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Abstract: Transportation planning has been established as a key topic in the literature and practices
of social production, especially in urban contexts. To consider traffic environment factors, more
and more researchers are taking time-varying factors into account when scheduling their logistic
activities. The time-dependent vehicle routing problem (TDVRP) is an extension of the classical
Vehicle Routing Problem with Time Windows (VRPTW) by determining a set of optimal routes
serving a set of customers within specific time windows. However, few of them use the continuous
speed function to express the time-varying. In practice, many vehicle routing problems are addressed
by a fleet of heterogeneous vehicles with different capacities and travel costs including fix costs and
variable costs. In this study, a Heterogeneous Fleet Vehicle Routing Problem (HFPRP) Time-Varying
Continuous Speed Function has been proposed. The objective is to minimize distribution costs, which
contained fixed costs of acquiring and variable fuel costs. To address this problem, our research
developed a mathematical model and proposed a Simplified Swarm Optimization (SSO) heuristic for
HFVRP with Time-Varying Continuous Speed Function.

Keywords: vehicle routing problem; time window; heterogeneous fleet; time-varying continuous
speed function; simplified swarm optimization

1. Introduction

Throughout recent decades, transportation planning has been established as a key
topic in the literature and practices of social production. Especially in urban contexts,
due to industrial strategies, urbanization, city design and unforeseen accidents, weather
conditions, traffic congestion, logisticians and citizens face many challenges related to
delivery delays [1]. The traffic environment is dynamically changing, which increases
the complexity of the problem, the most obvious one being time-varying travel time.
Travel velocity is significantly reduced during peak hours. Therefore, to achieve socio-
economic and environmental sustainability in city transportation, a major intervention on
time-varying congestion is needed.

Problems related to the distribution of goods between the warehouse and the final
customer are generally considered as the vehicle routing problem (VRP). The vehicle
routing problem was first raised by Dantzig and Ramser [2]. Clarke and Wright [3] added
more practical restrictions for the problems, in which the delivery of goods to each customer
should have occurred in the bound. Such a problem model is called the Vehicle Routing
Problem with Time Windows (VRPTW). The actual distribution process is much more
complex, such as travel speeds on the road varying substantially during peak and off-peak
hours in the urban areas. Consequently, Malandraki and Daskin [4] first took the existence
of diversified conditions of traffic at different times of the day. They discussed the Time-
Dependent Vehicle Routing Problem (TDVRP) where the travel time was based on “a step
function distribution”. Unfortunately, this model does not satisfy the First-In-First-Out

Electronics 2021, 10, 1775. https://doi.org/10.3390/electronics10151775 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-7393-0768
https://orcid.org/0000-0002-6316-4729
https://doi.org/10.3390/electronics10151775
https://doi.org/10.3390/electronics10151775
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10151775
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10151775?type=check_update&version=2


Electronics 2021, 10, 1775 2 of 22

(FIFO) property which ensures that if a vehicle leaves a node i for a node j at a given time,
any other vehicle leaving a node i for a node j at an earlier time will arrive earlier at node j.
Without the “FIFO” property, that is, a vehicle can depart later than another vehicle and
arrive earlier at its destination, even if the same path is followed by the two vehicles. This
situation is contrary to reality, but it happens in the assumptions of the model, for example,
if one vehicle waits just a little before departing to catch a faster travel time associated with
the next interval.

Previous studies tend to use different travel link times of node i and node j to guar-
antee the FIFO property. Ichoua et al. [5] presented a model based on time-dependent
travel speeds that they proved to be better at modeling time-dependency, and the FIFO
assumption is not necessarily satisfied either. The idea of time-varying speed is adopted in
our problem as well. At the same time, the time-varying continuous speed model is closer
to the actual distribution situation, the speed of vehicles changes smoothly, rather than a
step-change at a certain moment [6,7].

Apart from the Time-Dependent VRPs, another variant of the VRPs is named the
Heterogeneous Fleet Vehicle Routing Problem (HFVRP), where a heterogeneous fleet of
vehicles is used for the distribution activities; see Baldacci et al. [8]. The HFVRP with a
limited number of vehicles proposed by Taillard [9] involves optimizing the vehicle routes
with the available fixed fleet. The idea is not only to consider the routing of the vehicles, but
also the fleet composition. Relating to the type of costs (fixed and variable) to be minimized,
two different objective functions have been considered.

In the case of just-in-time (JIT) production and urban logistics distribution, time-
varying speed, time windows, and heterogeneous fleet settings naturally occur and are
therefore more in line with the actual distribution situation. Logistics need to find a balance
between costs and quality of service. This route construction problem has been encoun-
tered by the authors in several contexts: e.g., cold chain logistics [10], fresh logistics [11],
milk run [12], automated guided vehicle (AGV) systems [13], freight distribution [14], JIT
production [15], B2C e-commerce [16], inter-vehicle communication [17], vaccine distribu-
tion [18], and so on. Nonetheless, there are few cases involving optimization of vehicle type
selection and route distribution under the minimizing of total cost based on a continuous
time-varying speed model which are closer to the actual distribution situation.

Solving VRP is computationally expensive as it is categorized as NP-Hard; see Lenstra
and Kan [19]. Metaheuristics approaches are necessary to solve this problem within
considerable computational time. Compared to the classical heuristic, metaheuristics
carry out a more thorough search of the solution space. Thus, they are notably capable
of consistently producing high-quality solutions, despite the greater computational time
than early heuristics; see Cordeau et al. [20]. They have been successfully applied for
different combinatorial optimization problems. However, in the scientific literature, almost
all existing memetic algorithms for solving different VRP variants follow the framework of
genetic algorithms (GA) [21–23] or the Particle Swarm Optimization algorithm (PSO) [24,25]
and very rarely, the framework of Simplified Swarm Optimization algorithms.

As one metaheuristic methodology, the Simplified Swarm Optimization (SSO) is often
used to address both discrete and continuous optimization problems (Yeh [26]; Yeh [27];
Yeh and Chuang [28]). SSO has some attractive advantages such as its ability to deal with
non-linear models, chaotic and noisy data, and many constraints.

The rest of this paper is organized as follows. In Section 2, the literature review
is presented, and the problem statement is described in Section 3. Simplified Swarm
Optimization is presented in Section 4. Details of the computational result and analysis
about the problem are presented in Section 5. Section 6 draws conclusions and possible
future research.

2. Literature Review

Vehicle Routing Problems (VRP) are essential elements of distribution systems for
delivering goods and services. The effective management of these vehicles could improve
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customers’ experience of delivery and minimize the total routing costs. Due to the wide
application of logistics distribution scenarios, there is more and more research on VRPs, so
there are a lot of different objective types and limit types of VRPs.

Hence, we have briefly reviewed two different types of VRPs: (1) those that model
Time-Dependent travel time VRP with a speed model, (2) and the Heterogeneous Fleet
VRP is introduced. Time Dependent VRP (TDVRP) with Time-Varying Speeds and Hetero-
geneous Fixed Fleet VRP (HFFVRP) in Sections 2.1 and 2.2, respectively.

2.1. Time Dependent Vehicle Routing Problem with Time-Varying Speeds

As the Time Dependent VRP (TDVRP) was proposed, since its assumption was more
in line with the realistic world, the TDVRP has attracted the attention of many researchers.
However, literature on the speed model remains scarce. The pioneering work has been done
by Malandraki and Daskin [4] and Malandraki and Dial [29]. In these papers, mixed-integer
linear programs (MILP) and several heuristics to solve the problem are proposed. However,
these models may potentially violate the First-In-First-Out (FIFO) property, which implies
that for every arc, a later departure time results in a later (or equal) arrival time.

