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Abstract: Internet of things (IoT) technology provides practical solutions for a wide range of applica-
tions, including but not limited to, smart homes, smart cities, intelligent grid, intelligent transporta-
tion, and healthcare. Security and privacy issues in IoT are considered significant challenges that
prohibit its utilization in most of these applications, especially relative to healthcare applications.
Cryptographic protocols should be applied at the different layers of IoT framework, especially edge
devices, to solve all security concerns. Finite-field arithmetic, particularly field multiplication and
squaring, represents the core of most cryptographic protocols and their implementation primarily
affects protocol performance. In this paper, we present a compact and combined two-dimensional
word-based serial-in/serial-out systolic processor for field multiplication and squaring over GF(2m).
The proposed structure features design flexibility to manage hardware utilization, execution time,
and consumed energy. Application Specific Integrated Circuit (ASIC) Implementation results of the
proposed word-serial design and the competitive ones at different embedded word-sizes show that
the proposed structure realizes considerable saving in the area and consumed energy, up to 93.7%
and 98.2%, respectively. The obtained results enable the implementation of restricted cryptographic
primitives in resource-constrained IoT edge devices such as wearable and implantable medical
devices, smart cards, and wireless sensor nodes.

Keywords: resource-constrained IoT systems; security in cyber physical systems; cryptographic
processors; IoT edge security; finite-field arithmetic; low power design; systolic arrays

1. Introduction

Internet of Things (IoT) is a modern technology that connects a tremendous number of
gadgets—such as smartphones, wearable devices, sensors, vehicles, and smart meters—to
the internet [1,2]. It provides services and efficient solutions in numerous domains such
as healthcare, smart cities, smart grid, industrial manufacturing, business management,
logistics, smart homes, and intelligent transportation [3–8].

Security and privacy issues are the primary concern in most IoT-based systems. They
prohibit its usage in most applications, especially healthcare applications. Accordingly, we
should employ efficient and practical security solutions to protect the IoT-based systems.
Therefore, cryptographic protocols should be applied at the different layers of the IoT
framework, especially edge devices, to solve all security concerns. Most IoT edge devices
have limited computing resources, which makes implementing traditional cryptographic
algorithms, such as Rivest, Shamir, and Adleman (RSA) and Digital Signature Algorithm
(DSA) [9], impractical. Due to its short-key sizes and enhanced computational efficiency,
the Elliptic Curve Cryptographic (EEC) algorithm [10] becomes the cryptography choice
for resource-constrained embedded devices such as mobile phones, smart cards, and
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environmental sensors. ECC’s essential operation is the point multiplication, which mainly
depends on the basic finite field arithmetic operations of addition, multiplication, squaring,
and division/inversion. The ECC processor’s overall performance primarily relies on the
efficient implementation of these operations. Since the finite field multiplier is the basic
building block of the other field operations of division/inversion and exponentiation, it
is considered the fundamental building block of the ECC processor. Therefore, any slight
improvement in its implementation results in a significant increase in the ECC processor’s
whole performance.

1.1. Paper Motivation and Related Work

Field multiplication in GF(2m) is very crucial in several field operations such as
modular exponentiation and inversion/division as they are performed using a sequence of
multiplications. Most of the previously reported multipliers over GF(2m) have high area
and time complexities that render their realization in resource-constrained IoT edge devices
highly challenging [11–14]. Therefore, it becomes important to have multiplier architectures
that target this type of applications. Word-serial multiplier architectures are reported in the
literature to solve this problem. They have a trade-off between speed and area complexities
and, thus, they provide the designer more flexibility to reach the desired design. The
structures of word-serial multipliers are classified into four types: Serial-In/Serial-Output
(SISO) structures, Serial-In/Parallel-Output (SIPO) structures, Parallel-In/ Serial-Output
(PISO), and Scalable structures. The polynomial basis word-serial systolic multipliers using
SISO structure are presented in [15–19]. The polynomial basis word-serial multipliers with
the SIPO structure are reported in [20–23]. The word-serial type-T Gaussian normal basis
(GNB) multipliers with PISO structure are reported in [24]. The scalable systolic multiplier
structures are reported in [25–31].

