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Abstract: In industrial production planning problems, the accuracy of the accessible market informa-
tion has the highest priority, as it is directly associated with the reliability of decisions and affects the
efficiency and effectiveness of manufacturing. However, during a collaborative task, certain private
information regarding the participants might be unknown to the regulator, and the production
planning decisions thus become biased or even inaccurate due to the lack of full information. To
improve the production performance in this specific case, this paper combines the techniques of
machine learning and model predictive control (MPC) to create a comprehensive algorithm with
low complexity. We collect the historical data of the decision-making process while the participants
make their individual decisions with a certain degree of bias and analyze the collected data using
machine learning to estimate the unknown parameter values by solving a regression problem. Based
on an accurate estimate, MPC helps the regulator to make optimal decisions, maximizing the overall
net profit of a given collaborative task over a future time period. A simulation-based case study is
conducted to validate the performance of the proposed algorithm in terms of estimation accuracy.
Comparisons with individual and pure MPC decisions are also made to verify its advantages in
terms of increasing profit.

Keywords: machine learning; model predictive control; optimization; production planning

1. Introduction

In modern industry, the participants of a manufacturing task usually work in a
collaborative mode, which substantially increases productivity [1]. The individual decisions
of the participants contribute to changes in state variables within the industrial process,
which in turn affect their own task performance. To address this decision-making process,
a dynamic model of the given collaborative task is established to represent the interaction
and communication between the participants [2]. Within these collaborative tasks, each
participant naturally makes individual decision to optimize their own task performance,
if no decision is made by the regulator. However, the optimal decisions for the overall
optimal task performance usually conflict with these individual decisions according to the
Nash Equilibrium [3]. Furthermore, the participants might even make individual decisions
with a certain bias and fail to optimize their individual benefits due to a lack of professional
experience. Therefore, an essential responsibility for regulators is to optimize the overall
task performance rather than any individual’s performance, which creates production
planning problems in a collaborative mode.

The class of production planning problems aims at making appropriate decisions
for an industrial manufacturing process to optimize the performance of certain tasks
and yield various practical benefits, such as maximum net profits [4–6], fuzzy multiple
objectives [7–9], economic production quantity [10] and optimal emission policy [11,12];
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see [13–17] for detailed overviews of production planning problems. Most existing produc-
tion planning methods assume that all information within their problem formulations are
known as a priori. Nevertheless, this paper focuses on the production planning problems
in collaborative tasks, which contain private information regarding participants that might
be unknown to the regulator. In this sense, the regulator cannot obtain the full scope
of accurate market information to make optimal decisions for participants, which is an
obstacle to making reliable decisions.

To accurately estimate the parameter values of unknown private information, the
data-driven technique of machine learning is considered in this paper, which is a collection
of approaches for making inferences based upon historical data [18]. This approach
extracts useful information from a realistic data set to tune the weighting parameters of
a trained model, meaning that this model asymptotically returns desired information to
the users [19]. This advantage unlocks intelligent solutions to certain design problems
that can hardly be characterized using classical methods due to their complexity and
fuzziness [20]. Numerous machine learning procedures have been proposed in different
research areas, such as image classification [21,22], data classification and clustering [23–25],
system identification [26], natural language processing [27], autonomous driving [28] and
fault diagnosis [29,30]. Most of these state-of-the-art machine learning approaches are
designed for classification tasks with various data types, such as images, audio and video.
However, this paper addresses a parameter estimation task by solving a regression problem
based on the recorded biased individual decisions, and a “gradient descent”-based machine
learning pipeline is proposed to fulfill this task in an efficient manner.

The technique of MPC is employed in this paper to solve the specific production
planning problem based on the estimated parameter values. We generally exploit the
model and current state information to predict future information so that an appropriate
decision is made to optimize the overall task performance over a future time period, which
is computationally efficient [31]. Because of this key feature, various MPC methods have
been implemented to improve the task performance of broad applications, such as sludge
processes [32], micro-grid [33] and power electronics [34]; see [35–37] for more details
about MPC. Although some existing works in the literature—e.g., [38–40]—handle the
production planning problem with uncertain variables, their problem formulations were
different from that discussed in this paper with disembedded machine learning or MPC
methods. Moreover, this machine learning-based MPC method is capable of extracting
the target information from a complex but real historical data set and carrying out the
estimation procedure in an off-line fashion. It outperforms other on-line learning based
MPC methods—e.g., [41–44]—in terms of its small computation load.

To overcome the aforementioned problems, this paper combines the techniques of
machine learning and MPC to aid regulators to compute optimal decisions for the par-
ticipants, solving the production planning problem with a maximum overall net profit.
Note that some preliminary results of this paper have been reported in [45], but significant
extensions are proposed in this paper. A detailed discussion is made of technical issues
such as Remarks 1–4, an entirely new section (Section 4, Implementation Instructions) is
added to help the reader to understand the behind-screen parameter tuning mechanism
of the algorithm, the case study section employs a newly established model to handle the
problem, and the results have been improved compared to those in the published paper
because of the new contributions added in this paper. The contributions of this paper are
highlighted as follows:

• The production planning problem is formulated using a discrete time system, with
task performance judged by net profit;

• A gradient descent machine learning procedure with an adaptive learning scheme is
developed to estimate the unknown parameters of the revenue in Q using historical
data via solving a regression problem;

• An MPC method uses the estimated values of Q as its user-defined weight factors to
predict the optimal decisions to maximize net profit;
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• A machine learning-based MPC algorithm with low complexity is proposed and
validated in a simulation-based case study;

• A comparison with individual and pure MPC decisions is performed to show the
increase in profit.

