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Abstract: The current rise in hacking and computer network attacks throughout the world has
heightened the demand for improved intrusion detection and prevention solutions. The intrusion
detection system (IDS) is critical in identifying abnormalities and assaults on the network, which
have grown in size and pervasiveness. The paper proposes a novel approach for network intrusion
detection using multistage deep learning image recognition. The network features are transformed
into four-channel (Red, Green, Blue, and Alpha) images. The images then are used for classification
to train and test the pre-trained deep learning model ResNet50. The proposed approach is evaluated
using two publicly available benchmark datasets, UNSW-NB15 and BOUN Ddos. On the UNSW-
NB15 dataset, the proposed approach achieves 99.8% accuracy in the detection of the generic attack.
On the BOUN DDos dataset, the suggested approach achieves 99.7% accuracy in the detection of the
DDos attack and 99.7% accuracy in the detection of the normal traffic.

Keywords: network intrusion detection; deep learning; image representation

1. Introduction

Cyberattacks and cybersecurity risks have skyrocketed in new technologies such as
cloud computing, fog computing, edge computing, and the Internet of Things (IoT). These
assaults are capable of infiltrating computer network-related environments and cloud-
based services and causing financial and reputational damage. Network intrusion detection
systems (NIDSs) play a significant role in every computer network defense system as they
are used to detect and prevent malevolent activities [1,2]. A NIDS detects the presence of
malicious or undesired packets or malicious software in a computer network [3,4]. This
technique employs real-time traffic monitoring to determine whether or not any unexpected
activity exists in the network. An intrusion detection system (IDS) is a tool that can identify
or detect invasive activity. In a wider sense, this includes all procedures involved in
detecting the illegal usage of network devices, computers, or embedded physical units in
Internet of Things [5].

Artificial neural networks (ANNs) have been used in anomaly detection to determine
if data behavior is normal or aberrant. With reasonable performance, this network can
identify both known and unknown threats. Neural networks allow us to build a system
capable of self-learning and detection of previously unknown types of network attacks,
in contrast to existing systems based on signature analysis. Another advantage of neural
networks is their ability to detect unknown attacks, functioning in a noisy environment,
preserving operability with incomplete or distorted data, forecasting user behavior, and the
emergence of new attacks. The main advantages of using systems based on neural networks
are as follows. (1) The adaptive and flexible algorithms are capable of analyzing data from
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a network, even if distorted or incomplete. These are important factors as, for example,
information is very often subject to random system errors and the ability to process data
in a non-linear form will help when several attackers carry out an attack at the same time.
(2) The data processing speed is high enough and ensures operability in real time. (3) It
can carry out the analysis of attacks and the identification of new ones that differ from
those already observed earlier. Early detection of attacks allows us to respond to attacks
before irreparable damage is done to the system. Convolutional neural networks (CNNs)
have produced outstanding achievements in many detection and recognition tasks—for
example, in the proposed fault diagnosis method of hydraulic systems by designing a deep
learning (DL) model [6].

Several studies have concentrated on building intrusion, botnet, and malware detec-
tion systems based on deep learning networks (DLNs) [7–9]. DLN is based on the original
ANN design, which features a multilayer structure as well as activation and optimization
algorithms. To develop attack detection rules, deep learning-based intrusion detection does
not require many attack signatures or a list of typical activities. Through empirical data
training, the deep learning model identifies network attacks on its own using a measurable
property of a network traffic feature (NTF) that is being observed. Because of their great
efficiency and ease of implementation, DL models have steadily been applied to intrusion
detection to improve classification classifiers in recent years. When detecting network
intrusions in real time, the issue of class imbalance has a significant impact on classifi-
cation outcomes [10]. Models that exclusively anticipate dominant classes are incapable
of identifying lesser classes. Resampling techniques are commonly used to solve class
imbalance issues. However, oversampling techniques have their drawbacks. Oversampling
can violate the original data. When employing oversampling approaches, training the
model may take longer. Inadequate sampling can result in the loss of critical information,
affecting the capacity to categorize.

A conventional machine learning-based NIDS consists of four main modules [11]:

1. A packet decoder using a sniffing tool intercepts raw network traffic packets, extracts
NTFs to represent the packet length, inter-arrival time, flow size, and other network
traffic parameters within a specific time-window and sends them as NTF records to
the pre-processing module.