Modular exponentiation is a fundamental part of cryptographic algorithms. There
are two binary approaches used to compute modular exponentiation: the Most Significant
Bit (MSB)-first approach and the Least Significant Bit (LSB)-first approach. In LSB-first ap-
proach, the modular multiplication and squaring operations can be executed concurrently
to reduce the processing time. There are many attempts in the literature to combine the
multiplication and squaring operations in a unified structure to increase performance and
hardware utilization [13,14,32]. To the best of our knowledge, the suggested combined
multiplier-squarer structures are dedicated for high-speed applications and do not target
the resource-constrained applications.

1.2. Paper Contribution

In this paper, we propose a word-based two-dimensional SISO systolic processor for
combined field multiplication and squaring over GF(2m). The main difference between
the proposed SISO architecture and the other types of word-serial multiplier architec-
ture is that the proposed multiplier-squarer structure is extracted by using a systematic
approach [33–39]. In contrast, the other word-serial multiplier structures are extracted
conventionally without the use of specific methodology. The applied approach allows the
designer to construct the design in the smallest size in order to fit all resource-constrained
IoT edge devices that have more restrictions on area and power consumption. Moreover, it
provides the flexibility in managing execution time and the consumed energy of these de-
vices. Another advantage of the proposed SISO design over other word-serial conventional
ones is that it provides a compact and unified structure that simultaneously performs mul-
tiplication and squaring operations. By contrast, the traditional design designs computes
both operations sequentially. Moreover, it has a regular structure and local interconnections
that render it more suitable for VLSI implementation.

1.3. Paper Organization

This paper can be organized as follows. Section 2 provides a brief explanation to the
combined polynomial multiplication-squaring algorithm in GF(2m). Section 3 develops
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its associated dependency graph (DG). Section 4 explains the explored two-dimensional
word-based SISO systolic processor. Section 5 provides the area and delay complexities of
the proposed design and the best of the existing word-serial designs. Section 6 concludes
this study.

2. Combined Polynomial Multiplication-Squaring Algorithm in GF(2m)

Let C(x) and D(x) be two polynomials in GF(2m) and G(x) be the irreducible poly-
nomial in standard basis representation. These polynomials can be represented as follows:

C(x) =
m−1

∑
i=0

cixi (1)

D(x) =
m−1

∑
i=0

dixi (2)

G(x) =
m

∑
i=0

gixi (3)

where ci, di, gi ∈ GF(2).
The polynomial multiplication and squaring over GF(2m) can be defined as follows.

R(x) = C(x)D(x) mod G(x) (4)

Q(x) = C(x)C(x) mod G(x) (5)

The products R(x) and Q(x) can be calculated using the combined algorithm,
Algorithm 1, proposed by Choi in [13]. This algorithm calculates three partial polyno-
mials C(x), R(x), and Q(x). Variables Ci, Ri, and Qi are used to indicate the values of
C(x), R(x), and Q(x) at iteration i. di−1 and ci−1 represent the (i− 1)th coefficients of input
polynomials D(x) and C(x), respectively. The initial variables R0 and Q0 are assigned zero
values and the initial variable C0 is assigned the coefficients of input polynomial C(x). In
each i iteration of the for loop, the intermediate variables are updated as follows:

• Variable Ci is updated by shifting left Ci−1 and by reducing using the irreducible
polynomial G;

• Variable Ri is updated by multiplying Ci−1 by coefficient di−1 and by adding the
obtained result to Ri−1;

• Variable Qi is updated by multiplying Ci−1 by coefficient ci−1 and by adding the
obtained result to Qi−1.

Algorithm 2 is the bit-level representation of Algorithm 1. Variable ci
j+1 represents

the (j + 1)th bit of C at the ith iteration. Moreover, ri
j and qi

j represent the ith bit of R and

Q at the ith iteration, respectively. Notice that 〈j + 1〉 indicates that j + 1 is to be reduced
modulo m.

Algorithm 1 Algorithm for multiplication and squaring over GF(2m) [13].

Input: C(x), D(x), and G(x)
Mult. Output: R(x) = (C(x). D(x)) mod G(x)
Square Output: Q(x) = (C(x). C(x)) mod G(x)
Initialization:
R0 ← 0, Q0 ← 0, C(0) ← C(x), D ← D(x), G ← G(x)
Algorithm:

1: for 1 ≤ i ≤ m do
2: Ci = Ci−1. x mod G(x)
3: Ri ← Ri−1 + di−1Ci−1

4: Qi ← Qi−1 + ci−1Ci−1

5: end for
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Algorithm 2 Bit-level algorithm for multiplication and squaring over GF(2m).