The nomenclature is listed as follows:

Rn is an n-dimensional Euclidean vector space,

Rm×n is an m× n real matrix space,

aij is the element in ith row and jth column of A,

diag(·) is a diagonal matrix of its argument,

ρ(·) is the spectral radius of a given matrix,

Ω is an input constraint set,

f (·) is a cost function of the performance index,

‖x‖∞ is the infinity norm of the vector x,

PΩ(x) is the projection of x onto the set Ω,

N (·) is the representation of normal distribution,

x̂ is the estimated value of x,

L(·) is a loss function,

Z is the set of integer numbers,

N is the set of non-negative integer numbers,

s is the production demand,

Q is the weighting parameters of the revenue,

R is the weighting parameters of the productivity effort,

P is the decision bias parameters of the participants,

Π is the benchmark of the unknown parameters.

2. Problem Formulation

This section introduces the system dynamics and uses certain cost functions to rep-
resent the desired task performance. Then, the production planning problem with a
collaborative mode and unknown information is formulated, and the effect of unknown
parameters is discussed.

2.1. System Dynamics

In this paper, the interaction among participants within a given collaborative manufactur-
ing task is modeled by a discrete time system with the following state space representation:

x(k + 1) = Ax(k) + Bu(k). (1)

The system input u(k) ∈ Rn and the system state x(k) ∈ Rn denote the productivity
decisions and market sizes of all n participants at sample time index k, respectively. The
matrices A and B are of compatible dimensions; i.e., A, B ∈ Rn×n.

The future state x(k + 1) of the discrete time system (1) is triggered by the current
state x(k) and the current input u(k). In other words, the market size of each participant
at the next sample time depends on the current market sizes of the participants as well as
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the current productivity decision. Therefore, the individual decision of each participant
influences the market sizes of others, and their market size is also affected by the individual
decisions of others, which gives rise to the system dynamics. If ρ(A) 6 1, the discrete time
system (1) is stable. The matrix B is diagonal, i.e.,

B = diag(b1, b2, . . ., bn), (2)

as the decision of an individual participant does not directly affect the market sizes of other
participants, and its diagonal elements are non-negative since the productivity clearly has
a positive relationship with respect to the market size.

Remark 1. The problem formulation in this paper can be naturally extended to other non-linear
systems without difficulties. However, this kind of extension requires extra modifications to the
solution to the production planning problem, which is not discussed in this paper.

2.2. System Constraints

In practice, it should be realized that the system variables have specific physical limits
that give rise to different forms of system constraints. For example, the system input

u(k) = [u1(k), u2(k), . . ., un(k)]> (3)

represents the productivity of the participants at sample time index k, and all its elements
ui(k), i = 1, . . ., n must be non-negative and have an upper bound for maximum produc-
tivity. The input constraint set Ω usually represents the acceptable system input range. In
this paper, the input saturation constraint u(k) ∈ Ω, i.e.,

Ω = {u ∈ Rn : 0 6 ui 6 ūi, i = 1, . . ., n} (4)

is considered and used to compute the solutions of the production planning problem in
latter sections, where ūi denotes the input upper bound.

2.3. Production Planning Design Objectives

In a manufacturing task, the overall task performance is generally represented by a
cost function f (u, x, k) consisting of the productivity decision u, the market size x and the
sample time index k. For example, the change in market size is denoted as

f (u, x, k) = x(k + 1)− x(k), (5)

and the maximum productivity is denoted as

f (u, x, k) = ‖u(k)‖∞. (6)

Note that the cost function f (u, x, k) does not necessarily need to incorporate all vari-
ables of u, x and k, and its exact definition can change in terms of the target performance
index to be optimized. To improve the task performance, the regulator should make an ap-
propriate decision for the participants to optimize a certain performance index. This design
objective brings significant practical benefits within the given task. Therefore, the produc-
tion planning problem explored in this paper is formulated in the following definition.

Definition 1. The Production Planning Problem refers to the choice of an appropriate produc-
tivity decision u(k) of a discrete time system (1) at sample time index k, such that the desired cost
function f (u, x, k) is optimized over the time period [1, N]; i.e.,
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u = arg max
u

N

∑
k=1

f (u, x, k),

s.t. x(k + 1) = Ax(k) + Bu(k),

u(k) ∈ Ω, k = 0, . . ., N − 1. (7)

To exemplify this design objective, this paper takes the overall net production profit
of a collaborative manufacturing task to be the task performance, defined as

f (u, x, k) = g(x, k)− h(u, k− 1), (8)

where g(x, k) and h(u, k) are the revenue function and the effort function with respect to
the sample time index k. This cost function makes sense in practice as the production effort
made at sample time index k− 1 brings the revenue in the next sample time index k.