2. The pre-processing module accepts a set of NTF records and entails procedures for
learning-based NIDS, such as feature reduction, transformation, and normalization.

3. The purpose of the classifier module is to create a model based on the pre-processed
data that distinguishes normal from malicious behavior.

4. The detection and recognition module detects malicious instances, sends an alert for
action, and then recognizes various types of attack.

In general, NIDS is evaluated using publicly available network anomaly datasets,
which include a mix of normal and malicious records and reflect the estimation of NIDS
efficiency. Various data pre-processing approaches are used to supply machine learning
techniques with adequate NTF record values in order to extract and prepare informative
features from these datasets for the classification module. Frequently, after pre-processing,
the numerical values of NTF records are used to classify intrusions.

The majority of machine learning experiments include image classification challenges.
Their important applications in medical diagnostics, digital photography, and a variety
of other fields have urged researchers to develop models that can anticipate the target
item with near-perfect accuracy. Transfer learning has shown perfect results not only
in image recognition but also in other domains, such as speech recognition and natural
language processing.

Our novelty and main idea is to implement a multistage deep learning image recog-
nition system employing transfer learning to detect contemporary malicious behavior
(network attack) and to recognize the attack type.

The main contributions of this paper are:
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• A novel pre-processing approach for NTFs’ transformation into four-channel (Red,
Green, Blue, and Alpha) images for further use in the classifier module to train and
test the pre-trained deep learning model;

• The detailed experimental analysis of the proposed pre-processing approach for the
deep learning training process using transfer learning for network intrusion detection
performed on the classification of various network attack types with UNSW-NB15
and BOUN DDoS datasets;

• Empirical quantification of the attack type recognition and proposed two-stage recog-
nition of NTFs transformed into four-channel ARGB images allows us to achieve an
improvement in detection accuracy: 99.8% accuracy in the detection of the generic
attack on the UNSW-NB15 dataset, and 99.7% accuracy in the detection of the DDos
attack on the BOUN DDos dataset.

The remaining parts of the paper are organized as follows. Section 2 discusses the
related works. Section 3 presents and explains the methodology. Section 4 presents and
discusses the experimental results. Finally, Section 5 presents the conclusions.

2. Related Works
2.1. Publicly Available Network-Based Intrusion Benchmark Datasets

The effectiveness of methods to detect network intrusion is measured by their ability to
notice the attack, which necessitates the use of a network dataset that includes both regular
and abnormal network traffic. For measuring the accuracy of network attack recognition,
benchmark datasets are widely used. A few old benchmark datasets such as KDDCup’99
and NSL-KDD have been regularly employed. However, as network technologies advance
and new cybersecurity risks and network attack types emerge, these datasets have become
obsolete. Because the two realms have vastly different properties, well-known datasets
designed for wired environments will not lead to the development of efficient algorithms
for 802.11 contexts. The AWID dataset [12] could be a useful tool for study on different
wireless technologies or alternative 802.11 settings because several of the attacks are based
on similar concepts. Some of the network-based benchmark datasets were synthetically
constructed; in others, network flow data were taken from a carefully controlled environ-
ment, making them unrepresentative of real-world network flows. To categorize known
attacks in supervised datasets, each observation must be labeled. Unsupervised network
intrusion detection aims to detect aberrant network node behavior that could indicate a
network intrusion or cyberattack. A summary of the benchmark open access network
intrusion datasets is presented in Table 1.

Table 1. Summary of publicly available benchmark network-based intrusion datasets.

Dataset Year No. of Classes Attack Classes

KDD Cup’99 1998 4 DoS, Probe, R2L, U2R
Kyoto 2006+ 2006 2 Known Attacks, Unknown Attacks
NSL-KDD 2009 4 DoS, Probe, R2L, U2R

UNSW-NB15 2015 9 Analysis, Backdoor, DoS, Exploits, Fuzzers, Generic, Normal,
Reconnaissance, Shellcode, Worms

AWID 2016 4 Key cracking, Keystream retrieving, Dos, Man in the middle
CIC-IDS2017 2017 7 Brute Force, HeartBleed, Botnet, DoS, DDoS, Web, Infiltration