As opposed to Malandraki and Daskin [4], Ichoua, Gendreau, and Potvin [5] proposed
an alternative approach model; a stepwise speed function was proposed, resulting in a
piecewise linear travel time function, like the one illustrated in Figure 1a, where the day is
divided into several time periods and a speed is associated with each period. For a given
arc, a stepwise speed function can easily be translated into a corresponding piecewise
linear travel time function, as shown in Figure 1b.
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Figure 1. (a) Travel time function on a link; (b) travel speed function at a node.

This new travel time model satisfies the FIFO principle since a vehicle can only arrive
later at the destination if it departs later. The time-dependent speed model is commonly
adopted in later publications on VRP variants with time-dependent travel times

Çimen and Soysal [30] addressed a TDVRP with stochastic vehicle speeds and environ-
mental concerns and formulated the problem as a Markovian Decision Process. Soysal and
Çimen [31] also proposed a GTDVRP that accounts for transportation emissions, and the
problem has been formulated and solved using the Dynamic Programming approach. Sun
et al. [32] introduced a time-dependent capacitated profitable tour problem with the object
to maximize the profit and developed a tailored labeling algorithm to find the optimal
tour. Wang, Assogba, Fan, Xu, Liu, and Wang [14] presented a bi-objective model which
focused on freight distribution to minimize total carbon emission and operating cost. Adri-
ano, Montez, Novaes, and Wangham [12] also proposed a dynamic model to simulate the
milk-run tours with time windows, using the auxiliary vehicle to deal with traffic jams. Liu
et al. [33] proposed TDVRPTW to minimize the sum of the fixed costs of the vehicle used, as
well as the costs of drivers, fuel consumption, and carbon emissions. Pan et al. [34] studied



Electronics 2021, 10, 1775 4 of 22

the duration-minimizing time-dependent vehicle routing problem with time windows
(DM-TDVRPTW), where time-dependent travel times represent different levels of road
congestion throughout the day. Pan et al. [35] also proposed a multi-trip time-dependent
vehicle routing problem with time windows (MT-TDVRPTW) and formulated the time-
dependent ready time function and duration function for any segment of consecutive nodes
as piecewise linear functions. Gmira et al. [36] proposed a time-dependent vehicle routing
problem with time windows in which travel speeds are associated with road segments in
the road network.

Few papers use the time-varying speed of continuous function. Xiao and Konak [37]
defined GVRSP which considers heterogeneous vehicles and time-varying traffic congestion
where the speed of smooth period is variable. Huang et al. [38] proposed the time-varying
speed of the linear continuous function model, but without detailed specification, and their
research only studied two types of vehicles with a fixed cost. Xu, Elomri, Pokharel, and
Mutlu [21] extended the period-based speed pattern to be a time-varying speed pattern.
The approximate corresponding function denoting the relationship between the departure
time t and the vehicle speed v(t) can be characterized by the trigonometric function. Fan,
Zhang, Tian, Lv, and Fan [23] continued the assumption in which speed is a trigonometric
function of the departure time and applied it in time-dependent multi-depot GVRP. We
should still express the time-varying speed as a linear continuous function, without loss of
generality, and amplify the speed transformation time to illustrate the time-varying speed
of continuous function.

2.2. Heterogeneous Fixed Fleet Vehicle Routing Problem

In practice, many vehicle routing problems are addressed by a non-homogeneous
vehicle fleet where vehicles of different capacities are used. Heterogeneous fleets VRPs
(HFVRPs) are consider a limited or an unlimited fleet of capacitated vehicles, with a
problem consisting of determining the fleet composition and vehicle routes [39].

There are two major HVRPs: the Heterogeneous Fixed Fleet Vehicle Routing Problem
(HFFVRP) and the Fleet Size and Mix Vehicle Routing Problem (FSMVRP). HFFVRP
was proposed by [9] in which the fleet is predetermined. FSMVRP considers an infinite
availability of vehicles of different type, proposed by [40]. In HFFVRP, the number of
vehicles is a constraint but in the presence of a large number of vehicles, not all of them
may be used. In FSMVRP, part of the decision is to determine the composition of the fleet.
FSMVRP can be treated as a particular HFFVRP [9].

Since HFFVRP models can better simulate the actual distribution situation and achieve
a better balance of economic and environmental sustainability simultaneously (Micheli
and Mantella [41]), HFFVRP has been extensively studied. Afshar-Nadjafi and Afshar-
Nadjafi [42] introduced a time-dependent multi-depot vehicle routing problem to minimize
total cost and formulated the problem as mixed-integer programming. Vincent et al. [43]
developed a Heterogeneous Fleet Pollution Routing Problem (HFPRP) to minimize the
total costs of fuel which contain vehicle variable cost and greenhouse gas emissions.
Wang et al. [44] proposed a heterogeneous fleet to provide services for a very large trans-
portation network, which also determined the number of vehicles of different types that
facilitated on each service link, to better reflect real applications. The proposed method-
ology is applied to a real-world network, which shows the necessity of considering a
heterogeneous fleet. De and Giri [45] studied a closed-loop supply chain with a heteroge-
neous fleet to minimize carbon emissions. Soman and Patil [46] introduced a heterogeneous
fleet vehicle routing problem with release and due dates in the presence of consolidation of
customer orders and limited warehousing capacity. Cao, Liao, and Huang [22] addressed
a vehicle routing problem considering an electric heterogeneous fleet for a two-echelon
recycling network, recycling stations, and recycling centers: with the goal of minimizing the
total cost, a recycling heterogeneous fleet electric vehicle routing model with time windows.

The case we proposed is associated with the Heterogeneous Fixed Fleet Vehicle
Routing Problem, since the size of the fleet is known for each type of the vehicle, but
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in our case, we determine the composition of the fleet and the route of each vehicle to serve
all customers as in the FSMVRP. Recent literature review and model comparison can be
seen in Table 1.

Table 1. State of the art in recent five years.

Paper
Speed HF

TW Test Problem
Veh
Type

Tp Objective Solution Method
D C F V

Çimen and Soysal
[30]

√
- - - -

Pollution-Routing
Problem Instance

Library
homo 4 carbon

Approximate
Dynamic

Programming
(ADP) based

heuristic
algorithm

Soysal and Çimen
[31]

√
- - - -

Pollution-Routing
Problem

InstanceLibrary
homo 4 carbon

Simulation Based
Restricted
Dynamic

Programming
(RDP) algorithm

Sun, Veelenturf,
Dabia and Van
Woensel [32]

√
- - -

√ Instances proposed
by Ropke et al. [47] homo 5 max

profit
Tailored labeling

algorithm

Wang, Assogba,
Fan, Xu, Liu and

Wang [14]

√
- - -

√ Pollution-Routing
Problem Instance

Library
homo 5 carbon

and cost

Clarke and
Wright Saving,

Sweep algorithm,
and

multi-objective
PSO

Adriano, Montez,
Novaes and

Wangham [12]
- - - -

√
Self-generated homo not

TD cost
Dynamic

milk-run vehicle
routing solution

Liu, Kou et al.
[33]

√
- - -

√
Solomon dataset homo 3 cost Ant colony

algorithm

Pan, Zhang et al.
[34]

√
- - -

√
Solomon dataset homo 5 time Tabu search

Pan, Zhang et al.
[35]

√
- - -

√
Solomon dataset homo 5 dis Tabu search

Gmira, Gendreau
et al. [36]

√
- - -

√ NEWLET coming
from [48] homo 5 dis Tabu search

Afshar-Nadjafi
and

Afshar-Nadjafi
[42]

√
- -

√ √
Self-generated 4 3 cost Simulated

annealing

Vincent, Redi et al.
[43] - - -

√
-

Pollution-Routing
Problem Instance

Library
3 not

TD cost Simulated
annealing

Wang, Qi et al.
[44] - - -

√
- Instances proposed

by [49] 10 not
TD cost

Linear solution
provided by the
column-and-cut
generation with

local search

Soman and Patil
[46] - - -

√
- Instances proposed

by [50] 2 not
TD cost Scatter search



Electronics 2021, 10, 1775 6 of 22

Table 1. Cont.