The revenue function g(x, k) is in a quadratic form,

g(x, k) = −1
2

x>(k)Qx(k) + s>(k)x(k), (9)

where the diagonal matrix
Q = diag(q1, q2, . . ., qn) (10)

contains the constant weighting parameters of the revenue for each participant, and
the vector

s(k) = [s1(k), s2(k), . . ., sn(k)] (11)

represents the production demands of the participants at sample time index k, which is
a known time-varying value. In the problem formulation, the production demand s(k)
is the required order number of the products and does not have a direct relationship
with the market size x(k), which denotes the actual number of products made by the
factory. However, they together contribute to the revenue function g(x, k). According to
the quadratic form (9), the revenue of each participant first increases to a peak value and
then decreases along its market size axis. Due to the fact of excess demand, the overall
revenue decreases after a certain market size. Note that the revenue is zero for zero market
size, which is realistic in practice. The production demand is not a fixed value as the
demand for certain products may vary with respect to the sample time index k. In addition,
the production demand has a positive effect on the revenue, as an increase of production
demand increases the product price.

The effort function h(x, k) is in a quadratic form,

h(u, k) =
1
2

u>(k)Ru(k), (12)

where the diagonal matrix
R = diag(r1, r2, . . ., rn) (13)

contains the constant weighting parameters of the productivity effort for the participants.
Based on the quadratic form (12), the effort of each participant increases quadratically as
its productivity increases from the value of zero. This quadratic form is realistic as high
productivity generally leads to extra costs in terms of human power, machine damage and
energy consumption.

To solve the production planning problem (7), a reliable system model (1) and accurate
values of R, Q and s(k) are required. However, unknown parameters occur frequently in
the practical production planning problem. In this specific case, the participators naturally
attempt to optimize their private performance index, and their individual decisions might
even conflict with the optimal decisions made by the regulator for the overall task perfor-
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mance. Therefore, they might not share their private revenue weighting parameters qi with
the regulator or provide inaccurate values. Thus, the matrix Q is generally unknown or
inaccurate to the regulator, which restricts the reliability of optimal decisions.

To handle this problem, the data-driven method of machine learning is applied to
estimate these unknown parameters by extracting and analyzing the information from
the recorded historical data, and MPC is then used to provide optimal decisions for the
regulator based on estimated parameter values.

3. Machine Learning-Based MPC

In this section, a formula is derived to model the individual decisions of the partic-
ipants under the free decision making condition. A gradient descent machine learning
training procedure with low complexity is proposed to estimate the unknown parameters
using the recorded historical data and the obtained formula. Then, MPC is considered
to solve the problem (7) based on the estimated values of the parameters to yield the
optimal decisions.

3.1. Individual Decision Modeling

A free decision making condition is now supposed for the participators, meaning
that there are no optimal decisions received from the regulator. Therefore, they have the
authorization to make individual decisions for themselves. It is not surprising that the
individual decisions are often biased from their optimal value due to the low response to
market environment change and the restricted insight of the participators. In this sense,
the decision bias matrix

P = diag(p1, p2, . . ., pn), (14)

is introduced to provide the decision bias parameters of the participants. These parameters
pi, i = 1, . . ., n are unknown random values with a normal distributionN (µi, σ2

i ), where µi
is the mean value and σi is the standard deviation. The decision bias parameters represent
the inherent difference between actual individual decisions and associated optimal options.
By introducing these parameters, a representation formula of the individual decisions is
derived and shown in the next theorem.

Theorem 1. Under the free decision making condition, the ith participant attempts to maximize
their individual task performance, defined by the cost function

fi(xi, ui, k) = −1
2

qix2
i (k + 1) + si(k + 1)xi(k + 1)− 1

2
riu2

i (k), (15)

at sample time index k, and the individual decision is

ui(k) = Fi(Πi, s(k + 1), x(k)), (16)

where Πi = (qi, pi) involves the unknown parameters of the participant and function Fi is
defined by

Fi(Πi, s, x) = PΩi ((1 + pi)
bisi − biqi ∑n

j=1 aijxj

qib2
i + ri

), (17)

with the projection operator

PΩi (u) = arg min
ũi
|ui − ũi|, s.t. 0 6 ũi 6 ūi. (18)

Proof. Under the free decision making condition, each participant makes their decision
actively and focuses on maximizing their individual cost function (15), which gives rise to

min
ui

1
2

qix2
i − si(k + 1)xi +

1
2

riu2
i , s.t. xi =

n

∑
j=1

aijxj(k) + biui. (19)
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The problem (19) is a quadratic programming problem, and the partial differentiation
of the cost function is performed with respect to ui to find the identical stationary point.
As the problem is convex, this stationary point is the global minimum and gives the
unconstrained solution

(bisi(k + 1)− biqi

n

∑
j=1

aijxj(k))/(qib2
i + ri). (20)

Using the decision bias parameter pi, the actual decision of each participant is

(1 + pi)(bisi(k + 1)− biqi

n

∑
j=1

aijxj(k))/(qib2
i + ri). (21)

To satisfy the input constraint, the projection operator PΩi (·) is used to provide the
individual decision (16).

The above theorem derives a representation formula of the individual decisions under
the free decision making condition. It not only attempts to optimize the individual task
performance of each participant but also incorporates the decision bias into the individual
decision making processes. Moreover, the representation formula of the individual decision
vector is stated in the next corollary.

Corollary 1. According to the Formula (16) in Theorem 1, the overall individual decisions are
equivalently written into the vector form

u(k) = F (Π, s(k + 1), x(k)), (22)

where Π = (Q, P) denotes the benchmark of the unknown parameters and function F is defined by

F (Π, s, x) = PΩ((I + P)(BQB + R)−1(Bs− BQAx)), (23)

with the projection operator
PΩ(u) = arg min

ũ∈Ω
‖u− ũ‖. (24)

Proof. The vector form (22) is naturally derived from (16) with standard matrix calculations
and derivations.