Input: C(x), D(x), and G(x)
Mult. Output: R(x) = (C(x). D(x)) mod G(x)
Square Output: Q(x) = (C(x). C(x)) mod G(x)
Initialization:
R0 = (r0

m−1 · · · r0
1r0

0)← (0 · · · 00)
Q0 = (q0

m−1 · · · q0
1q0

0)← (0 · · · 00)
C0 = (c0

m · · · c0
1c0

0)← (0cm−1 · · · c1c0)
D ← (dm−1 · · · d1d0)
G ← (gm−1 · · · g1g0)
Algorithm:

1: for 1 ≤ i ≤ m do
2: for 0 ≤ j ≤ m− 1 do
3: ci

j+1 = ci−1
j + ci−1

m−1g〈j+1〉

4: ri
j = ri−1

j + di−1ci−1
j

5: qi
j = qi−1

j + ci−1ci−1
j

6: end for
7: end for

3. Algorithm Dependency Graph

Algorithm 1 is an example of a Regular Iterative Algorithm (RIA). The authors of [33]
showed how to obtain the dependency graph (DG) of an RIA algorithm. Figure 1 shows the
DG based on Algorithm 2 for combined polynomial multiplication-squaring in GF(2m). The
nodes in Figure 1 represent points in the two-dimensional integer domain D, with indices i
and j indicating the rows and columns, respectively, and they possess the following ranges:

1 ≤ i ≤ m, 0 ≤ j ≤ m− 1 (6)

The figure is for the case when m = 5 bits. The algorithm has three input variables
C, D, and G and two output variables R and Q. Variables R, Q, and G are represented by
the vertical lines. Variable C is represented by the slanted lines (red lines). Input bits ci−1
and di−1 along with the resulting intermediate bits ci−1

m−1 are broadcasted horizontally. The
initial bits r0

j , q0
j , c0

j , and g〈j+1〉 are inputs to the DG as shown at the top of Figure 1. The
DG nodes (circles) execute the main operations of Algorithm 2 from steps 3 to 5. Output
bits rm

j and qm
j are produced from the bottom of the DG as indicated in Figure 1.

The DG in Figure 1 can be used for design space exploration of the combined mul-
tiplication and squaring operations. The design exploration involves finding valid node
scheduling functions and mapping or projecting the graph nodes to processing elements
(PEs). Reference [33] explains how design space exploration could be performed by using
affine and non-linear scheduling and projection functions.

The affine scheduling and projection functions cannot be used to explore word-serial
systolic processors. Thus, our goal is to apply the non-linear scheduling and projection
techniques discussed in [33] to the developed algorithm, Algorithm 2, in order to explore
the most efficient two-dimension word-serial systolic processor that is able to satisfy any
Input/Output (I/O) limitations/restrictions.
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Figure 1. Dependence graph for the combined multiplication-squaring algorithm for m = 5.

4. Combined Two-Dimensional SISO Multiplier-Squarer

A SISO combined multiplier-squarer requires feeding in polynomials C, D, and G in a
word-serial fashion at the start of iterations and then obtaining the Q and R polynomials
in a word-serial fashion. Let us assume that we would like to perform w iterations at the
same time; i.e., we would like to feed in w bits of the polynomial inputs and obtain w bits
of the partial results. There are several nonlinear task scheduling and projection functions
that can be used to obtain different two-dimensional SISO combined multiplier-squarer.
The most efficient ones are discussed in the following sections.

4.1. Two-Dimensional SISO Task Scheduling

Following the scheduling methodology explained in [33], we can extract the following
nonlinear scheduling function to partition D into w× w equitemporal zones:

n(p) =
⌈m

w

⌉ ⌊ i− 1
w

⌋
+

⌊
m− 1− j

w

⌋
+ 1 (7)

where 1 ≤ i ≤ m + µ and −µ ≤ j < m− 1.
Figure 2 shows the node timing (scheduling time) for the case when m = 5 and w = 2.
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Figure 2. Scheduling time for the case when m = 5 and w = 2.