CSE-CIC-IDS2018 2018 7 HeartBleed, DoS, Botnet, DDoS, Brute Force, Infiltration, Web

LITNET-2020 2020 12
Smurf, ICMP Flood, UDP Flood, SYN flood, HTTP Flood,

LAND, W32.Blaster, Code Red, SPAM, Reaper Worm, Scan
Packet Fragmentation

BOUN DDoS 2020 2 DDoS by flooding TCP SYN and UDP packets, Normal traffic
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2.2. Methods and Approaches for Network-Based Intrusion Detection

IDS systems strongly depend on the quality of the dataset used for machine learning.
There are popular datasets designed for wired environments widely used for machine
learning, such as DARPA/KDD Cup99, CAIDA, NSL-KDD, ISCX 2012, ADFA-LD, ADFA-
WD, UNSW-NB15, CICIDS2017, Bot-IoT, LITNET-2020 [13]. For handling and analyzing
very large volumes of data in real time, the framework [14] used a distributed deep learning
model with DNNs that was chosen after a thorough evaluation of its performance against
traditional machine learning classifiers on publicly available network-based intrusion
datasets such as KDDCup 99, NSL-KDD, Kyoto, UNSW-NB15, WSN-DS, and CICIDS.
Using the UNSW-NB15 dataset achieved 0.784 accuracy for binary class classification. For
multiclass classification, the achieved accuracy ranged from 0.637 to 0.999.

The most recent real-time big data processing methods for anomaly detection have been
reviewed and the issue of identifying abnormalities in real time has been addressed [15,16].
An anomaly occurs when data patterns do not conform to expected behavior. Three types
of modes are typically employed in anomaly detection: supervised anomaly detection
(classification-based), semi-supervised anomaly detection (models only normal records),
and unsupervised anomaly detection (data that do not contain any labeling information).
Use of the improved hashing-based Apriori algorithm implemented on the Hadoop MapRe-
duce framework on the KDD dataset [17] achieved accuracy of 98.2% for DOS attacks and
accuracy of 96.91% for PRB attacks.

A proposed hybrid real-time protection system (HRSP) for online social networks
(OSN) [18] has three components: a user-level security protocol (OSN’s cryptography
services) and two classification models (one classifies URLs into Benign, Risk, and In-
appropriate classes, and another one classifies content into Benign, Hate speech, and
Inappropriate classes). The authors achieved overall accuracy of 93.2% for the URL model
and 84.4% for the content model.

A machine learning-based classification module for video streaming traffic as a so-
lution for network systems that demand proper real-time traffic handling was proposed
and tested to evaluate whether a network traffic classifier could be built utilizing packet
header information [19]. The goal of these experiments was to evaluate the feasibility
of a network traffic classifier using packet header information. Despite achieving 90%
accuracy with the selected features, the Gaussian Naive Bayes algorithm produced the
lowest precision rate of just 66.28% of the Class C samples, which are equally significant
for the restoration scheme.

Morfino et al. [20] used supervised machine learning algorithms, i.e., logistic regres-
sion (LR), decision tree (DT), random forest (RF), gradient boosted tree (GBT), and linear
support vector machine (SVM), for identifying SYN-DOS attacks on IoT systems. Results
showed that all the Spark algorithms used resulted in very good identification accuracy
of more than 99%. Pan et al. [21] used a K-means approach based on relative density and
distance that had a somewhat higher recognition rate than other techniques. The experi-
mental results of the proposed distributed real-time network abnormal traffic detection
system showed good high availability and stability. The test results revealed that the Spark
Streaming-based network abnormal traffic detection system can detect all types of real-time
network abnormal traffic.

2.3. Methods and Approaches for Network Flow Feature Transformation

A common approach to analyzing network flow data is to treat them as time-series
data, which are submitted to a recurrent neural network for classification [22]. The Feature
as a Counter (FaaC) approach presented in [23] is utilized to provide a functional solution
to the challenge of learning from huge heterogeneous datasets. In a particular time interval,
it combines and converts multiple data sources (structured or unstructured) of information
and their variables into new variables that are just counters of the original ones.