Paper
Speed HF

TW Test Problem
Veh
Type

Tp Objective Solution Method
D C F V

De and Giri [45] - - -
√

- Self-generated 3 not
TD

carbon
and cost

Mixed integer
linear

programming

Cao, Liao et al.
[22] - -

√ √
- Self-generated 3 not

TD cost Genetic algorithm

Huang, Jiang et al.
[38] -

√
-

√ √
Self-generated 3 5 cost Simplified swarm

optimization

Xu, Elomri et al.
[21] -

√
-

√ √ Instances proposed
by [51] 12 4 fuel Genetic algorithm

Fan, Zhang et al.
[23] -

√ √ √ √ MDVRP by [52],
MDVRPTW by [53] 3 4 cost Genetic algorithm

Our study -
√ √ √ √ Pollution-Routing

Problem Instance
Library

3 5 cost Simplified swarm
optimization

Note 1. Speed stands for time dependency speed mode, D for Discrete function, C for Continuous function; 2. HF stands for heterogeneous
fleet, homo for homogeneous, F for fix cost, V for variable cost; 3. TW stands for time window, Tp for time period.

3. Problem Statement
3.1. Time Dependent Vehicle Routing Problem with Time-Varying Speeds of Continuous Function

The classic Time Dependent Vehicle Routing Problem with Time-Varying Speeds can
be described as follow. Let G = (V, A) be a graph, where V = {v0, v1, v2, . . . , vN}, where
{v1, v2, . . . , vN} is the nodes set standing for customers needing to be served in a time
window twi = [bi, ei], and v0 is the depot. Each customer is characterized by a demand Di
and service time si, which is the time to complete the delivery. A =

{(
vi, vj

)
: vi, vj ∈ V

}
is the arcs set (subscript means sequence), link node i, and node j with its distance dij. The
time horizon is divided into b time intervals T = {T1, T2, . . . , Tb}. The travel speed for an
arc remains constant within each time zone Tb but changes at the end of the time zones
and without loss of generality, and the time zones are set to be the same for all the arcs.
The travel time on a given arc

(
vi, vj

)
is then derived based on its distance di,j and its

speed profile.
Even though many works in TDVRP have been carried out with time-varying speeds,

the investigation carried out by the Texas A&M Transportation Institute Jha and Eisele [7]
mentioned that the traveling speed increases or decreases smoothly, rather than treating it
as a stepwise function. The drawbacks of this model are very obvious and, as shown in the
Figure 2, will lead to breakpoints; although it can be said that the change in speed takes
much less time than delivery at a constant speed. Hence, we present a time-varying speed
model of a continuous function, as shown in the Figure 3a.

Proposition 1. If the speed profile for an arc
(
vi, vj

)
is a stepwise linear continuous function, as

show in Figure 3a, then the time-dependent travel distance function can be obtained by integrating
the speed function, and the derived travel distance function is a continuous function, as depicted in
Figure 3b.

Proposition 2. Since travel distance corresponds to travel time one-to-one, then the time-dependent
travel time function is the inverse function of travel distance. Using this one-to-one correspon-
dence relationship, when the departure time and travel distance are known, the travel time can be
calculated.
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Figure 3. (a) Time-varying continuous travel speed function; (b) travel distance function.

3.2. Heterogeneous Fixed Fleet Vehicle Routing Problem

Heterogeneous fleets VRPs (HVRPs) are considered a limited or unlimited fleet of
capacitated vehicles, with problems, which consist of determining the fleet composition
and vehicle routes (Koç, Bektaş, Jabali, and Laporte [39]). Let Mm be the set of vehicles with
m types, each type vehicle max available number be vehm, and subscript m be the type of
vehicle (which will be used in the following text). The maximum load capacity of m type
vehicle is capm, the time-varying speed function of m type vehicle is fun− speedm

(
tdep,ij

)
,

where tdep,i is the departure time from node i to node j, the time-varying travel time function

is fun− timem

(
tdep,ij, dij

)
, and dij is the distance linking node i and node j, as mentioned

before. Every type of car has a fixed cost f cm, which is referred to as the cost of buying or
renting, and a variable cost vcm, used to express the cost per kilometer per kilogram of the
weight of goods.

Assumptions

1. The depot has a demand equal to zero
2. Each customer location is serviced from only one vehicle
3. Each customer’s delivery must arrive within the time window
4. The number of each type of vehicle in routing cannot exceed each type of vehicle; the

maximum available number is vehm
5. Each vehicle shall not exceed its maximum load capacity capm
6. The total delivery time of each vehicle shall not exceed 9 h
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Notations used in problem statement are defined as follows.
Detail model sets, indices, and parameters are shown in Table 2.

Table 2. Sets, indices, and parameters.

Sets and Indices

V nodes set, v0 is the depot, {v1, v2, . . . , vN} are customers

i,j subscript of the customer node, i, j = 1, 2, . . . N

A A =
{(

vi, vj

)
: vi, vj ∈ V

}
is the arcs set linking node i and

node j

Mm the set of vehicles with m types

m vehicle types, m = 1, 2, . . . MK

Parameters

Di demand of i customer

twi twi = [bi, ei] time window of i customer

si service time of i customer

T T = {T1, T2, . . . , Tb} time period

tarr,i the arrive time of node i

tdep,ij the departure time from node i to node j

ttra,ij the travel time from node i to node j

dij the distance linking node i and node j

fun− speedm

(
tdep,ij

)
time-varying speed function of m type vehicle

fun− timem

(
tdep,i, dij

)
time-varying travel time function of m type vehicle

vehm each type of vehicle, maximum available number

capm maximum load capacity of m type vehicle

f cm fixed cost of m type vehicle

vcm variable cost of m type vehicle

Dmij,m amount carried using type m vehicle from i to j

Decision variable

Xij,m one if a type m vehicle travels from node i to j; otherwise, zero

3.3. Fitness Function and Mathematical Model

The traditional logistics model is concerned with minimizing total cost in a network.
This is where the concept of Vehicle Routing Problem (VRP) is best applied. We follow this
concept and add the fixed cost f cm of each type of vehicle into the total cost to minimize
the total number of vehicles. We also include the variable cost vcm of delivery of each
type of vehicle to optimize the vehicle scheduling. Other constraints appear in the target
calculation in the form of penalty functions to enforce the constraints of the limit. The
objective of minimizing the total cost is as follows:

Minimize
M

∑
m=1

N

∑
i=0

N

∑
j=0

Xij,m f cm +
M

∑
m=1

N

∑
i=0

N

∑
j=0

dijDmij,mvcm (1)

Subject to Routing
N

∑
i=1

Xi0,m = 1 ∀ m ∈ Mm (2)
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M

∑
m=1

N

∑
i=1

N

∑
j=1

Xij,m = 1 ∀ (i, j) ∈ A ∀ m ∈ Mm (3)

M

∑
m=1

N

∑
i=1

Xip,m =
M

∑
m=1

N

∑
i=1

Xpi,m ∀ p ∈ V (4)

Demand and Capacities

N

∑
i=1

N

∑
j=1

Xij,mDj = Dmij,m ∀ (i, j) ∈ A ∀ m ∈ Mm (5)

N

∑
i=1

Dm0i,m ≤ capm ∀ m ∈ Mm (6)

M

∑
m=1

Xij,m ≤ vehm ∀ m ∈ Mm (7)

Time Windows

tarr,j = tdep,ij + ttra,ij ∀ i, j ∈ V ∀ (i, j) ∈ A (8)

tarr,j ∈
[
bj, ej

]
(9)

tdep,ij = tarr,i + si ∀ i, j ∈ V (10)

tarr,0 < 9∀ m ∈ Mm (11)

The objective function (1) is total cost including fixed cost and variable cost. Constraint
(2) defines that each vehicle should back to the Depot that subscript stands for 0. Constraint
(3) ensures that each node can only be visited once in a route. Constraint (4) states that if a
vehicle arrives at a node, it must leave it, and by this way, the route continuity is ensured.
Constraints (10) and (11) state the restrictions for the amount of demand and capacities.
Constraint (7) defines the maximum number of available vehicles vehm. Constraints (8)
and (9) are the time window restrictions. Constraint (11) ensures that each vehicle cannot
delivery over 9 h.