Notice that we added an extra column on the right and extra row at the bottom to
render the number of columns and rows integer multiples of w. In general, we should add
µ extra columns and µ extra rows to render the number of columns and rows an integer
multiple of w, where µ = w

⌈m
w
⌉
−m.

Figure 3 shows the node timing (scheduling time) for the case when m = 5, and w = 4.
In this case µ = 3, thus we had to add three extra columns on the right and three extra

rows at the bottom to render the number of columns and rows an integer multiple of w.
Therefore, the LSBs of inputs C and G and LSBs of the initial values of intermediate variables
R and Q should be padded by µ zeros on the right as shown in Figure 3. Furthermore,
the MSBs of inputs D and C should be padded by µ zeros at the bottom, as shown in the
same figure.

The equitemporal zones are shown as light red boxes with the associated time index
values indicated in red numerals within each zone. Notice that the bits of ci−1

m−1 are com-
puted at the nodes of column m− 2, as shown in Figure 3 and broadcasted horizontally
along with the bits of di−1 and ci−1 to the nodes of row i− 1.

One last detail needs to be mentioned here and is best explained with reference to
two adjacent equitemproal zones executing at times n and n + 1. Figure 4 illustrates
this situation.
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Figure 3. Scheduling time for the case when m = 5 and w = 4.
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n+1

C
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C
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s

C
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Figure 4. Data dependencies of two adjacent equitemporal zones from Figure 3.

The north and east inputs to zone i are available at times n and n + 1, respectively.
However, we notice that input Cn only affects the west output Cw and Ce only affects the
south output Cs. Hence, at time n output Cw is valid while output Cs is not valid since
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we were required to add Ce to it. This will result in an increase in the total number of
iterations needed to produce the final result by one time step. Therefore, the total number
of iterations needed to complete the combined multiplication/squaring computation will
be provided by:

# Iterations =
⌈m

w

⌉2
+ 1 (8)

Two-Dimentional SISO Task Projection

Given the scheduling time in Figure 3, we note that only w× w nodes are active at
a given time. Following the projection technique explained in [33], we can extract the
following nonlinear projection function that maps a point p(i, j) ∈ D of Figure 3 to a point
p in the PE space:

p(o, l) = Psiso p(i, j) (9)

o = i mod w (10)

l = j mod w (11)

Psiso = [ . mod w . mod w ] (12)

where “dot” is a place holder for the argument.
Our systolic array will now consist of w2 PEs arranged in w rows and w columns in

addition to the necessary registers. Figure 5 shows the word-based two-dimensional SISO
systolic processor.
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Figure 5. Word-based two-dimensional SISO systolic processor.

The Word-based two-dimensional SISO systolic processor consists of w× w systolic
array block as well as input/output registers and FIFO buffers in addition to two 2-input
MUXes for selecting between the inputs of C and G and their intermediate values. The
resulting intermediate words of R, Q, and C and the words of G are pipelined through
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the FIFO buffers of R, Q, C, and G, respectively. These FIFOs have a width size of w bits
and a depth size of u− 1, where u =

⌈m
w
⌉
. The word update block ensures that the proper

number of bits are extracted from the bottom outputs of the systolic array block shown in
Figure 5. Notice that we added two registers for the input C: The north C register feeds the
words of operand C to the systolic array starting from the most significant words, while
the east register Ci−1 feeds the words of operand C to the systolic array starting from the
least significant words.

Figure 6 shows the details of the two-dimensional word-based SISO systolic array for
the case when m = 5 and w = 4. The PEs of the systolic array are divided into two different
types with each type possessing a different color. The logical details of the PEs are shown
in Figures 7 and 8. The light blue PEs have an extra tri-state buffer that is enabled (y = 0)
at time steps n = kdm

w e+ 1 and 0 ≤ k < dm
w e to pass the computed bits of Ci−1

m−1. These bits
are broadcasted along with the input bits of Di−1 and Ci−1 to the remaining nodes of the
systolic array to compute the intermediate words of R, Q, and C. Moreover, they have an
extra AND gate to enforce the partial results of the MSBs of C and ci

m to be zero at the same
time instances. This is controlled by the control signal y shown in Figure 7.
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Figure 6. Word-based two-dimensional SISO systolic array.
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Figure 7. Light blue PE details of SISO two-dimensional systolic array.
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Figure 8. Light Orange PE details of SISO two-dimensional systolic array.