3.2. Gradient Descent Machine Learning

In industry, it is normal practice to record historical production information. Suppose
that the historical data are recorded over m sample times under the free decision making
condition, and the data set Λ with m elements is generated and stored. Each element
λ = (u, x, s) ∈ Λ contains the decision, the state and the production demand, which are
linked by the function F as

u = F (Π, s, x) (25)

according to Corollary 1. However, Π is unknown in the general sense, and the esti-
mate Π̂ = (Q̂, P̂) is employed in this paper to denote all unknown parameters within
the function F (·). In this sense, an accurate estimate Π̂ definitely provides a decision
û = F (Π̂, s, x)x), which approaches the real value u. This fact motivates the data-driven
technique of machine learning to estimate the benchmark Π = (Q, P). The machine
learning problem and its design objective are stated in the following definition.
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Definition 2. The machine learning problem aims at iteratively updating the estimate Π̂ such
that the decision loss function

L(Π̂, λ) =
∥∥u−F (Π̂, s, x)

∥∥ (26)

is minimized for all λ ∈ Λ.

In the above problem definition, the decision loss denotes the difference between the
decision û computed from the estimate Π̂ and the recorded historical decision u. If the
decision loss is sufficiently small, the estimated decision û approximates u and the estimate
Π̂ is considered as an approximation of the benchmark Π. Once an accurate estimate Π̂ is
available, more reliable model information becomes possible for the later MPC procedure
as it considers the values of Q̂ while solving the optimization problem.

Furthermore, the decision loss function of each participant is defined as

Li(Π̂i, λ) =
∥∥ui −Fi(Π̂i, s, x)

∥∥, (27)

the sum of which gives rise to the overall decision loss function; i.e.,

L(Π̂, λ) =
n

∑
i=1
Li(Π̂i, λ). (28)

The widely used method of machine learning is an iterative training procedure with
several training epochs and an initial estimate

Π̂0 = (Q̂0, P̂0). (29)

This method randomly splits a total number of η elements from the data set Λ into
a training set Λtrain, and the rest are sorted into a testing set Λtest [46]. At each training
epoch, it updates the estimate Π̂ using each element in the training set Λtrain to reduce the
decision loss (26). At the end of each training epoch, the decision loss (26) of the elements
in the testing set Λtest, i.e.,

ι
j
i = L(Π̂, λ

j
i), λ

j
i ∈ Λtest, i = 1, . . ., m− η, (30)

is computed to evaluate the training performance of the machine learning method; in other
words, the decision loss, where the subscript j ∈ N denotes the training epoch number.
Since the testing set Λtest is independent of the training set Λtrain, it is possible to use the
evaluation results to double-check the training performance of the machine learning design
using external data from the training set, which avoids the limitation of over-fitting.

A gradient descent machine learning training procedure is proposed to reduce the
decision loss (26) with respect to the elements in the training set Λj

train during each
training epoch. The training procedure of each training element is illustrated in the
following theorem:

Theorem 2. For λ ∈ Λj
train, the estimate Π̂ is updated by Π̂

′
= (Q̂

′
, P̂

′
) using the gradient

descent update [
q̂
′
i

p̂
′
i

]
=

[
q̂i
p̂i

]
− γi

[
∇q̂iLi(·)
∇ p̂iLi(·)

]
, i = 1, . . ., n, (31)

such that the overall decision loss is reduced; i.e.,

L(Π̂′
, λ) 6 L(Π̂, λ). (32)

where ∇q̂iL(·) and ∇ p̂iL(·) are partial derivatives of (26) with respect to q̂i and p̂i, and γi is the



Electronics 2021, 10, 1818 9 of 20

adaptive learning rate defined by
γi = αβi γ, (33)

where 0 < α < 1 and γ > 0 are constant scalars, and βi is the smallest non-negative integer
such that

Li(Π̂
′
i, λ) 6 Li(Π̂i, λ). (34)

Proof. Since the individual decision loss reduction of all participants in (34) is guaran-
teed by the adaptive learning rate choice (33), the overall decision loss naturally reduces
according to (28).

This gradient descent machine learning training procedure aims at updating the
estimate Π̂ to reduce the decision loss of all elements in the training set and obtains a
reliable estimate of the unknown parameter values after sufficient training epochs.

Remark 2. K-fold cross-validation is recommended if the amount of historical data is relatively
small. Different splits of the data enable the cross validation using all elements within the historical
data set [47]. The adaptive learning rate choice (33) is a mechanism used to ensure both the
maximum gradient descent step size and the reduction of the decision loss. Other alternative
learning rate choices can be made using bisection or back-stepping methods.

Remark 3. For each element λ ∈ Λ, there exist infinite choices for Π̂ to reduce its decision loss
L(Π̂, λ) to zero, but there only exists a rather small range for Π̂ in the search space to obtain a
sufficiently small overall decision loss. The trial and error method is used in (31) to reduce the
decision loss of all λ ∈ Λtrain in a random order, with the aim of minimizing the overall decision
loss. However, its convergence performance along with the training number cannot always be
guaranteed due to the independence of the elements in Λ; i.e., an update of Π̂ may reduce L(Π̂, λi)
but increase L(Π̂, λi+1).

