and are then transferred to other racks (i.e., it means the RDL decreases).
Interestingly, we can observe a specific situation taking place. When the bandwidth is
sufficiently large, the overall execution time and RDL are reduced; this is because the
data movement time is close to zero. Therefore, when the execution time of the remote
node, along with the data movement time, is less than the execution time of the local node,
the central scheduler will select the remote node to perform the work. In Figure 17, the
number of nodes increases, and the RDL decreases. In Figure 18, the data size increases,
and the RDL also increases. These results emphasize that our BARE scheme works best.
BARE collects global information, uses the prefetching scheme to improve the performance
of the local node, optimally assigns tasks to the most suitable node, and performs the
rescheduling procedure.

Electronics 2021, 10, 1774 15 of 17

Electronics 2021, 10, x FOR PEER REVIEW 14 of 16

along with the data movement time, is less than the execution time of the local node, the
central scheduler will select the remote node to perform the work. In Figure 17, the number
of nodes increases, and the RDL decreases. In Figure 18, the data size increases, and the RDL
also increases. These results emphasize that our BARE scheme works best. BARE collects
global information, uses the prefetching scheme to improve the performance of the local
node, optimally assigns tasks to the most suitable node, and performs the rescheduling pro-
cedure.

Figure 16. Effect of bandwidth on RDL (ratio of data locality).

Figure 17. Effect of node number on RDL.

Figure 18. Effect of data size on RDL.

6. Conclusions
In reality, data centers handle a greater amount of work and more complex situations.

In addition, achieving minimum TCT in the Hadoop system is an NP-complete problem.
Therefore, data center networks need an efficient job scheduling scheme to improve net-
work performance. In this study, we propose a feasible solution in an SDN-based data

0.4

0.6

0.8

1

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1,
00

0
5,

00
0

10
,0

00

R
D

L
(%

)

Bandwidth (Mb/s)

HDS
BAR
BASS
Pre-BASS
BARE

0.75

0.8

0.85

0.9

0.95

1

10 20 30 40 50 60 70 80 90 100

R
D

L
(%

)

Number of node

HDS
BAR
BASS
Pre-BASS
BARE

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
D

L
(%

)

Data size (MB)

HDS
BAR
BASS
Pre-BASS
BARE

Figure 16. Effect of bandwidth on RDL (ratio of data locality).

Electronics 2021, 10, x FOR PEER REVIEW 14 of 16

along with the data movement time, is less than the execution time of the local node, the
central scheduler will select the remote node to perform the work. In Figure 17, the number
of nodes increases, and the RDL decreases. In Figure 18, the data size increases, and the RDL
also increases. These results emphasize that our BARE scheme works best. BARE collects
global information, uses the prefetching scheme to improve the performance of the local
node, optimally assigns tasks to the most suitable node, and performs the rescheduling pro-
cedure.

Figure 16. Effect of bandwidth on RDL (ratio of data locality).

Figure 17. Effect of node number on RDL.

Figure 18. Effect of data size on RDL.

6. Conclusions
In reality, data centers handle a greater amount of work and more complex situations.

In addition, achieving minimum TCT in the Hadoop system is an NP-complete problem.
Therefore, data center networks need an efficient job scheduling scheme to improve net-
work performance. In this study, we propose a feasible solution in an SDN-based data

0.4

0.6

0.8

1

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1,
00

0
5,

00
0

10
,0

00

R
D

L
(%

)

Bandwidth (Mb/s)

HDS
BAR
BASS
Pre-BASS
BARE

0.75

0.8

0.85

0.9

0.95

1

10 20 30 40 50 60 70 80 90 100

R
D

L
(%

)

Number of node

HDS
BAR
BASS
Pre-BASS
BARE

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
D

L
(%

)

Data size (MB)

HDS
BAR
BASS
Pre-BASS
BARE

Figure 17. Effect of node number on RDL.

Electronics 2021, 10, x FOR PEER REVIEW 14 of 16

along with the data movement time, is less than the execution time of the local node, the
central scheduler will select the remote node to perform the work. In Figure 17, the number
of nodes increases, and the RDL decreases. In Figure 18, the data size increases, and the RDL
also increases. These results emphasize that our BARE scheme works best. BARE collects
global information, uses the prefetching scheme to improve the performance of the local
node, optimally assigns tasks to the most suitable node, and performs the rescheduling pro-
cedure.

Figure 16. Effect of bandwidth on RDL (ratio of data locality).

Figure 17. Effect of node number on RDL.

Figure 18. Effect of data size on RDL.