The operation of the two-dimensional SISO systolic processor can be summarized for
the generic values of m and w as follows:

1. At time n = 1, MUXes MC and MG shown in Figure 5, are set to pass the w MSBs of
operands C and G, respectively, to the systolic array block. Moreover, FIFO buffers
of R and Q are reset at the same time to pass zero inputs to the systolic array block
since the initial values of R and Q are zeros as indicated in Algorithm 1. Notice that,
the control signals y and z are set to 0 and 1, respectively, through this time step. The
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control signal y = 0 enables the tristate buffer shown in Figure 7 for all the light blue
PEs of the systolic array, Figure 6, to pass the computed w bits of Ci−1

m−1 and 1 ≤ i ≤ w.
The computed word of Ci−1

m−1 along with the w LSBs of Di−1 and Ci−1, 1 ≤ i ≤ w, are
passed horizontally to the remaining PEs nodes of the systolic array. Moreover, the
control signal y = 0 forces the bits of Ci

m and 1 ≤ i ≤ w through the AND gate shown
in Figure 7 to have zero values as shown at the left edge of the DG, Figure 3.

2. At time instances 1 < n ≤
⌈m

w
⌉
, MUXs MC and MG are still set to pass the remaining

words of inputs C and G, one word at each time step, to the systolic array. These
operand words are used with the horizontally passed words of Ci−1

m−1, Di−1, and Ci−1,
1 ≤ i ≤ w, to compute the intermediate words of R, Q, and C in a word serial fashion.
The resulting words of R, Q, and C are pipelined through the FIFOs of R, Q, and
C shown in Figure 5, respectively. These FIFOs have a width size of w bits and a
depth size of u− 1, where u =

⌈m
w
⌉
. Notice that the depth of R and Q FIFOs ensures

keeping the initial values of R and Q equal to zero through these time instances.
3. At time instances n > dm

w e, MUXs MC and MG passes the computed C words stored in
FIFO-C and the G words stored in FIFO-G to the systolic array, one word at each time
step. These words, along with the computed R and Q words that are stored in FIFO-R
and FIFO-Q and the broadcasted words of Ci−1

m−1, Di−1, and Ci−1, kw < i ≤ (k + 1)w,
1 ≤ k ≤ dm

w e − 1, are used to update the intermediate partial results of R, Q, and C in
a word serial fashion, one word at each time step.

4. At time instances n = kdm
w e+ 1, 0 ≤ k ≤ dm

w e − 1 the tri-sate buffer shown in Figure 7
is enabled (y = 0) in all the light blue PEs of the systolic array, Figure 6, to pass
horizontally through the computed w bits of Ci−1

m−1, kw < i ≤ (k + 1)w, along with
the w bits of inputs Di−1 and Ci−1, kw < i ≤ (k + 1)w, to the remaining PEs nodes of
the systolic array. Notice that the Di−1 and Ci−1 registers, shown in Figure 5, feeds
the systolic array with the input words of Di−1 and Ci−1 through these time instances.
Furthermore, through these time instances, the control signal (y = 0) forces the bits
of Ci

m and kw < i ≤ (k + 1)w through the AND gate shown in Figure 7 to have zero
values as shown at the left edge of the DG of Figure 3. At the remaining time instances,
this control signal is equal to one.

5. Through time instances n = kdm
w e+ 1, 1 ≤ k ≤ dm

w e, the control signal z shown at the
right side of Figure 6 is equal to zero to feed the zero values of C, shown at the right
edge of DG of Figure 3, to the systolic array. At the remaining time instances, this
control signal is equal to one.

6. Through time instances n ≥
⌈m

w
⌉⌊m+µ−1

w

⌋
, the resulting output words of R and Q

will be loaded in a word serial fashion, one word at each time step, in registers R and
Q shown in Figure 5, respectively.

An important note that should be considered here is that the vertical w bit words
of R, Q, and G and the horizontal w bit words of Ci−1

m−1, Di−1, and Ci−1 are delayed one
time step inside the systolic array as shown in Figure 6. This is represented by the D
registers (squares) shown in this figure. This renders a one time step difference between
the PEs above the D registers (squares) and the PEs below of them. This time difference
is attributed to the intermediate words of C, resulting from the left column (blue cells) of
the systolic array shown in Figure 6, that are produced starting from the second time step
and the words of R, Q, G, Ci−1

m−1, Di−1, and Ci−1 should be delayed, as shown in Figure 6,
to synchronize the operation. This resulted in the extra time step needed to complete the
the combined multiplication/squaring computation as explained before in Equation (8).