Kim et al. [24] create two kinds of picture datasets. The first is an RGB set with three
color channels (Red, Green, and Blue), while the second is a grayscale set with a single
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channel. An RGB picture is an overlay structure of the three forms of color images that are
eventually transformed into an array of M × N × 3 pixels (Figure 1). M and N denote the
number of columns and rows, correspondingly. Then, they use a CNN and perform binary
and multiclass classification.
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The experimental results on the KDD dataset show that the RNN model has 99%
accuracy in binary classification, almost the same as that of the CNN model. In multiclass
classification, the RNN model has accuracy of 100% in smurf detection while the accuracies
of the neptune and benign are 80% and 85%, respectively.

Zhang et al. [25] suggested a dynamic multilayer IDS model based on CNN and
GcForest. They also suggested a new PZigzag method for converting two-dimensional
grayscale pictures from raw data. For initial detection, they employed the improved CNN
model (GoogLeNetNP) in a coarse-grained layer. Then, in the fine-grained sheet, gcForest
was used to further define irregular groups in N-1 subclasses. The experimental results
on the combined UNSW-NB15 and CIC-IDS2017 datasets showed that the model had
improved accuracy and recognition rate when compared to other algorithms.

Wang et al. [26] employed CNNs with supervised feature learning to detect malware
or botnet traffic from 728-dimensional raw traffic data. Li et al. [27] provided techniques
for converting pictures using NSL-KDD data and assessed how CNN models learn trans-
formed incursion data automatically. They discovered that the CNN model was adaptable
to data picture modification and may be utilized for intrusion detection approaches.

Potluri et al. [28] first transformed a vector function into an image. The nominal
features were one-hot-coded and the dimensions of the features increased from 41 to 464.
Then, every 8-byte chunk was converted into a single pixel. The white pixels were lined
with 0. The result was that the vector features were converted into 8 × 8 pixel images.
Finally, a three-layer CNN was designed to identify the attacks.

Bazgir et al. [29] used a Bayesian version of metric MDS (BMDS) to create a feature map
that maintained feature distances in the 2D space. This feature map was used as an image
to train a deep neural network. As an alternative, they also employed principal component
analysis (PCA) for image generation. Each data sample is represented on a 2D plane and
aligned with the first two principal components (PCs) of the data covariance matrix.
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A separate research stream focuses on the detection of malware using images con-
structed from malware features [30]. Many malware feature visualization methods are
useful and could be adopted for network intrusion detection as well. Catak et al. [31] used
the windowing technique to create 3-channel (RGB) images from malware features.

Ni et al. [32] converted malware codes into grayscale images using the SimHash algo-
rithm. SimHash is a locally sensitive hashing function that assumes that if its input values
are similar, then the output values also will be similar. A similar method was also used by
Han et al. [33]. Cui [34], who proposed a system that combines CNN and the Bat algorithm
to improve model accuracy, also used similar techniques. Their established approach also
uses space-filling curves to transform the harmful code into grayscale pictures.

Ren et al. [35] suggested using the Markov Dot Plot (MDP) method to visualize the
bi-gram characteristics and associated statistical information of byte sequences such as
pixel coordinates and brightness. Every two consecutive bytes in a file are mapped to a
pixel on the picture using the technique. In other words, the contents of the two bytes
represent the pixel’s x and y coordinates. This conversion function may be thought of as a
sliding window scan with a window size of two bytes and a step size of one byte.

Vu et al. [36] encode semantic information as entropy information stored in the green
channel of an RGB picture, whereas the red and blue channels store it. They divide byte
streams into blocks, compress each byte in the chunks into a few classes, and then compute
byte entropy across a sliding window of these chosen blocks. They project the sequence
of bytes into a Hilbert curve traversal of the RGB color cube to balance the competing
requirements of color difference and byte distance. Sun et al. [37] employ minhash to
handle each harmful piece of code. The minhash is a type of locality-sensitive hash that
hashes input items so that related items have a high likelihood of mapping to the same
output. This hash value in the feature picture means that the pixel grey value at (x/2, y/2)
in the image is z.

2.4. Transfer Learning for Image Classification and Model Creation

As discussed in Section 2.3, many methods have been proposed to transform NTF
records into images. Image classification, object detection, and text analysis are probably
the most common tasks in deep learning, which is a subset of machine learning. Image
classification models are typically trained using DL models. Image classification is a
computer vision problem and is widely and successfully used in some scenarios: facial
recognition, medical diagnosis, landmark detection, emotion detection, etc.