4. Simplified Swarm Optimization

As a generalization of VRP, the TDVRP and HFFVRP are also NP-hard and require
intentional investigation for problem modeling and algorithmic design.

4.1. Simplified Swarm Optimization

SSO is one of the simplest machine-learning methods (Wang et al. [54–56] Yeh,
et al. [57]) in terms of its update mechanism. It was first proposed by Yeh [27], and
has been tested to be a very useful and efficient algorithm for optimization problems,
including network reliability (Yeh [58] Yeh, et al. [59]), deep learning training (Yeh [60]
Yeh, Lin, Liang and Lai [57]), disassembly sequencing problems (Yeh [61] Yeh [62]), energy
problems (Lin et al. [63]), and so on. Owing to its simplicity and efficiency, SSO is used
here to find the best values in vehicle routing of the proposed HFVRP with Time-Varying
Continuous Speed Function.

The basic idea of SSO is that each variable, such as the jth variable in the ith solution
xi,j, needs to be updated based on the following stepwise function (Yeh [55,62]):

xi,j =


gj

pi,j

if ρ[0,1] ∈
[
0, Cg

)
if ρ[0,1] ∈

[
Cg, Cp

)
xi,j

x
if ρ[0,1] ∈

[
Cp, Cw

)
if ρ[0,1] ∈ [Cw, 1)

(12)
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where the value ρ[0,1] ∈ [0,1] is generated randomly, the parameters Cg, Cp − Cg, Cw − Cp,
1 − Cw are all in [0,1] and are the probabilities of the current variable that are copied and
pasted from the best of all solutions, the best ith solution, the current solution, and a random
generated feasible value, respectively.

There are different variants of the traditional SSO that are customized to different
problems from the no free lunch theorem; for example, the four items in Equation (11) are
also reduced to three items to increase the efficiency; parameters Cg, Cp, and Cw are all
self-adapted; special values or equations are implemented to replace gj, pi,j, xi,j, and x; or
only a certain number of variables is selected to be updated, etc. However, the SSO update
mechanism is always based on the stepwise function.

4.2. Example for Code and Decode

To explain how the model works, a small instance from Vincent, Redi, Jewpanya,
Lathifah, Maghfiroh, and Masruroh [43] was used for testing with 1 depot, 5 customers,
and 3 types of vehicles. Table 1 shows the part of parameters for each vehicle from Vincent,
Redi, Jewpanya, Lathifah, Maghfiroh, and Masruroh [43], since our research focus on
the total cost which included fixed cost and variable cost, instead of the pollution cost
in Vincent, Redi, Jewpanya, Lathifah, Maghfiroh, and Masruroh [43] study, some of the
parameter settings have been omitted which can be known in detail in the Vincent, Redi,
Jewpanya, Lathifah, Maghfiroh, and Masruroh [43] paper. Tables 3 and 4 present the
corresponding values for the distance matrix (in meters), demand, time window, and
service time.

Table 3. Vehicle specification.

Notation Description
Typical Values of a Type of m Vehicle

Vehicle Type 1 Vehicle Type 2 Vehicle Type 3

capm
Maximum load capacity

of m type vehicle 1000 2000 3650

vcm
Variable cost of m type

vehicle (£/m) 0.0001 0.00015 0.0002

Note: vcm in the Vincent, Redi, et al. study did not consider the load of delivery

Table 4. Parameters for the small problem size.

D V1 V2 V3 V4 V5 Demand bi ei si

D 0 41,150 25,680 23,000 32,450 22,500 0 0 22,400 0

V1 40,660 0 51,980 40,000 23,000 32,000 900 752 21,289 200

V2 25,010 51,780 0 30,000 32,000 23,000 727 270 24,050 2000

V3 20,000 30,000 300,000 0 23,000 25,000 800 250 22,500 1500

V4 32,500 23,000 32,000 23,000 0 30,000 580 700 28,000 200

V5 22,500 32,000 23,000 25,000 30,000 0 600 300 27,000 300

The route result given by the Vincent, Redi, et al. study is shown as follow
Route is 0-5-4-3-0, total distance is 95,500, vehicle type is type 2; Route II is 0-1-0,

total distance is 81,810, vehicle type is type 1; Route III is 0-2-0, total distance is 50,690,
vehicle type is type 1. Total distance of Route I, Route II, and Route III is 228,000, and total
variable cost is 27.575

If code, this route result using SSO, first, should give each vehicle type the maxi-
mum available number vehm. Assume that each type of vehicle can complete the dis-
tribution task separately; since the total demand of customers is 3607, which requires
veh1 = 4, veh2 = 2, veh3 = 1. According to the HFFVRP problem mentioned above,
now, we need to decide the routing problem of 7 cars for 3 types of vehicles. And the
representation using SSO is shown in Table 5.
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Table 5. Representation using SSO.

V1 V2 V3 V4 V5

1.2 2.1 5.3 5.2 5.1

The integer part of each number stands for the vehicle that will service, the same
integer parts represent the same vehicle for serving the customers, and the order depends
on value. For example, V3, V4, V5 have the same integer parts, which means they are
all delivered by vehicle 5 belong to type 2. The route is dependent on the value, since
5.1 < 5.2 < 5.3, so the route of vehicle 5 is 0-5-4-3-0.

After an iterative update of SSO, the final solution is shown in the Table 6.

Table 6. Cumulative result of small problem size; assume the velocity is 25 m/s.

From to Distance Travel time Arrive T TW Service Time Departure T

0–2 25,680 10,272 10,272 [270, 24, 050] 2000 12,272

2–5 23,000 920 13,192 [300, 27, 000] 300 13,492

5–1 32,000 1280 14,772 [752, 21, 289] 200 14,972

1–4 23,000 920 15,892 [700, 28, 000] 200 16,092

4–3 23,000 920 17,012 [752, 21, 289] 1500 18,512

3–0 20,000 800 19,312 [0, 22, 400] 0 /

The route is 0-2-5-1-4-3-0, service is by vehicle type 3, and the total distance is 146,680,
which is much smaller than Vincent and Redi’s result. More importantly, the variable cost
of Vincent and Redi’s model does not reflect the distribution cost caused by the load of the
delivered goods, which is inconsistent with the actual distribution process

In practice, logistics companies will buy or rent vehicles with large volume ratings
because the average variable cost per kilogram and per meter is lower due to the scale
effect. For example, the average demand is 721.4, the average distance is 24,446.7 (take
the best solution as an example), the variable cost will be a thousand, so we present a new
parameters setting, as shown in Table 7, which will be used in the subsequent test indices,
and new optimum route results as Table 8.

Table 7. New parameters setting.

Notation Description
Typical Values of a Type of m Vehicle

Vehicle Type 1 Vehicle Type 2 Vehicle Type 3

capm Maximum load capacity of m type vehicle 1000 2000 3650

vcm Variable cos t of m type vehicle (£/kg·m ) 0.00002 0.000015 0.00001

f cm Fixed cost of m type vehicle 50 100 180

New optimum route is shown as follow
Route I 0-5-0, delivery by vehicle type 1; Route II 0-2-0, delivery by vehicle type 2;

Route III 0-4-0, delivery by vehicle type; Route IV 0-3-1-0, delivery by vehicle type 3.