5. Experimental Results and Discussion

In this section, we compare the proposed two-dimensional word-serial combined
multiplier-squarer structure and the best of the existing word-serial multiplier struc-
tures [18,23,40,41] in terms of area and time complexities. The area is estimated in terms of
numbers of Tri-State buffers, 2-input AND gate, 2-input XOR gate, 2-input Multiplexers,
and Flip-Flops. The time is represented by latency and Critical Path Delay (CPD).
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The estimated area and time complexities of the compared structures are given in
Table 1. In this Table, the field size and word size are represented by m and w, respectively.
TA represents the delay of 2-input AND gate. TX represents the delay of 2-input XOR gate.
TMUX represents the delay of 2-to-1 MUX. The notations F1, F2, F3, L1, τ1, τ2, τ3, and τ4 are
described by the following equations.

F1 = 7m + m(dlog me) + w + 3 (13)

F1 represents the number of Flip-Flops in Pan et al. [18] design.

F2 = 2w2 + 2w(dm/we) + 4w + 1 (14)

F2 represents the number of Flip-Flops in Hua et al. [40] design.

F3 = 2w2 + 3w(dm/we) + 2w (15)

F3 represents the number of Flip-Flops in Chen et al. [41] design.

L1 = w + dm/we2 + dm/we (16)

L1 represents the latency of Chen et al. [41] design.

τ1 = TA + (dlog2 we+ 1)TX (17)

τ1 represents the critical path delay of Pan et al. [18] design.

τ2 = TA + 2TX (18)

τ2 represents the critical path delay of Hua et al. [40] design.

τ3 = TA + TX (19)

τ3 represents the critical path delay of Chen et al. [41] design.

τ4 = (w + 1)TA + wTX + TMUX (20)

τ4 represents the critical path delay of the proposed design.

Table 1. Comparison between different word-serial field multipliers.

Design Tri-State AND XOR MUXs Flip-Flops Latency CPD

Xie [23] 0 2mw 2mw + 6m− 6 m
w + 6 0 4mw + 4m + 2w 2dm/we+ 2dlog2 we 2TX

Pan [18] 0 m
√

m
√

mw(2 + m) + w 0 F1 2d
√

m/we τ1

Hua [40] 0 w2 w2 + 4− 5w + 1 (1) 0 F2 6wdm/we2 τ2

Chen [41] 0 w2 + w w2 + 2w 2w (2) F3 L1 τ3

Proposed w 3w2 + 2w 3w2 2w 4w(dm/we+ 1) dm/we2 + 1 τ4

(1) Area of 3-input XOR gate as 1.5× a 2-input XOR gate. (2) Multiplier of [41] uses switches that having same transistor count as 2-input MUX.

For fair comparison, we added the area complexity of Input/Output registers for each
design structure.

By inspecting Table 1, we observe that the expressions representing the estimated
number of logic gates or components of the multiplier structures of Pan et al. [18] and
Xie et al. [23] are approximate of order O(mw). On the other hand, it is of order O(w2)
for the other multiplier structures, except the MUXes and Flip-Flop components of the
proposed design, which are of order O(w2) and O(dm/we), respectively. Since m is ex-
tremely larger than w, we can conclude that the area complexity of the multiplier structures
of Pan et al. [18] and Xie et al. [23] will be higher than that of all the other multiplier
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structures, including the suggested one. By examination of the gate counts’ expressions of
the developed multiplier-squarer and multipliers of Hua et al. [40] and Chen et al. [41], we
recognize that the proposed design has a lower number of Flip-Flops compared to them.
The flip-flop area expression is of order O(dm/we) for the suggested multiplier-squarer
and it is of order O(w2) for the multipliers of Hua et al. [40] and Chen et al. [41]. Therefore,
for large values of w, the number of flip-flops will be substantially decrease compared
to the other multipliers. According to the standard CMOS libraries’ data, the Flip-Flop
consumes the largest area on the chip compared to the other gate types. Thus, reducing the
number of flip-flops in the design structure will considerably reduce the overall area, which
accounts for the insignificant increase in the area of the proposed design as w increases.
It is interesting to notice that the suggested design performs multiplication and squaring
operations simultaneously and the compared ones perform both operations in sequence
and, hence, reducing the area of the developed design for different word sizes can be
considered a considerable achievement.