Remark 4. Note that other non-iterative methods, such as echo-state networks, extreme learning
machines or kernel ridge regression, are also capable of solving the regression design objective shown
in Definition 2.

Remark 5. In more general production planning problem, due to different system dynamics, the
function F (·) may become complex/fuzzy. To handle the machine learning problem, the deep neural
network model is suggested to be utilized to estimate the unknown values.

3.3. MPC Production Planning Problem

The machine learning procedure in Section 3.2 is capable of determining the unknown
parameter values for the production planning problem. Therefore, an analytic represen-
tation of the problem formulation becomes available, and the regulator can make the
optimal decisions for the participants to improve the overall task performance. To solve
the production planning problem, the technique of MPC is applied at each sample time
index k to update the optimal decisions over a future time interval [k, k + ∆k] by solving
the optimization problem

min
u

k+∆k−1

∑
i=k

1
2

x>(i + 1|k)Q̂x(i + 1|k)− s>(i + 1)x(i + 1|k)

+
1
2

u>(i)Ru(i),

s.t. x(i + 1|k) = Ax(i|k) + Bu(i), u(i) ∈ Ω,

u = [u(k), u(k + 1), . . ., u(k + ∆k− 1)], (35)

where x(i + 1|k) is the predicted state at sample time index i + 1 based on the real informa-
tion x(k) at k and the planned input u(i) over the period [k, i]. At each sample time, MPC
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uses the current input u(k), the current state x(k) and the system dynamics to predict the
future states x(i + 1|k), i = k, . . ., k + ∆k− 1, over the prediction time period [k + 1, k + ∆k].
An appropriate solution is chosen to optimize the cost function consisting of these predicted
values and replace the previous decision (if it exists) with this new decision along with the
future time period.

The optimal decisions aim at maximizing the overall net profit of the collaborative
manufacturing task, while the individual decisions focus on the net profit of an individual
participant. A comparison between these decisions is made in Section 5 via a case study,
and the benefits of using the optimal decisions are illustrated in details.

4. Implementation Instructions

The instructions are provided in this section for implementing the solutions in Section 3,
and a comprehensive algorithm is then proposed to provide a solution to the production
planning problem with a collaborative mode and unknown information.

4.1. Instructions on Projection Solution

According to the definition (22) of the projection operator PΩ(·), the unconstrained
decision is projected into the given decision constraint set Ω, which generates the con-
strained decision. The decision saturation constraint (4) is element-wise and the constraint
handling procedure is straightforward. The next proposition provides the analytic solution
of the projection operator PΩ(·) with respect to the decision saturation constraint (4) as
an example.

Proposition 1. If the constraint set Ω is in the form of the input saturation constraint (4), the
analytic solution of the projection operator PΩ(·) defined in (22) is given by

ui(k) =


0, if ũi(k) < 0,

λi, if ũi(k) > ūi,
ũi(k), otherwise,

i = 1, . . ., n. (36)

Proof. As the input saturation constraint (4) is element-wise, the projection operator PΩ is
computed by solving the problem

ui(k) = min
ũ
|ui − ũi|, s.t. 0 6 ui 6 ūi, (37)

for i = 1, . . ., n, which yields the analytic solution (36).

The above proposition provides the analytic solution of PΩ(·) based on the input
saturation constraint (4). The solutions of the projection operator PΩ(·) with other types of
input constraints can be handled in a similar way.

4.2. Instructions on Initial Estimate Choice

The machine learning training procedure is carried out in an iterative manner, and
the decision loss function in (26) is generally non-linear and non-convex. Although the
gradient descent training procedure (31) guarantees the reduction of the decision loss for
the various possible initial estimate choices Π̂0, the initial estimate choice definitely affects
the training performance. The estimate might converge to a local minimum point with a
relatively large decision loss if the initial estimate is not chosen properly.

To achieve the desired training performance, the estimate search space is predefined as

Θ = {Π̂ ∈ Rn×n ×Rn×n : qi 6 q̂i 6 q
i
, pi 6 p̂i 6 p

i

i = 1, . . ., n}, (38)
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where the scalars qi, pi, q
i

and p
i
, i = 1, . . ., n, are appropriately chosen as the upper and

lower bounds of the search space. In this sense, two different initial estimate choices are
introduced, and the first one is defined by

Definition 3. The central initial estimate choice is used to specify all initial values as the
central values of their intervals; i.e.,

q0
i =

qi + q
i

2
, p0

i =
pi + p

i
2

, i = 1, . . ., n. (39)

This choice ensures the initial distance to the benchmark Π does not appear to be
too large and provides a relatively fair initial choice. Alternatively, the second choice is
defined by

Definition 4. The grid initial estimate choice is used to specify the initial estimate choice as the
best fitting solution to the grid search problem

min
Π̂∈Θ̆

m

∑
i=1
L(Π̂, λi), (40)

where Θ̆ is a discretized finite subset of Θ defined by

Θ̆ = {Π̂ ∈ Rn×n ×Rn×n : q
i
+

mi
q − 0.5

nq
(qi − q

i
),

p
i
+

mi
p − 0.5

np
(pi − p

i
), mi

q ∈ [1, nq], mi
p ∈ [1, np],

mi
q, mi

p ∈ Z, i = 1, . . ., n} (41)

with sample numbers nq and np.