4.3. SSO Algorithm Pseudo Code

In order to increase the speed of searching for the best solution, the part of inheriting
the solution from the previous generation is cancelled, and the update mechanism is
changed to
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xi,j =


gj if ρ[0,1] ∈

[
0, Cg

)
pi,j if ρ[0,1] ∈

[
Cg, Cp

)
x otherwise

(13)

Table 8. After new parameters setting-new optimum route.

From to Distance Total Dis Variable Cost Demand Total VC

0–5 22,500 -
0.00002

600 270

5–0 22,500 - 1 0.45

0–2 25,680 -
0.000015

727 280.0404

2–0 25,010 - 1 0.3752

0–4 32,450 -
0.000015

580 282.315

4–0 32,500 - 1 0.4875

0–3 23,000 -

0.00001

800 184

3–1 30,000 53,000 900 477

1–0 40,660 - 1 0.4066

Total cos t = total VC + fix cos t for vehicle 1924.6995

STEP 0. Initialize parameters; let t = 1, randomly initial solution S1.
Each variable for St is st

nm ∈ [1, mk], there are in total mk vehicles, subscript n stands for
n customer nodes, subscript m stands for m particle size, di stands for customer i needs, [bi, ei]
stands for customer i time window.
STEP 1. Let m = 1, first row of solution matrix.

STEP 1.1 Let v = vehicle order = 1
STEP 1.2 Find vehv = St

nm ∈ [v, v + 1)
STEP 1.3.1 Rank vehv get X1

ij, then read the distance dij link node i and node j, add
the vehv vehicle fix cost;

STEP 1.3.2 calculate arrive time tarr,i for each node, and departure time
tdep,ij = tarr,i + si check whether the arrival time is in the time window.

STEP 1.3.3 calculate variable cost for each node,
STEP 1.3.4 check total weight not over capm

STEP 1.4 Calculate objectv for vehicle vehv
objectv = fix cos t + variable cos t

STEP 1.5
if vehv < mk

vehv = vehv + 1, go back to STEP 1.2
Otherwise

Calculate objectt
m = ∑ objectv

If Pbestt
m > objectt

m
Pbestt

m = objectt
m, PbestSt

m = St
m Otherwise

Pbestt
m = Pbestt

m, PbestSt
m = PbestSt

m STEP 2.
if m < popsize

m = m + 1, go back to STEP 1.1
Otherwise

If Gbestt > min
(

Pbestt
m
)

Gbestt = min
(

Pbestt
m
)
, GbestSt = min

(
PbestSt

m
)

Otherwise
Gbestt = Gbestt, GbestSt = GbestSt STEP 3.

if t < iteration and CPU time is not met, randomly ρ ∈ [node, popsize] and x
switch (ρnm)

Case1 ρnm ∈ [0, Cw = cw)
st+1

nm = GbestSt Case2 ρnm ∈
[
Cw, Cp = Cw + cp

)
st+1

nm = Pbestt
m Case3 ρnm ∈

[
Cp, 1]

st+1
nm = xt = t + 1

go back to STEP1
Otherwise

Halt
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5. Computational Experiments

In this section, the experimental results are reported. First, the details for the results
of the case study are presented. Next, the current solution obtained by the GA and PSO
is used to compare with the results obtained by both the mathematical model and the
algorithm. The benchmark instance is based on the Pollution Routing Problem dataset.
The datasets are taken from http://www.apollo.management.soton.ac.uk/prplib.htm, ac-
cessed on 1 June 2021 (operating environment: Intel(R) Core(TM) i-74770K CPU@3.50 GHz
3.50 GHz, memory 16.0 GB).

Vehicle setting as mentioned before, vcm; unit change to (£/kg·km) as shown in Table 7.
Vehicle type 1 belongs to “slow vehicle, travel speed type 1”; vehicle type 2, 3 belong

to “quick vehicle, travel speed type 2”; the time-varying continuous travel speed function
and time-varying travel time function are as in Figures 4–6.
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Take UK10_01, for example, to illustrate the calculation; the units are adjusted to
kilometers and hours. After the adjustment, the service time can be ignored and is not
considered in this study. The parameters after adjusted as show in the Table 9. The result
comparison is shown is Table 10.

Table 9. Parameters for the UK10_01.

D V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 Dem bi ei

D 0 41 26 54 95 16 89 74 26 88 66 0 0 9

V1 41 0 52 33 100 42 76 64 24 72 26 721 0.60 6.15

V2 25 52 0 62 74 13 69 53 43 73 77 814 0.18 5.85

V3 54 33 62 0 77 52 43 32 49 40 30 620 0.29 5.67

V4 95 100 74 77 0 81 56 46 112 62 106 311 1.42 6.73

V5 16 43 13 52 81 0 78 61 34 82 68 167 0.65 6.03

V6 89 76 69 43 55 78 0 17 92 7 69 513 1.02 6.70

V7 73 63 52 32 46 61 17 0 76 21 61 568 1.22 6.96

V8 26 24 44 50 112 34 91 76 0 89 49 763 0.97 6.76

V9 88 72 73 39 61 82 7 21 88 0 64 558 1.04 6.68

V10 65 26 77 29 106 67 69 61 49 64 0 636 1.47 7.28
SSO is compared with GA and PSO, which have been widely used. The updating methods of GA and PSO can be
referred to the papers of other authors: [21,22,24].

Parameter setting of GA algorithm, the crossover rate and mutation rate are 0.6 and 0.4
Parameter setting of PSO algorithm, w = 0.5, C1 = C2 = 2
Parameter setting of SSO algorithm, Cg = 0.5, Cp = Cw = 0.75,
More detailed information can be found in Appendix A.
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Table 10. Result comparison.

GA PSO SSO

Average Runtime Average Runtime Average Runtime

1 4744.389 28.758 5085.359 20.51 4734.099 18.478

2 4822.404 29.674 4959.387 20.772 4572.63 19.234

3 5155.445 29.27 5335.604 20.818 4856.664 18.736

4 4618.963 30.378 4959.715 20.876 4758.297 18.936

5 3786.287 29.118 4073.978 19.468 3866.133 19.302

6 4466.445 29.3425 4498.934 19.816 4345.842 19.004

7 3779.422 29.43 4002.631 19.738 3737.188 18.468

8 5735.288 29.826 5681.62 19.658 5673.156 18.868

9 4277.396 30.118 4349.053 19.214 3955.826 19.06

10 5411.929 28.9 5540.31 19.706 5383.005 19.288

average 4679.797 29.48145 4845.599 20.0576 4589.337 18.9374
From the result, bold is a better solution, shows that the SSO outperforms the original GA and PSO with respect
to the average cost (run 5 times independently to take the average value) and runtime. In terms of runtime, SSO
and PSO are close, slightly better than PSO. The objective value of the GA is also good, but it takes longer to run,
due to the update mechanism of the GA.

6. Conclusions

In urban areas, traffic conditions show a discrepancy throughout the day and the
travel time between two locations depends on the time of the day. Even though there are
many discussions about the time-dependent model, few adopted the time-varying speed
model which can better reflect different road time conditions and naturally satisfy the
FIFO property. Thus, we present a novel model using the Time-Varying Continuous Speed
Function to explain the time-varying traffic condition effect on delivery.

Moreover, in real conditions, a logistics company can choose a different vehicle to
deliver the goods to minimize the total cost including fixed cost and variable cost. In
our research, we proposed three types of vehicles with different capacities and costs. By
comparing with [43], it is proved that our model can better reflect the actual distribution
process and optimize vehicle selection and vehicle routing in the process of minimizing the
total cost.