By examining the latency expressions in Table 1, we can conclude that the mul-
tiplier structure of Pan et al. [18] has lower latency and that the multiplier structure
of Hua et al. [40] has the most significant latency compared to the remaining multiplier
structures, including the recommended one. The numerical results displayed in Table 2
show that the proposed design has lower latency than the designs of Hua et al. [40]
and Chen et al. [41] and higher latency than the multiplier designs of Xie et al. [23] and
Pan et al. [18] for the common field size n = 409. Furthermore, we can conclude from
Table 1 that the latency of all multiplier structures typically decreases as word-size w
increases as it is inversely proportional to w.

By analyzing the expressions of the CPD, for all word sizes of w, we can conclude
that the multiplier structures of Xie et al. [23], Hua et al. [40], and Chen et al. [41] have
a fixed and lower CPD. On the other hand, the CPD values of Pan et al. [18] and the
developed design principally increases as w increases. We cannot accurately assume, from
the estimated expressions, which design structure has the best execution time due to the
difficulty in estimating the decreased amount of latency when w increases. The numerical
results given in Table 2 will confirm the question of which multiplier structure presents
better execution time complexity.

The designs in Table 1 are described using the VHDL code and synthesized for the
common field size m = 409 and different values of w (8, 16, 32) to obtain real implemen-
tation results. We used the NanGate (15 nm, 0.8 V) Open Cell Library and Synopsys
tools version 2005.09-SP2 for synthesizing. We used the typical corner (VDD = 0.8 V and
Tj = 25 ◦C) and unit drive strength for all the utilized primitives.

Testing the proposed design starts by evaluating the wasted power at a frequency
of 1 KHz for each multiplier structure. Then, through simulation using Mentor Graphics
ModelSim SE 6.0a tools, we accumulated the switching activities in the Switching Activity
Interchange Format (SAIF) file to obtain the power report. Next, we designed a testbench
to simulate the suggested multiplier-squarer structure. The test bench has a single loop of
400 possible input combinations of 32-bits, each allowing the user to validate the correctness
of the outputs. In order to regularly examine the resulting output’s correctness, we used
an error flag to designate if the implemented design is working accurately or not. If the
error flag sets to ’0’ at the end of the simulation, then the multiplier-squarer structure
works perfectly. On the other hand, if it sets to ’1’, the multiplier-squarer design is not
operating correctly. In order to allow the examiner to examine the generated output from
each input set, we utilized a “wait statement” to produce a delay of 50 ns between test
vectors. Furthermore, we performed a post-layout simulation to include the additional
pin cost and the propagation delay of all gates. Accordingly, we can achieve an accurate
evaluation of the area, time, and consumed power.
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Table 2. Implementation results of different word-serial field multipliers for m = 409 and different
values of w.

Multiplier w Latency Area (A) CPD Time (T) Power (P) Energy (E)
(Kgates) (ps) (ns) (nW) (fJ)

Xie [23] 8 324 92.98 56.4 18.27 225.56 4.12

16 172 146.96 56.4 9.70 375.5 3.64

32 98 195.13 56.4 5.53 477.4 2.64

Pan [18] 8 48 97.46 206.3 9.90 252.91 2.50

16 36 123.93 244.4 8.80 320.07 2.82

32 24 164.34 282.5 6.78 425.09 2.88

Hua [40] 8 259,584 7.99 73.4 19053.47 4.35 82.88

16 129,792 10.40 73.4 9526.73 5.85 55.73

32 64896 19.91 73.4 4763.37 11.15 53.11

Chen [41] 8 11946 10.16 55.2 659.42 5.11 3.37

16 3678 13.51 55.2 203.03 8.38 1.70

32 1572 26.58 55.2 86.77 15.95 1.38

Proposed 8 2705 7.26 215.7 583.47 3.88 2.26

16 677 9.19 407.7 276.01 5.12 1.41

32 170 15.78 791.7 134.59 7.28 0.98

The obtained results are listed in Table 2. The design metrics used to compare the
proposed and the existing word-serial designs can be defined as follows:

1. Latency: is the total number of clock cycles needed to complete a single operation;
2. Area (A): is the estimated design area in terms of the equivalent area of 2-input

NAND gate;
3. CPD: is the synthesized critical path delay;
4. Time (T): is the total computation time required to complete a single operation;
5. Power (P): is the consumed power obtained at 1 KHZ;
6. Energy (E): is the consumed energy which obtained by multiplying power (P) by the

total computation time (T).