If we need to make predictions for a very large, specialized domain with its image
classes training a deep network from scratch, we need a large labeled dataset and hundreds
of CPU or GPU hours. In such cases, to minimize training time and resources used, the
training process using transfer learning reuses knowledge obtained from learning how to
solve another related problem [38]. The classification starts the training process by loading
a pre-trained model. As shown in Figure 2, the training process consists of two steps: (1)
the bottleneck phase and (2) the training phase.

In the bottleneck phase, first, a base network is trained on a pretrained model, and
then the learned features are transferred to a second target network (training phase) to
be trained on a target dataset. Once the output values from the bottleneck phase have
been computed, they are utilized as input to retrain the model’s final layer. This procedure
is iterative and repeats as many times as the model parameters specify. The loss and
accuracy are calculated for each run. The model is then improved by making the necessary
modifications to reduce loss and increase accuracy. The collection of training images is
loaded during the bottleneck phase, and the weights of the pretrained model are used.
After the training process is completed, two model files are created. One is the Tensor Flow
model (pb file), while the other is the ML.NET serialized model (zip file). When working
on systems that support ML.NET, it is recommended that the zip version of the model is
utilized. If ML.NET is not available in the environment, the pb version can be used instead.
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3. Materials and Methods
3.1. Dataset for Proposed Approach Implementation

For our approach, we have selected UNSW-NB15 [39], one of the popular benchmark
labeled datasets for supervised machine learning, and it has nine types of attacks:

• Fuzzers—used to crash the applications sending invalid data as inputs;
• Analysis—traffic analysis attacks are based on determining the location of key nodes,

the routing structure, and even application behavior patterns;
• Backdoors—used to install the malware through unsecured points left behind after

applications’ entry;
• DoS—used for flooding or crashing services;
• Exploits—make use of networks, systems, applications, and hardware vulnerabilities;
• Generic—against a cryptography, primitives attempt to decrypt a ciphertext;
• Reconnaissance—knowledge-gathering including port scanning, ping sweeping, packet

sniffing, information queries, social engineering, and phishing;
• Shellcode—takes control of a compromised machine using a set of instructions that

executes malicious code;
• Worms—malicious software that can spread across devices within a network through

rapid replication.

Every UNSW-NB15 dataset record has 45 features; three features are optional, namely,
id (integer record number), attack_cat (nominal name of each attack category, e.g.,
Analysis, Backdoors, DoS Exploits, Fuzzers, Generic, Reconnaissance, Shellcode, Worms, and
Normal), and Label (binary 0 for normal and 1 for attack records). The last 42 features
describe a row of NTF records and are used for the recognition of traffic as normal or an
attack. Feature names, categories, and types in the UNSW-NB15 dataset are presented
in Table 2.

Table 2. Features, categories, and types in the UNSW-NB15 dataset.

Feature Name Feature Category Feature Type Total

proto, service, state Symbolic string 3
dur, rate, sload, dload, sinpkt, dinpkt, sjit, djit, tcprtt, synack, ackdat Numeric float 11
spkts, dpkts, sbytes, dbytes, sttl, dttl, sloss, dloss, swin, stcpb, dtcpb,
dwin, smean, dmean, trans_depth, response_body_len, ct_srv_src,

ct_state_ttl, ct_dst_ltm, ct_src_dport_ltm, ct_dst_sport_ltm,
ct_dst_src_ltm, is_ftp_login, ct_ftp_cmd, ct_flw_http_mthd,

ct_src_ltm, ct_srv_dst, is_sm_ips_ports

Numeric unsigned integer 28

In our approach, a partition from the full UNSW-NB15 dataset was used. As a
training set, UNSW_NB15_training-set.csv with 175,341 records was used; as a testing set,



Electronics 2021, 10, 1854 8 of 21

UNSW_NB15_testing-set.csv with 82,332 records was used. The numbers of labeled records
for the different attack types are presented in Table 3.

Table 3. The number of labeled records in UNSW_NB15 training and testing datasets.