This word “grid” in the name of this choice implies that the sample numbers nq

and np should not be too large so that the total number of elements in Θ̆ would not
be excessive [48]. Therefore, the grid search problem (40) can be computed efficiently,
capturing an approximate region of the global optimal solution to the minimum decision
loss problem:

min
Π̂∈Θ
L(Π̂, λ), ∀ λ ∈ Λ. (42)

However, this choice requires extra computational time to carry out the grid search as
the number of the unknown parameters increases.

Remark 6. These two initial choices both provide reliable initial values for the estimate for the
gradient descent training procedure (31). However, a trade-off between computational efficiency
and training performance improvement should be taken into account for practical implementation.

4.3. Instructions for Partial Derivative Estimation

Since the decision loss function L(·) has an analytic form (26), the value of its partial
derivatives with respect to q̂i and p̂i can be computed using the syntax gradient in Matlab
or autograd in Python. Alternatively, a numerical estimation

∇q̂iL(·) =
L((Q̂+

i , P̂), λ)−L((Q̂−i , P̂), λ)

2δ
(43)
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is used to obtain the partial derivative, where

Q̂+
i = diag(q̂1, q̂2, . . . , q̂i + δ, . . . , q̂n),

Q̂−i = diag(q̂1, q̂2, . . . , q̂i − δ, . . . , q̂n),

and the scalar δ ∈ N is sufficiently small. The partial derivative ∇ p̂iL(·) can be obtained in
a similar way. This numerical estimation incurs less computational load and is still capable
of giving approximate values of the derivatives even if the analytic representation of the
decision loss function L(·) is not available in some extreme cases.

4.4. Instructions for MPC Problem Solution

The MPC problem (35) has a quadratic cost function, linear equality constraint and
convex inequality constraint. Therefore, it is a quadratic programming problem, which is a
convex optimization problem with a global optimal solution. There exist various standard
solvers for quadratic programming problems, such as the solver quadprog in MATLAB.
These standard solvers can directly provide the global optimal solution.

Furthermore, an alternative computational efficient solution is obtained by decoupling
the input constraint from the optimization problem (35) and setting the prediction interval
to a unit sample time; i.e., ∆k = 1. The solution to the problem (35) is described as first
solving the unconstrained problem

min
u

1
2

x(k + 1|k)>Q̂x(k + 1|k)− s>(k + 1)x(k + 1|k)

+
1
2

u>Ru, s.t. x(k + 1|k) = Ax(k) + Bu, (44)

and projecting the solution into the input constraint set Ω using PΩ(·), which is illustrated
as follows:

Proposition 2. If the input constraint is decoupled from the problem (35) and ∆k = 1, its
alternative solution is

u(k) = PΩ(ũ(k)), (45)

where ũ(k) is the solution of (44); i.e.,

ũ(k) = (BQ̂B + R)−1(Bs(k + 1)− BQ̂Ax(k)). (46)

Proof. As the input constraint is decoupled and ∆k = 1, the problem (35) collapses to
the problem (44). The problem (44) becomes an unconstrained problem by substituting
the equality constraint x(k + 1|k) = Ax(k) + Bu into the cost function, which yields the
solution (46). To handle the input constraint, the projection operator PΩ(·) is considered to
give the solution (46).

The alternative solution to problem (35) in Proposition 2 is computationally more
efficient than the direct solution provided by the standard solvers. A trade-off between
efficiency and accuracy should be considered by the production regulator according to the
properties of the exact production planning scenario.

4.5. Production Planning Comprehensive Algorithm

The techniques of machine learning and MPC are combined to yield a comprehensive
algorithm (Algorithm 1) to solve the production planning problem with a collaborative
mode and unknown information. This algorithm first uses the gradient descent machine
learning procedure to estimate the unknown parameters and applies MPC to obtain the
optimal decisions for the participants at each sample time index k. Note that the scalar
value N denotes the total number of sample times and ε > 0 is a small scalar depending
on the accuracy requirement of machine learning estimation. For a straightforward view, a
block diagram of the machine learning-based MPC algorithm is shown in Figure 1.
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Algorithm 1 Machine learning based MPC

Input: System dynamics (1), cost function f (u, x, k), production demand s(k), initial state
x0, initial estimate Π̂0, decision loss function L(·) and historical data set Λ.

Output: Estimate Q̂, optimal decision u(k).
1: initialization: Set training epoch number j = 1, sample time index k = 0 and randomly

split η elements of the set Λ to a training set Λtrain and the rest to a testing set Λtest.
2: while not ∑

m−η
i=1 ι

j
i 6 ε do

3: Perform the training procedure (31) to update the estimate Π̂ using all elements in
Λtrain.

4: Perform the evaluation (30) to compute the decision loss ι
j
i , using all elements in

Λtest.
5: Set j = j + 1 to the next training epoch.
6: end while
7: Set the estimate Q̂ as the unknown matrix Q.
8: while k < N do
9: Solve the MPC problem (35) to obtain u(k).

10: Record the optimal decisions u(k).
11: Set k = k + 1 to the next sample time index.
12: end while
13: return Q̂, u(k), k = 0, . . ., N − 1

Figure 1. Block diagram of the machine learning-based MPC algorithm.

5. Simulation-Based Case Study

In this section, a case study of a production planning problem is presented, and an
evaluation is conducted to check the performance of Algorithm 1 in comparison to the
performance under the conditions of individual decision making and pure MPC decision
making.