For a fair comparison, the compared multiplier structures of [18,23,40,41] should
perform multiplication and squaring operations in sequence and this doubles the obtained
synthesis results of the time and consumed power/energy of these designs as indicated in
Table 2. For a better explanation of the obtained results, we visualized area, time, power,
and energy results by using the charts shown in Figures 9–12, respectively.

Figure 9 indicates that the proposed design structure saves area at the different values
of w by percentages ranging from 9.1% to 92.6% at w = 8, 11.6% to 93.7% at w = 16, and
20.7% to 91.9% at w = 32 over the existing designs. The design of Pan [18] saves 45.8% and
9.3% time at w = 8 and w = 16, respectively, over the best of the other designs including
the proposed one. The design of Xie [23] saves 18.4% time at w = 32 over the best of the
other designs including the proposed one.

Figure 10 indicates that the multiplier of Pan [18] has the most reduced computation
time at w = 8 over all the remaining designs, including the recommended one (at least 40%
lower time than the multiplier of Xie [23]). At w = 16 and w = 32, the multiplier of Xie [23]
has the cheapest computation time over the remaining designs (at least reduction by 0.6%
at w = 16 and 6.5% at w = 32 over the multiplier of Pan [18]). The multiplier of Xie [23]
outperforms the remaining designs at w = 16 and w = 32 due to the significant reduction
in its latency compared to the other multiplier designs.
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Figure 10. Comparison of time results.

Figure 11 indicates the developed design that has the lowest power consumption at
all word sizes due to its significant reduction in area. The savings in the area will reduce
the parasitic capacitance and, thus, reduces the switching activities in the entire circuit,
which is one of the main contributors to power consumption. We noticed from Table 2 that
the proposed design reduces power consumption at different word sizes by percentages
ranging from 10.8% to 98.5% at w = 8, 12.5% to 98.4% at w = 16, and 34.7% to 98.5% at
w = 32 over the existing designs.

Figure 12 indicates that the proposed design structure has the a significant reduction
in energy over all the remaining multipliers at the different values of w. By observing the
energy results in Table 2, we notice that the proposed design saves energy at the different
values of w by percentages ranging from 9.6% to 97.3% at w = 8, 17.1% to 97.5% at w = 16,
and 29.0% to 98.2% at w = 32 over the existing designs. The reduction in consumed energy
of the proposed design, at all word sizes, is mainly attributed to the fair values of its
execution time (T) and the lower values of the consumed power.
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Figure 12. Comparison of consumed energy results.

As we notice, the proposed design has the lower area, power, and consumed energy
at all of the embedded word sizes. Thus, it enables the implementation of cryptographic
processors in resource-constrained IoT edge devices such as hand-held devices, wearable
and implantable medical devices, wireless sensor nodes, smart cards, and radio frequency
identification (RFID) devices.

6. Summary and Conclusions

This paper presented new efficient two-dimensional word-based SISO systolic proces-
sor for performing the multiplication and squaring operations concurrently over GF(2m).
The proposed systolic processor structure shares the data-path and this results in saving
more area and power resources. We applied non-linear scheduling and projection functions
to the algorithm dependency graph to explore the proposed systolic processor core. The
applied non-linear scheduling and projection functions provide the designer more flexi-
bility to control the processor work load and the execution time. The size of the systolic
array in the processor core does not depend on the field size and that renders the proposed
design more suitable for implementation in embedded and ultra-low power devices. Im-
plementation results of the proposed two-dimensional combined word-serial processor
systolic structure and the best of the existing word-serial multiplication designs show
that the proposed structure achieves significant savings in area and consumed energy at
different values of the embedded word sizes. This renders it more suitable for constrained
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implementations of cryptographic primitives in resource-constrained IoT edge devices
such as hand-held devices, wearable and implantable medical devices, wireless sensor
nodes, smart cards, and radio frequency identification (RFID) devices.
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