Owing to the complexity of the problem, we use SSO to address the proposed problem
and use a Pollution Routing Problem dataset to validate it and compare the result with GA
and PSO, which have been widely used in solving VRP problems. The results obtained
from the analysis show that the SSO outperforms the original GA and PSO with respect
to the total cost and runtime. We acknowledge some limitations in the current study, but
these limitations also provide opportunities for further research: for example, applying
the SSO to solve larger-scale problems. For the problem of the wide interval time window,
path planning is not obviously constrained by the time window, and service time has little
impact on distribution planning. Therefore, the problem of a narrow time window can be
considered in the future.
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Appendix A

Table A1. Uk10_02.

D V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 Dem bi ei

D 0 83 80 32 86 79 57 57 44 86 61 0 0 9

V1 82 0 25 88 135 9 87 47 97 96 29 403 1.45 7.16

V2 80 24 0 90 113 31 98 28 80 111 37 411 0.73 6.12

V3 32 88 90 0 117 82 48 75 74 77 64 596 0.75 6.29

V4 86 135 112 116 0 139 140 91 44 169 125 582 0.24 6.1

V5 78 9 32 82 139 0 79 49 98 87 23 212 0.26 5.73

V6 58 87 98 48 140 79 0 95 98 39 65 330 0.96 6.28

V7 57 47 28 75 91 49 94 0 55 113 38 687 0.45 5.91

V8 43 97 78 73 44 98 97 55 0 126 83 210 0.89 6.55

V9 87 96 111 77 169 86 39 113 127 0 78 330 0.88 6.19

V10 59 30 38 62 124 22 63 39 83 76 0 697 0.84 6.51

Table A2. Uk10_03.

D V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 Dem bi ei

D 0 93 53 48 34 63 80 99 51 16 31 0 0 9

V1 93 0 46 55 106 106 139 9 140 109 124 187 0.96 6.47

V2 53 46 0 33 73 92 114 47 98 67 84 806 0.33 6.12

V3 48 54 33 0 53 62 86 59 96 63 77 672 1.16 6.62

V4 34 106 73 53 0 38 50 110 67 40 41 465 1.01 6.42

V5 63 106 92 61 38 0 34 114 103 76 77 628 1.16 6.94

V6 80 139 113 86 50 34 0 143 113 87 86 735 1.1 6.55

V7 99 9 47 59 110 114 143 0 144 113 129 207 1.23 6.7

V8 51 140 98 96 67 103 113 145 0 35 29 824 0.3 5.9

V9 16 108 67 63 40 76 87 113 35 0 18 348 0.97 6.19

V10 31 124 83 77 42 77 87 130 29 19 0 672 0.23 5.79

Table A3. Uk10_04.

D V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 Dem bi ei

D 0 48 51 34 95 59 32 71 14 97 59 0 0 9

V1 48 0 91 14 120 71 16 95 38 119 101 691 1.49 6.92

V2 51 91 0 78 137 51 77 113 64 150 24 692 0.67 6.48

V3 34 14 78 0 106 65 3 81 25 106 88 190 0.85 6.04

V4 95 119 138 106 0 150 103 25 84 30 136 613 0.65 6.28

V5 58 71 51 64 152 0 66 127 66 152 72 528 0.28 5.62

V6 32 16 77 3 104 66 0 78 22 103 87 375 1.3 6.56

V7 71 94 113 81 25 124 78 0 59 35 111 718 1.15 6.59

V8 14 38 64 25 84 66 22 59 0 85 73 203 1.34 6.46

V9 97 118 149 105 30 151 102 35 85 0 151 414 0.86 6.35

V10 59 100 25 88 136 73 86 111 73 150 0 168 0.95 6.31
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Table A4. Uk10_05.

D V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 Dem bi ei

D 0 50 24 34 49 86 24 28 52 73 93 0 0 9

V1 51 0 36 19 33 115 39 32 45 115 124 169 0.56 5.91

V2 24 36 0 22 31 83 6 20 48 84 92 508 0.92 6.22

V3 35 19 22 0 30 102 27 13 33 99 112 702 1.09 6.55

V4 49 33 31 30 0 105 35 36 61 111 116 406 0.66 6.17

V5 86 117 84 103 106 0 80 101 128 59 12 269 0.39 5.63

V6 25 40 6 27 36 79 0 25 52 80 88 279 1.02 6.62

V7 28 32 20 13 35 100 25 0 31 96 109 659 1.36 6.76

V8 51 45 48 33 60 128 52 31 0 123 137 215 0.19 5.62

V9 73 114 84 99 111 58 80 96 123 0 66 589 0.71 6.19

V10 94 126 93 112 117 13 89 109 137 66 0 541 1.32 6.97

Table A5. Uk10_06.

D V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 Dem bi ei

D 0 76 53 84 35 76 63 31 80 63 74 0 0 9

V1 77 0 95 26 55 141 22 50 92 78 148 575 0.37 6.12

V2 53 94 0 113 42 111 91 76 128 32 97 675 1.13 6.57

V3 84 26 113 0 73 142 22 53 72 101 153 194 1.33 6.92

V4 35 55 43 73 0 108 52 41 97 35 99 438 0.63 6.05

V5 76 141 111 143 108 0 122 92 94 131 39 147 1.09 6.26

V6 63 25 91 26 51 123 0 33 73 79 130 651 0.82 6.51

V7 31 50 76 53 41 91 33 0 58 75 97 712 1 6.77

V8 80 92 127 72 97 94 70 58 0 130 110 533 0.93 6.46

V9 64 77 32 101 34 131 79 75 130 0 119 298 0.7 6.07

V10 74 149 97 154 99 40 132 97 111 118 0 125 0.41 5.95

Table A6. Uk10_07.

D V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 Dem bi ei

D 0 94 29 65 71 87 99 100 42 73 18 0 0 9

V1 94 0 76 150 150 10 9 44 69 46 82 697 1.09 6.54

V2 29 76 0 74 98 69 81 92 49 69 34 816 0.2 5.89

V3 65 149 73 0 94 144 155 164 105 137 81 110 0.58 6.16

V4 71 150 98 93 0 142 159 135 82 112 72 413 0.6 6.15

V5 87 10 69 144 142 0 18 43 61 38 75 343 0.6 6.12

V6 100 9 81 155 159 19 0 44 78 56 91 146 1.14 6.48

V7 100 44 92 163 135 43 44 0 61 28 83 335 0.51 6.02

V8 41 69 49 104 82 61 78 61 0 35 24 366 0.81 6.57

V9 73 46 69 137 112 38 55 28 35 0 57 146 0.83 6.07

V10 18 83 34 81 72 75 90 84 24 57 0 668 0.84 6.73
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Table A7. Uk10_08.

D V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 Dem bi ei

D 0 54 97 71 88 48 68 48 79 73 38 0 0 9

V1 54 0 139 109 139 98 94 39 97 75 54 629 0.52 6.01

V2 96 139 0 134 43 50 58 138 163 92 133 114 0.62 5.69

V3 71 110 135 0 109 87 135 76 39 143 55 475 1.39 7.15

V4 88 139 43 109 0 42 76 132 137 109 118 370 0.72 6.35

V5 48 98 51 88 41 0 51 94 116 75 83 596 0.5 6.3

V6 69 94 58 136 77 52 0 109 146 36 106 679 0.38 6.15

V7 48 39 139 75 132 94 108 0 63 102 21 512 1.26 6.6

V8 79 97 164 39 137 114 146 63 0 150 45 781 0.34 5.9

V9 73 75 92 143 109 75 36 102 149 0 105 392 1.38 6.82

V10 38 55 133 55 118 82 105 21 45 105 0 771 0.72 6.39

Table A8. Uk10_09.