Attack Class
Dataset Number of Records in

UNSW_NB15_training-set.csv
Number of Records in

UNSW_NB15_testing-set.csv

Analysis 2000 677
Backdoor 1746 583

DoS 12,264 4089
Exploits 33,393 11,132
Fuzzers 18,184 6062
Generic 40,000 18,871
Normal 56,000 37,000

Reconnaissance 10,491 3496
Shellcode 1133 378
Worms 130 44
Total 175,341 82,332

3.2. Network Intrusion Detection Using Multistage Deep Learning Image Recognition

The proposed approach for network intrusion detection using multistage deep learn-
ing image recognition is depicted in Figure 3.
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Algorithms of stages (see Figure 4) are developed using the C# language. C# supports
the predefined integral types; one of them is the unsigned 32-bit integer, which ranges
from zero to 4,294,967,295. Because, in our proposed approach, we decided to use the
ARGB image format, the unsigned 32-bit integer value can be one-to-one mapped into
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4-bytes ARGB image pixels. In assessing the above assumption, all NTF values should be
converted into the unsigned 32-bit integer type.
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The first stage is used to process the NTF records from the csv file dataset and to convert
and parse the NTF values into C# types. All integer numerical NTFs are parsed into C#
unsigned 32-bit integer variables. Categorical NTFs are encoded to integer numerical
values and then parsed into C# unsigned 32-bit integer variables.

The second stage, the normalization stage, may be applied or not for float NTFs.
Without the normalization rule, we use C# cast expression to perform an explicit conversion
from float to 32-bit unsigned integer when the fractional portion of the values is truncated.
With the normalization rule, we use our proposed min–max normalization rule with
min = 0 and max = 65,535, which, in C#, is as follows:

decimal.TryParse(loadedValues[r, c], NumberStyles.Any, CultureInfo.InvariantCulture, out
tempDecimal);

tempDecimal = tempDecimal * 1,000,000;
tempdecimalMinMax = (tempDecimal − min)/(max − min);
tempUint = (uint)tempdecimalMinMax;
At the third stage, the unsigned 32-bit integer variables processed from NTFs are

mapped to the byte array. As a result, from every dataset record, we obtain an array of
168 bytes (42 × 4 = 168), where each of the four bytes represents one ARGB image pixel.
The next array of 168 bytes is converted into one four-channel ARGB image that is placed
in the directory with the attack name for further ML classification. The corresponding
image is created for every record in the dataset.

Finally, we have as many image files as there are records in the dataset, and images
are saved in the directories and named according to the attack label. The proposed image
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transformation process (Figure 5) is applied to the UNSW_NB15 training and testing
datasets accordingly.

In our approach, images have two dimensions:

• W42xH1 image dimension: width 42 pixels and height 1 pixel;
• W7xH6 image dimension: width 7 pixels and height 6 pixels.
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The deep-layer variation of the Residual Network 50 (ResNet50) is the pre-trained
model utilized in ML.NET. The original model was taught to categorize photos into a
thousand different groups. The model takes a 224 × 224 picture as input and outputs class
probabilities for each of the classes it has been trained on. A portion of this model is utilized
to train a new model that makes predictions between two classes using bespoke images.

4. Experimental Results
4.1. Experimental Settings

The pre-processing application for NTFs’ transformation into four-channel (Red,
Green, Blue, and Alpha) images for machine learning is realized in C#. At the pre-
processing stage, NTF records from the UNSW-NB15 and BOUN DDoS datasets are trans-
formed into four-channel images using the developed pre-processing application. At the
classification stage, machine learning models are trained on the transformed images using
Visual Studio 2019 and ML.NET image classification API. All experiments were performed
on a desktop computer with 64-bit Windows 10 OS with Intel(R) Xeon(R) CPU E5-2630 v2
@ 2.60GHz (2 processors) with 96GB RAM and NVIDIA GeForce GTX 1650 SUPER.