5.1. Problem Design Specifications

In this paper, we consider the production planning scenario within a clothing factory as
a case study. This factory has a total number of 10 departments (n = 10; i.e., 10 participant)
working in a collaborative mode. The modified dynamics of the discrete time system (1) of
this factory are considered with
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A =



0.72 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00
0.00 0.53 0.07 0.00 0.01 0.10 0.00 0.00 0.13 0.00
0.00 0.00 0.64 0.00 0.02 0.00 0.00 0.00 0.03 0.00
0.00 0.02 0.00 0.28 0.00 0.08 0.00 0.03 0.00 0.00
0.00 0.00 0.04 0.00 0.48 0.00 0.00 0.00 0.00 0.01
0.00 0.15 0.00 0.00 0.00 0.33 0.04 0.00 0.00 0.16
0.00 0.00 0.00 0.34 0.00 0.00 0.67 0.00 0.00 0.00
0.00 0.23 0.00 0.00 0.06 0.00 0.00 0.41 0.00 0.07
0.02 0.00 0.16 0.00 0.00 0.04 0.00 0.00 0.18 0.00
0.00 0.04 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.19


,

B = diag(3.62, 4.46, 2.31, 2.21, 2.05, 2.53, 4.99, 7.68, 0.29, 1.57).

The above system dynamics demonstrate how the productivity decision of an identical
participant affects the market size of other participants. The sample time period is one
day, which means the regulator needs to plan productivity decisions one day in advance.
The total number of sample times N is 365; i.e., one year. The initial state value is chosen
as x(0) = 0, and the input saturation constraint (4) is considered with ūi = 1.5 as the
productivity of the participants with a maximum load. The benchmark values of matrices
R and Q are listed as

R = diag(0.93, 3.55, 3.54, 1.51, 0.56, 1.46, 2.17, 2.38, 4.14, 3.21),

Q = diag(1.03, 2.35, 1.14, 3.44, 5.01, 0.86, 1.47, 1.68, 1.96, 2.41).

The individual decision bias parameters pi, i = 1, . . ., n in matrix P are defined with
mean values

µ1 = −0.30, µ2 = −0.15, µ3 = −0.55, µ4 = −0.35, µ5 = −0.25,

µ6 = 0.60, µ7 = −0.55, µ8 = −0.35, µ9 = 0.15, µ10 = 0.60.

as well as a standard deviation of σi = 0.01. Since the parameters in the matrix Q are
unknown to the regulator, the authors only apply these values as a benchmark to generate
historical data and evaluate the estimation accuracy of the machine learning procedure.
The same argument holds for the unknown matrix P.

In addition, the production demand of each department over the total decision making
period [0, 365] is described as

si(k) = κi sin(
2π

N
k + ϕi) + τi, i = 1, . . ., n, (47)

where the amplitude κi, center amplitude τi and the phase ϕi are the elements of the vectors
as follows:

κ = [1.43, 3.17, 3.81, 1.91, 4.13, 2.72, 2.24, 4.22, 1.06, 4.59],

τ = [7.02, 6.92, 4.15, 5.29, 4.53, 3.62, 8.79, 5.22, 6.11, 9.52],

ϕ = [
1
2

π,
1
2

π,
1
2

π,
1
2

π,
1
2

π, − 1
2

π, − 1
2

π, − 1
2

π, − 1
2

π, − 1
2

π].

This case study focuses on clothing manufacturing, so the production demand varies
for different seasons in a calendar year. In this sense, the sinusoidal function (47) can
reasonably represent the production demands of these departments. These seasonally
varying demands contribute to the historical demand within the set Λ and are used to
compute the optimal decisions in Sections 5.2 and 5.3.
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These problem design specifications fully replicate the industrial environment of cloth
manufacturing. Therefore, the simulation results are capable of indicating the practical
effectiveness and feasibility of the proposed algorithm.

5.2. Parameter Estimation Using Machine Learning

To obtain the historical data, the following data sampling procedure was employed:
first of all, the benchmark matrices Q and P defined in Section 5.1 generated the individual
decisions using the Formula (22) over a production planning period [1, 365], denoting a
calendar year. Therefore, the historical data set Λ was established with a total number
of 365 groups of historical data; i.e., λi = (si, ui, xi), i = 1, . . ., 365 (m = 365). In this
case study, the groups of data generated as above replicated the interaction between the
production demands, individual decisions and market sizes of each department under the
free decision making condition and were thus regarded as effective historical data for the
later machine learning procedure.

The machine learning procedure of Algorithm 1 randomly split a total number of 100
(η = 100) groups of the historical data into a training set Λtrain and the rest into a testing
set Λtest. Then, it was capable of estimating the unknown parameter values of Q and P
based on the obtained training set Λtrain. The grid initial estimate choice in Definition 4
was carried out in the search space (38) defined by

qi = 10, pi = 1, q
i
= 0, p

i
= −1, (48)

for i = 1, . . ., 10. The values α = 0.6 and γ = 0.05 were used to determine the adaptive
learning rate choice (33).

The decision loss during the training procedure was plotted along the training number
line for each department in Figure 2 and all asymptotically converged to sufficiently small
values. Meanwhile, the decision loss of each department was computed using the testing
data at the end of each training epoch and plotted as the colored lines in Figure 3. Note that
all lines in this figure also asymptotically converged to sufficiently small values. This means
that the estimated decision û = F (Π̂, s, x) gradually approached the real decision u, and
thus the training procedure succeeded in providing an appropriate estimate Π̂. The above
evaluation demonstrates the feasibility and reliability of the machine learning procedure
in terms of validation using testing data. The choice of the initial estimate affected the
convergence performance of the 10 departments. For instance, the estimated values of the
fourth department were sufficiently close to the benchmark values, and the convergence
rate was much slower along the training epochs in comparison to others.