6. Conclusions
In reality, data centers handle a greater amount of work and more complex situations.

In addition, achieving minimum TCT in the Hadoop system is an NP-complete problem.
Therefore, data center networks need an efficient job scheduling scheme to improve net-
work performance. In this study, we propose a feasible solution in an SDN-based data

0.4

0.6

0.8

1

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1,
00

0
5,

00
0

10
,0

00

R
D

L
(%

)

Bandwidth (Mb/s)

HDS
BAR
BASS
Pre-BASS
BARE

0.75

0.8

0.85

0.9

0.95

1

10 20 30 40 50 60 70 80 90 100

R
D

L
(%

)

Number of node

HDS
BAR
BASS
Pre-BASS
BARE

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
D

L
(%

)

Data size (MB)

HDS
BAR
BASS
Pre-BASS
BARE

Figure 18. Effect of data size on RDL.

6. Conclusions

In reality, data centers handle a greater amount of work and more complex situations.
In addition, achieving minimum TCT in the Hadoop system is an NP-complete problem.
Therefore, data center networks need an efficient job scheduling scheme to improve net-
work performance. In this study, we propose a feasible solution in an SDN-based data

Electronics 2021, 10, 1774 16 of 17

center network, called the BARE mechanism. In BARE, the network monitor collects
global information and communicates with the scheduler module. The scheduler module
organizes data processing, executes task prefetching and allocation plans, executes task
splitting methods, and implements rescheduling mechanisms to reduce the TCT. According
to the simulation results, the proposed scheme outperforms other existing schemes by
adopting task splitting and rescheduling schemes. In terms of TCT, BARE outperforms
the HDS, BAR, BASS, and Pre-BASS schemes by approximately 25%, 17%, 10%, and 7%,
respectively. In terms of RDL, when the data size is small (i.e., 100 MB), BARE outperforms
the HDS, BAR, BASS, and Pre-BASS schemes by approximately 58%, 56%, 40%, and 10%,
respectively.

Energy is also an important issue in data center networks. However, performance and
energy (or cost) are trade-offs. Therefore, we will consider the issue of energy consumption
in our future work. In addition, the centralized scheduler may become a performance
bottleneck. Thus, we will attempt to propose a distributed solution.

Author Contributions: Conceptualization, M.-C.C.; methodology, M.-C.C., C.-C.Y. and C.-J.H.;
software, C.-C.Y. and C.-J.H.; investigation, M.-C.C.; resources, M.-C.C.; data curation, C.-C.Y. and C.-
J.H.; writing—original draft preparation, M.-C.C. and C.-J.H.; writing—review and editing, M.-C.C.,
C.-C.Y. and C.-J.H.; supervision, M.-C.C. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the Ministry of Science and Technology, R.O.C., under grants
MOST 107-2221-E-163-001-MY3.

Data Availability Statement: The funders had no role in the design of the study; in the collection,
analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the
results.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ghosh, S.; Das, J.; Ghosh, S.K.; Buyya, R. CLAWER: Context-aware Cloud-Fog based Workflow Management Framework for

Health Emergency Services. In Proceedings of the 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet
Computing (CCGRID), Melbourne, VIC, Australia, 11–14 May 2020; pp. 810–817.

2. Huang, W.; Li, J. Using Agent Solutions and Visualization Techniques to Manage Cloud-based Education System. In Proceedings
of the 2020 IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on
Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, Intl Conf on Cyber Science
and Technology Congress, Calgary, AB, Canada, 17–22 August 2020; pp. 375–379.

3. Apache Hadoop. Available online: http://hadoop.apache.org/ (accessed on 1 May 2021).
4. Dean, J.; Ghemawat, S. MapReduce: A flexible data processing tool. Commun. ACM 2010, 53, 72–77. [CrossRef]
5. Jin, J.; Luo, J.; Song, A.; Dong, F.; Xiong, R. Bar: An efficient data locality driven task scheduling algorithm for cloud computing.

In Proceedings of the 2011 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, Newport Beach,
CA, USA, 23–26 May 2011; pp. 295–304.

6. Qin, P.; Dai, B.; Huang, B.; Xu, G. Bandwidth-Aware Scheduling With SDN in Hadoop: A New Trend for Big Data. IEEE Syst. J.
2017, 11, 2337–2344. [CrossRef]

7. Seo, S.; Jang, I.; Woo, K.; Kim, I.; Kim, J.-S.; Maeng, S. HPMR: Prefetching and pre-shuffling in shared MapReduce computation
environment. In Proceedings of the 2009 IEEE International Conference on Cluster Computing and Workshops, New Orleans,
LA, USA, 31 August–4 September 2009; pp. 1–8.

8. Shirmarz, A.; Ghaffari, A. Performance issues and solutions in SDN-based data center: A survey. J. Supercomput. 2020, 76,
7545–7593. [CrossRef]

9. Zhang, H.; Tang, F.; Barolli, L. Efficient flow detection and scheduling for SDN-based big data centers. J. Ambient Intell. Humaniz.
Comput. 2018, 10, 1915–1926. [CrossRef]

10. Braun, W.; Menth, M. Software-defined networking using OpenFlow: Protocols, applications, and architectural design choices.
Future Internet 2014, 6, 302–336. [CrossRef]

11. Software-Defined Networking: The New Norm for Networks. White Paper, Open Networking Foundation (ONF), April 2012.
[Online]. Available online: https://www.opennetworking.org/images/stories/downloads/white-papers/wp-sdn-newnorm.
pdf (accessed on 10 April 2021).