4.2. Experimental Results Evaluatinon

In all experiments on the UNSW-NB15 dataset to train and create the ML.NET serialized
model (Mlmodel.zip), as the training set, we used UNSW_NB15_training-set.csv with 175,341
NTF records, and to test the created model, we used the testing set UNSW_NB15_testing-
set.csv with 82,332 records [39]. All NTF records from the UNSW-NB15 dataset were
transformed into images using the proposed approach and developed pre-processing
application. Images transformed from the training dataset NTF records were saved in
the training directory, saving images in the subdirectories named by attack label (see
Figure 5). Images transformed from the testing dataset NTF records were saved in the
testing directory, saving images in the subdirectories named by attack label (see Figure 5).
UNSW-NB15 dataset NTFs record id was used as the image file name. As a result, after
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the pre-processing stage was completed, a tree directory was created with the transformed
images that will be used to train and test the ML.NET serialized models.

For experimental result evaluation, we used a confusion matrix that, in the field
of machine learning, permits visualization of the performance of a supervised learning
algorithm (in particular, the problem of statistical classification) and a receiver operating
characteristic curve (ROC) as a graphical representation that shows how a binary classifier
system’s diagnostic performance changes as the discrimination thresholds are changed.

Precision is defined as follows:

Precision = TP/(TP + FP), (1)

The true positive (TP) rate is plotted against the false positive (FP) rate at various
threshold values to form the ROC curve.

For confusion matrix representation, we used a standard plot produced using MAT-
LAB function confusionchart. The confusion matrix displays the total number of observa-
tions in each cell. The rows of the confusion matrix correspond to the true class, and the
columns correspond to the predicted class. Diagonal and off-diagonal cells correspond to
correctly and incorrectly classified observations, respectively.

A row-normalized row summary displays the percentages of correctly and incorrectly
classified observations for each true class. A column-normalized column summary displays
the percentages of correctly and incorrectly classified observations for each predicted class.

4.2.1. Attack Detection on UNSW-NB15 Dataset

In the first scenario for the UNSW-NB15 dataset, we use our proposed normalization
rule (see Section 3.2) and NTF transformation into ARGB images with a width of 42 pixels
and height of 1 pixel (W42 × H1).

The precision of image recognition transformed from the UNSW-NB15 dataset records
is low, which we consider to be because of an imbalance in the various attack types, as
shown in Table 4. As an example, in the Worms directory, we have 130 images (according to
the number of Worms-labeled records in the UNSW-NB15 training dataset); otherwise, there
are 33,393 images in the Exploits directory (according to the number of Exploits-labeled
records in the UNSW-NB15 training dataset). Our experimental results show that the
precision of image classification on the testing dataset is high only for generic (98%) and
normal (88.7%) features. The confusion matrix is depicted in Figure 6, and the ROC curve
is depicted in Figure 7.

Table 4. Precision of recognized images using ML.NET created model on UNSW-NB15 train-
ing dataset.

Directory Name
(Attack Label)

Training
Dataset

No. of Images

Testing Dataset
No. of Images

No. of
Classified
Images on

Testing Dataset

Precision

Analysis 2000 677 87 0
Backdoor 1746 583 37 0.027

DoS 12,264 4089 2 1
Exploits 33,393 11,132 20,787 0.4634
Fuzzers 18,184 6062 7640 0.2415
Generic 40,000 18,871 18,311 0.9795
Normal 56,000 37,000 31,445 0.8869

Reconnaissance 10,491 3496 3922 0.6285
Shellcode 1133 378 101 0.3267
Worms 130 44 0 0
Total 175,341 82,332 82,332
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4.2.2. Attack Detection on UNSW-NB15 Dataset Employing Oversampling Approach

In the second scenario for the UNSW-NB15 dataset, we use our proposed normal-
ization rule (see Section 3.2) and NTF transformation into ARGB images with a width of
42 pixels and height of 1 pixel (W42 × H1) employing the oversampling approach. Making
image file copies according to the attack directories, we approximately balance the number
of images (see Table 5). The precision of image classification on the testing dataset when
the ML.NET model was created on the UNSW-NB15 training dataset after employing the
oversampling approach remains low. Our experimental results show that the precision is
better only for generic (99.3%), normal (92.3%), and Exploits (72.2%) attacks. The confusion
matrix is depicted in Figure 8 and the ROC curve is depicted in Figure 9.
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Table 5. Precision of recognized images using ML.NET created model on UNSW-NB15 training dataset employing
oversampling approach.