D V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 Dem bi ei

D 0 91 45 36 97 89 72 63 74 95 75 0 0 9

V1 91 0 111 87 145 36 121 117 32 49 144 486 1.32 6.78

V2 45 111 0 24 41 91 38 19 104 94 31 682 0.59 6.2

V3 35 87 24 0 63 70 39 32 86 75 61 533 1.46 7.1

V4 97 145 41 63 0 113 26 49 147 111 10 556 1.37 6.78

V5 89 36 90 69 112 0 89 85 58 15 111 257 0.56 6.01

V6 73 122 37 39 26 89 0 24 123 93 23 227 0.75 6.15

V7 63 117 19 33 49 85 24 0 117 88 47 128 1.08 6.61

V8 74 32 104 86 147 58 123 117 0 72 146 365 0.27 5.56

V9 95 49 94 75 111 14 92 88 72 0 115 126 1.49 7.08

V10 75 144 31 61 10 112 23 47 145 115 0 404 0.92 6.16

Table A9. Uk10_10.

D V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 Dem bi ei

D 0 57 65 38 100 82 59 93 38 86 59 0 0 9

V1 57 0 9 80 122 107 54 39 45 126 101 431 1.23 6.95

V2 66 9 0 88 130 115 57 33 54 135 110 236 1.38 6.86

V3 37 79 88 0 84 62 75 116 54 49 22 426 0.27 5.73

V4 100 122 130 84 0 22 79 141 77 61 89 550 1.16 6.76

V5 82 107 115 62 23 0 70 129 64 42 66 687 0.72 6.14

V6 59 54 57 75 79 70 0 60 22 100 96 578 0.19 6.06

V7 94 39 33 117 138 127 60 0 70 155 138 403 1.48 6.86

V8 38 45 53 54 77 63 22 70 0 83 74 409 0.43 5.71

V9 86 127 136 49 62 42 100 159 83 0 41 597 1.43 7.15

V10 59 101 109 21 89 67 95 138 74 41 0 441 1.07 6.73
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Table A10. Detail result of GA.

Dataset Object Runtime Dataset Object Runtime Dataset Object Runtime

UK10_1

4579.4 28.02

UK10_5

3800.175 28.66

UK10_9

4404.37 31.04

4578.21 29.21 3626.59 30.17 4694.27 30.46

4857.73 26.86 3916.33 27.38 4167.22 29.78

4650.555 30.03 3636.265 29.52 4125.075 28.61

5056.05 29.67 3952.075 29.86 3996.045 30.7

UK10_2

4990.565 29.78

UK10_6

4277.8 31.49

UK10_10

5374.835 27.83

4423.505 30.36 4618.615 29.93 5444.72 30.14

4848.19 28.71 4776.03 27.87 5243.825 29.49

4918.935 28.97 4426.16 29.12 5399.75 29.27

4930.825 30.55 4233.62 28.89 5596.515 28.14

UK10_3

5283.625 29.06

UK10_7

3665.455 28.96

5532.12 27.72 3859.02 30.25

5106.665 27.83 3727.06 28.77

5178.215 31.24 3979.495 29.8

4676.6 30.5 3666.08 29.37

UK10_4

4438.18 31.17

UK10_8

5821.58 30.58

4925.145 29.44 5944.335 29.17

4617.705 30.74 5556.985 29.87

4536.81 30.38 5550.52 29.34

4576.975 30.16 5803.02 30.17

Table A11. Detail result of PSO.

Dataset Object Runtime Dataset Object Runtime Dataset Object Runtime

UK10_1

5299.55 20.34

UK10_5

3942.56 18.93

UK10_9

4372.21 18.34

4991.555 20.92 4660.105 19.12 4416.71 18.67

5005.5 19.68 3983.105 20.31 4248.505 19.03

5130.775 20.55 3864.295 19.56 4342.815 20.29

4999.415 21.06 3919.825 19.42 4365.025 19.74

UK10_2

5045.55 21.65

UK10_6

4537.515 18.97

UK10_10

5539.805 20.31

5104.19 20.92 4452.69 19.77 5476.845 19.72

4849.96 19.68 4477.275 20.05 5426.95 19.86

4748.23 20.55 4464.92 19.94 5621.52 18.81

5049.005 21.06 4562.27 20.35 5636.43 19.83

UK10_3

5412.62 22.27

UK10_7

3978.84 20.33

5416.275 19.76 3863.26 18.67

5451.84 21.66 4011.7 20.1

5221.17 20.46 4107.485 19.85

5176.115 19.94 4051.87 19.74

UK10_4

4942.085 21.52

UK10_8

5564.86 19.76

4788.575 20.12 5762.02 20.3

4947.73 22.02 5663.74 19.45

5062.86 19.97 5657.115 19.23

5057.325 20.75 5760.365 19.55



Electronics 2021, 10, 1775 20 of 22

Table A12. Detail result of SSO.

Dataset Object Runtime Dataset Object Runtime Dataset Object Runtime

UK10_1

4729.38 19.05

UK10_5

3862.26 19.82

UK10_9

3998.045 19.12

4664.14 17.68 3851.745 20.58 3998.045 19.36

4664.14 19.25 3877.2 18.21 3998.045 19.07

4664.14 18.73 3877.2 18.23 3786.95 19.42

4948.695 17.68 3862.26 19.67 3998.045 18.33

UK10_2

4423.505 18.53

UK10_6

4357.945 18.97

UK10_10

5393.96 20.34

4554.775 20.1 4319.66 20.1 5316.535 18.78

4753.095 19.58 4316.145 19.03 5320.675 19.23

4423.505 18.79 4444.69 18.42 5554.535 19.36

4708.27 19.17 4290.77 18.5 5329.32 18.73

UK10_3

4876.6 18.11

UK10_7

3727.06 18.67

4876.6 19.51 3727.06 18.39

4768.49 18.76 3727.06 17.89

4876.6 19.29 3777.7 19.02

4885.03 18.01 3727.06 18.37

UK10_4

4639.595 18.11

UK10_8

5655.395 19.02

4858.115 19.51 5624.36 17.88

4854.055 18.76 5724.765 19.27

4676.96 20.29 5610.88 18.76

4762.76 18.01 5750.38 19.41
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39. Koç, Ç.; Bektaş, T.; Jabali, O.; Laporte, G. Thirty years of heterogeneous vehicle routing. Eur. J. Oper. Res. 2016, 249, 1–21.
[CrossRef]

40. Golden, B.; Assad, A.; Levy, L.; Gheysens, F. The fleet size and mix vehicle routing problem. Comput. Oper. Res. 1984, 11, 49–66.
[CrossRef]

41. Micheli, G.J.; Mantella, F. Modelling an environmentally-extended inventory routing problem with demand uncertainty and a
heterogeneous fleet under carbon control policies. Int. J. Prod. Econ. 2018, 204, 316–327. [CrossRef]

42. Afshar-Nadjafi, B.; Afshar-Nadjafi, A. A constructive heuristic for time-dependent multi-depot vehicle routing problem with
time-windows and heterogeneous fleet. J. King Saud Univ. Eng. Sci. 2017, 29, 29–34. [CrossRef]

43. Vincent, F.Y.; Redi, A.P.; Jewpanya, P.; Lathifah, A.; Maghfiroh, M.F.; Masruroh, N.A. A simulated annealing heuristic for the
heterogeneous fleet pollution routing problem. In Environmental Sustainability in Asian Logistics and Supply Chains; Springer:
Berlin/Heidelberg, Germany, 2019; pp. 171–204.