12. Xia, W.; Wen, Y.; Foh, C.H.; Niyato, D.; Xie, H. A Survey on Software-Defined Networking. IEEE Commun. Surv. Tutor. 2015, 17,
27–51. [CrossRef]

http://hadoop.apache.org/
http://doi.org/10.1145/1629175.1629198
http://doi.org/10.1109/JSYST.2015.2496368
http://doi.org/10.1007/s11227-020-03180-7
http://doi.org/10.1007/s12652-018-0783-6
http://doi.org/10.3390/fi6020302
https://www.opennetworking.org/images/stories/downloads/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/white-papers/wp-sdn-newnorm.pdf
http://doi.org/10.1109/COMST.2014.2330903

Electronics 2021, 10, 1774 17 of 17

13. Nunes, B.A.A.; Mendonca, M.; Nguyen, X.-N.; Obraczka, K.; Turletti, T. A Survey of Software-Defined Networking: Past, Present,
and Future of Programmable Networks. IEEE Commun. Surv. Tutor. 2014, 16, 1617–1634. [CrossRef]

14. Lara, A.; Kolasani, A.; Ramamurthy, B. Network Innovation Using OpenFlow: A Survey. IEEE Commun. Surv. Tutor. 2014, 16,
493–512. [CrossRef]

15. Hu, F.; Hao, Q.; Bao, K. A Survey on Software-Defined Network and OpenFlow: From Concept to Implementation. IEEE Commun.
Surv. Tutor. 2014, 16, 2181–2206. [CrossRef]

16. Kreutz, D.; Ramos, F.M.V.; Verissimo, P.E.; Rothenberg, C.E.; Azodolmolky, S.; Uhlig, S. Software-Defined Networking: A
Comprehensive Survey. IEEE Proc. 2015, 103, 14–76. [CrossRef]

17. White, T. Hadoop: The Definitive Guide, 3rd ed.; O’Reilly Media Inc.: Newton, MA, USA, 2012.
18. Yong, M.; Garegrat, N.; Mohan, S. Towards a resource aware scheduler in Hadoop. In Proceedings of the International Conference

on Web Services (ICWS), Los Angeles, CA, USA, 6–10 July 2009; pp. 102–109.
19. Fischer, M.J.; Su, X.; Yin, Y. Assigning tasks for efficiency in Hadoop: Extended abstract. In Proceedings of the Twenty-Second

Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA’10), Thira Santorini, Greece, 13–15 June 2010;
pp. 30–39.

20. Birman, K.; Chockler, G.; van Renesse, R. Toward a cloud computing research agenda. ACM SIGACT News 2009, 40, 68–80.
[CrossRef]

21. Bortnikov, E. Open-source grid technologies for web-scale computing. ACM SIGACT News 2009, 40, 87–93. [CrossRef]
22. Ghemawat, S.; Gobioff, H.B.; Gobioff, H.; Leung, S.-T. The Google file system. In Proceedings of the Nineteenth ACM Symposium

on Operating Systems Principles (SOSP), Bolton Landing, NY, USA, 19–22 October 2003; pp. 29–43.
23. Zaharia, M.; Konwinski, A.; Joseph, A.D.; Katz, R.; Stoica, I. Improving MapReduce performance in heterogeneous environments.

In Proceedings of the 8th USENIX Conference on Operating Systems Design and Implementation (OSDI), San Diego, CA, USA,
8–10 December 2008; pp. 29–42.

24. Wang, G.; Ng, T.S.E. The impact of virtualization on network performance of Amazon EC2 data center. In Proceedings of the 2010
Proceedings IEEE INFOCOM, San Diego, CA, USA, 14–19 March 2010; pp. 1163–1171.

25. Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. Commun. ACM 2008, 51, 107–113. [CrossRef]

http://doi.org/10.1109/SURV.2014.012214.00180
http://doi.org/10.1109/SURV.2013.081313.00105
http://doi.org/10.1109/COMST.2014.2326417
http://doi.org/10.1109/JPROC.2014.2371999
http://doi.org/10.1145/1556154.1556172
http://doi.org/10.1145/1556154.1556174
http://doi.org/10.1145/1327452.1327492

	Introduction
	Related Work
	Software-Defined Network (SDN)
	Hadoop Default Scheduler (HDS)
	Balance-Reduce Scheduler
	Bandwidth-Aware Scheduling with SDN in Hadoop
	Research Gap

	Problem Formalization
	Proposed Scheme
	Bandwidth-Aware Rescheduling
	Global Information Collection
	Task Assignment Scheme
	BARE Rescheduling

	Performance Evaluation
	Conclusions
	References