Furthermore, the updated estimate Π̂ was compared with the benchmark values for
each training update, and the results of the first department are plotted in Figure 4. For
comparison, the corresponding benchmark values are plotted in the same figure as the
dashed magenta lines (the mean value µ1 of pi is used for comparison). It is observed
that the estimated values asymptotically converged to their benchmark values, which
means that the converged estimate matched well with its benchmark. The converged
estimates were

Q̂ = diag(1.03, 2.35, 1.14, 3.44, 5.01, 0.86, 1.47, 1.68, 1.96, 2.41),

P̂ = diag(−0.30, − 0.15, − 0.55, − 0.35, − 0.25, 0.60, − 0.55, − 0.35, 0.15, 0.60),

which approached the benchmark values shown in Section 5.1. Therefore, the above results
reveal the effectiveness of the machine learning procedure for estimating the unknown
parameters. The estimated convergence performances of other departments were similar
to those in Figure 4 and are thus omitted here for brevity.
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Figure 2. The decision loss with respect to each group of training data along the training number line
for each department.
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Figure 3. The decision loss of the testing data at the end of each machine learning training epoch for
each department.
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Figure 4. The comparison between the estimates and the benchmark values along the training
number line for the first department.

In practice, the historical data of the production information should be recorded over
a past time period rather than artificially generated using the benchmark, as in this case
study. The performance of the machine learning procedure should be evaluated based on
the convergence performance of the decision loss with respect to the testing data.

5.3. Decision Making Using MPC

Since the machine learning procedure in Section 5.2 provided an accurate estimate Π̂
of the unknown parameter values, the information within the production problem made
it feasible for the regulator to make the optimal decisions. The MPC decision making
procedure of Algorithm 1 was performed for the production planning problem specified in
Section 5.1 with a unit prediction interval (∆T = 1), using the given system dynamics (1)
and the desired cost function (8).

The performance of the MPC decision making procedure was evaluated over the
whole production planning period [1, 365], and the overall net profits of the factory at each
sample time index are plotted as the magenta curve in Figure 5. Note that the profit in
winter was approximately 30% higher than that in summer. The net profit caused by the
individual decisions was computed for the same production planning problem, and the
pure MPC approach was utilized for this problem with an inaccurate estimate of a ±50%
random variance to the benchmark values. These results are also plotted in this figure
as the blue and red curves, respectively. These results suggest that the machine learning
(ML)-based MPC decisions are able to increase the profit by over 10% compared to the
profit of the individual biased decisions. In comparison to the pure MPC decisions, it fully
employs the technique of machine learning to obtain an accurate estimate of unknown
parameters, increasing the annual profit by around 5%.

Furthermore, the optimal decisions of each department are plotted as the colored
curves in Figure 6. Note that the optimal decisions were all within the saturation range
[0, 1.5], which means that Algorithm 1 could handle the input constraint appropriately. Fur-
thermore, the optimal decisions had a causal relationship with the production demand (47).
In other words, a higher production demand encourages a larger decision value (production effort).
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Figure 5. The comparison of the overall net profits at each sample time index for individual decisions,
machine learning-based MPC decision and pure MPC decision.
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Figure 6. The optimal decisions at each sample time index.

From the simulation results, Algorithm 1 can be seen to provide the optimal decisions
within the constraint at each sample time index to increase the net profit. Therefore,
Algorithm 1 achieved the desired practical benefits in solving the production planning
problem. Note that the authors employed the alternative solution in Proposition 2 to solve
problem (35), providing similar results to those obtained from quadprog.

6. Conclusions and Future Work

This paper focuses on the exact production planning problem with a collaborative
mode and unknown information and proposes a machine learning-based MPC algorithm
to solve this problem. This problem is defined using a mathematical form using a discrete
time system and a net profit cost function. This paper records the historical data under
the free decision making condition with a certain degree of decision bias to establish a
dataset. A gradient descent machine learning procedure is proposed to estimate the un-
known parameter values based on the elements in the dataset, and MPC uses the estimated
parameters to make the optimal decisions by solving a quadratic optimization problem
at each sample time index. These procedures together yield a comprehensive algorithm
for this specific class of production planning problems. The algorithm is validated using a
simulation-based case study to check its parameter estimation accuracy and task perfor-
mance. In addition, a comparison with individual decision making and pure MPC decision
making is conducted to show its advantages in terms of increasing profit.
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Although the efficiency and effectiveness of the proposed algorithm are shown in this
paper, some potential extensions can be made to strengthen the generality and reliability
of this method. First of all, a general non-linear system model can be used to broaden the
generality to estimate unknown information for other control methods, such as iterative
learning control [49,50], and a target task performance other than the net profit is suggested
to be considered to achieve alternative benefits. Moreover, a research study on a system
with complex dynamic interactions among the participants and associated applications—
e.g., a large scale non diagonal Q matrix—are under consideration for future works. Last
but not least, other alternative frameworks, such as a real-time optimization framework and
Economic MPC, will be further explored to confirm the wide applications of the proposed
algorithm in the area of production planning.
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