44. Wang, Z.; Qi, M.; Cheng, C.; Zhang, C. A hybrid algorithm for large-scale service network design considering a heterogeneous
fleet. Eur. J. Oper. Res. 2019, 276, 483–494. [CrossRef]

http://doi.org/10.1080/0305215X.2016.1188092
http://doi.org/10.3390/electronics9010112
http://doi.org/10.31387/oscm0460307
http://doi.org/10.1002/net.3230110211
http://doi.org/10.1057/palgrave.jors.2601319
http://doi.org/10.1016/j.cie.2019.106011
http://doi.org/10.1016/j.scitotenv.2020.144062
http://doi.org/10.1016/j.cor.2021.105211
http://doi.org/10.1007/s11067-017-9364-z
http://doi.org/10.1088/1757-899X/337/1/012004
http://doi.org/10.1007/s00170-003-2025-z
http://doi.org/10.1016/j.eswa.2008.12.024
http://doi.org/10.1016/j.eswa.2010.09.091
http://doi.org/10.1016/0377-2217(94)00299-1
http://doi.org/10.1016/j.trd.2017.04.016
http://doi.org/10.1016/j.cor.2017.06.023
http://doi.org/10.1016/j.ejor.2017.07.004
http://doi.org/10.1016/j.knosys.2019.06.021
http://doi.org/10.1016/j.cor.2020.105193
http://doi.org/10.1016/j.ejor.2020.09.022
http://doi.org/10.1016/j.ejor.2020.05.041
http://doi.org/10.1016/j.tre.2016.01.011
http://doi.org/10.1016/j.ejor.2015.07.020
http://doi.org/10.1016/0305-0548(84)90007-8
http://doi.org/10.1016/j.ijpe.2018.08.018
http://doi.org/10.1016/j.jksues.2014.04.007
http://doi.org/10.1016/j.ejor.2019.01.022


Electronics 2021, 10, 1775 22 of 22

45. De, M.; Giri, B. Modelling a closed-loop supply chain with a heterogeneous fleet under carbon emission reduction policy. Transp.
Res. Part E Logist. Transp. Rev. 2020, 133, 101813. [CrossRef]

46. Soman, J.T.; Patil, R.J. A scatter search method for heterogeneous fleet vehicle routing problem with release dates under lateness
dependent tardiness costs. Expert Syst. Appl. 2020, 150, 113302. [CrossRef]

47. Ropke, S.; Cordeau, J.F. Branch and cut and price for the pickup and delivery problem with time windows. Transp. Sci. 2009, 43,
267–286. [CrossRef]

48. Ben Ticha, H.; Absi, N.; Feillet, D.; Quilliot, A. Vehicle routing problems with road-network information: State of the art. Networks
2018, 72, 393–406. [CrossRef]

49. Crainic, T.G.; Frangioni, A.; Gendron, B. Bundle-based relaxation methods for multicommodity capacitated fixed charge network
design. Discret. Appl. Math. 2001, 112, 73–99. [CrossRef]

50. Shelbourne, B.C.; Battarra, M.; Potts, C.N. The vehicle routing problem with release and due dates. INFORMS J. Comput. 2017, 29,
705–723. [CrossRef]

51. Xu, Z.; Ming, X.; Zheng, M.; Li, M.; He, L.; Song, W. Cross-trained workers scheduling for field service using improved NSGA-II.
Int. J. Prod. Res. 2015, 53, 1255–1272. [CrossRef]

52. Vidal, T.; Crainic, T.G.; Gendreau, M.; Lahrichi, N.; Rei, W. A hybrid genetic algorithm for multidepot and periodic vehicle
routing problems. Oper. Res. 2012, 60, 611–624. [CrossRef]

53. Zhong, S.-Q.; Du, G.; He, G.-G. Study on open vehicle routing problem with time windows limits and its genetic algorithm.
Jisuanji Gongcheng Yu Yingyong Comput. Eng. Appl. 2006, 42, 201–204.

54. Wang, M.; Yeh, W.-C.; Chu, T.-C.; Zhang, X.; Huang, C.-L.; Yang, J. Solving multi-objective fuzzy optimization in wireless smart
sensor networks under uncertainty using a hybrid of IFR and SSO algorithm. Energies 2018, 11, 2385. [CrossRef]

55. Yeh, W.-C.; Lai, C.-M.; Peng, Y.-F. Multi-objective optimal operation of renewable energy hybrid CCHP system using SSO. J. Phys.
Conf. Ser. 2019, 1411, 012016. [CrossRef]

56. Lai, C.-M.; Chiu, C.-C.; Liu, W.-C.; Yeh, W.-C. A novel nondominated sorting simplified swarm optimization for multi-stage
capacitated facility location problems with multiple quantitative and qualitative objectives. Appl. Soft Comput. 2019, 84, 105684.
[CrossRef]

57. Yeh, W.-C.; Lin, Y.-P.; Liang, Y.-C.; Lai, C.-M. Convolution Neural Network Hyperparameter Optimization Using Simplified
Swarm Optimization. arXiv 2021, arXiv:2103.03995.

58. Yeh, W.-C. A novel boundary swarm optimization method for reliability redundancy allocation problems. Reliab. Eng. Syst. Saf.
2019, 192, 106060. [CrossRef]

59. Yeh, W.-C.; Su, Y.-Z.; Gao, X.-Z.; Hu, C.-F.; Wang, J.; Huang, C.-L. Simplified swarm optimization for bi-objection active reliability
redundancy allocation problems. Appl. Soft Comput. 2021, 106, 107321. [CrossRef]

60. Yeh, W.-C. New parameter-free simplified swarm optimization for artificial neural network training and its application in the
prediction of time series. IEEE Trans. Neural Netw. Learn. Syst. 2013, 24, 661–665. [PubMed]

61. Yeh, W.-C. Optimization of the disassembly sequencing problem on the basis of self-adaptive simplified swarm optimization.
IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2011, 42, 250–261. [CrossRef]

62. Yeh, W.-C. Simplified swarm optimization in disassembly sequencing problems with learning effects. Comput. Oper. Res. 2012, 39,
2168–2177. [CrossRef]

63. Lin, P.; Cheng, S.; Yeh, W.; Chen, Z.; Wu, L. Parameters extraction of solar cell models using a modified simplified swarm
optimization algorithm. Sol. Energy 2017, 144, 594–603. [CrossRef]

http://doi.org/10.1016/j.tre.2019.11.007
http://doi.org/10.1016/j.eswa.2020.113302
http://doi.org/10.1287/trsc.1090.0272
http://doi.org/10.1002/net.21808
http://doi.org/10.1016/S0166-218X(00)00310-3
http://doi.org/10.1287/ijoc.2017.0756
http://doi.org/10.1080/00207543.2014.955923
http://doi.org/10.1287/opre.1120.1048
http://doi.org/10.3390/en11092385
http://doi.org/10.1088/1742-6596/1411/1/012016
http://doi.org/10.1016/j.asoc.2019.105684
http://doi.org/10.1016/j.ress.2018.02.002
http://doi.org/10.1016/j.asoc.2021.107321
http://www.ncbi.nlm.nih.gov/pubmed/24808385
http://doi.org/10.1109/TSMCA.2011.2157135
http://doi.org/10.1016/j.cor.2011.10.027
http://doi.org/10.1016/j.solener.2017.01.064

	Introduction 
	Literature Review 
	Time Dependent Vehicle Routing Problem with Time-Varying Speeds 
	Heterogeneous Fixed Fleet Vehicle Routing Problem 

	Problem Statement 
	Time Dependent Vehicle Routing Problem with Time-Varying Speeds of Continuous Function 
	Heterogeneous Fixed Fleet Vehicle Routing Problem 
	Fitness Function and Mathematical Model 

	Simplified Swarm Optimization 
	Simplified Swarm Optimization 
	Example for Code and Decode 
	SSO Algorithm Pseudo Code 

	Computational Experiments 
	Conclusions 
	
	References