Directory Name
(Attack Label)

Training Dataset
No. of Images

Oversampled
Training Dataset

No. of Images

Testing Dataset
No. of Images

No. of Classified
Images on Testing

Dataset
Precision

Analysis 2000 32,000 677 2330 0.0232
Backdoor 1746 31,428 583 3658 0.0626

DoS 12,264 36,792 4089 5430 0.323
Exploits 33,393 33,393 11,132 6839 0.7216
Fuzzers 18,184 36,368 6062 11,044 0.2277
Generic 40,000 40,000 18,871 17,681 0.9934
Normal 56,000 56,000 37,000 25,897 0.9235

Reconnaissance 10,491 31,473 3496 3235 0.656
Shellcode 1133 36,256 378 4644 0.062
Worms 130 33,280 44 1574 0.0235
Total 175,341 366,990 82,332 82,332
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4.2.3. Attack Detection on UNSW-NB15 Dataset Employing Binary Classification Approach

In the third scenario for the UNSW-NB15 dataset, we use our proposed normalization
rule (see Section 3.2) and NTF transformation into ARGB images with a width of 42 pixels
and height of 1 pixel (W42xH1) employing the binary classification approach. Based on
the empirical results presented in Sections 4.2.1 and 4.2.2, we consider that the precision of
image classification on the testing dataset when the ML.NET model was created on the
UNSW-NB15 training dataset may be distributed and the detection process would require
two stages. The first stage is for making decisions from image classification regarding
whether there is an attack or whether we have normal traffic, as shown in Table 6. Our
experimental results show that precision in such cases is very high for normal (93.4%) traffic
features. The confusion matrix is depicted in Figure 10 and the ROC curve is depicted
in Figure 11.

Therefore, we can successfully filter abnormal or attack traffic for the second stage,
where the type of attack will be detected. Let us consider that all attack images (and slightly
more) were successfully detected.

Table 6. Precision of recognized images using ML.NET created model on UNSW-NB15 training
dataset employing binary classification.

Directory Name
(Attack Label)

Training
Dataset

No. of Images

Testing Dataset
No. of Images

No. of
Classified
Images on

Testing Dataset

Precision

Normal 56,000 37,000 25,978 0.9341
Attack 119,341 45,232 56,354 0.774
Total 175,341 82,232 82,332
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4.2.4. Attack Type Recognition on UNSW-NB15 Dataset after Attack Was Detected

In the fourth scenario for the UNSW-NB15 dataset, we use our proposed normalization
rule (see Section 3.2) and NTF transformation into ARGB images with a width of 42 pixels
and height of 1 pixel (W42 × H1), taking into account that an attack was detected and
attack type recognition is needed.

Based on the empirical results presented in Section 4.2.3, images that were recognized
as an attack proceeded to the second stage for recognition and attack type detection. Our
experimental results (see Table 7) show that when detecting a concrete type of attack,
the precision of image classification on the testing dataset when the ML.NET model was
created on the UNSW-NB15 training dataset is very high for generic attack (99.8%) traffic
features. Other types of attack are difficult for recognition; only for Reconnaissance (86%)
and Exploits (67.9%) attacks do we have adequate precision for attack type recognition.
The confusion matrix is depicted in Figure 12 and the ROC curve is depicted in Figure 13.

Table 7. Precision of recognized images using ML.NET created model on UNSW-NB15 training
dataset for attacks only.

Directory Name
(Attack Label)

Training
Dataset

No. of Images

Testing Dataset
No. of Images

No. of
Classified
Images on

Testing Dataset

Precision

Analysis 2000 677 9
Backdoor 1746 583 0

DoS 12,264 4089 0
Exploits 33,393 11,132 10,607 0.679
Fuzzers 18,184 6062 19,129 0.284
Generic 40,000 18,871 13,323 0.9977

Reconnaissance 10,491 3496 2264 0.8604
Shellcode 1133 378 0
Worms 130 44 0
Total 119,341 45,332 45,332
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4.2.5. DDos Attack Detection on BOUN DDos Dataset

As the experimental results above show, the best attack recognition classification
result was achieved using binary classification (attack or not accordingly). We continue
our experiment with the newest dataset, BOUN DDoS [40], that has two classes: DDos
attack traffic by flooding TCP SYN and attack-free user traffic. This is a good way to
test network-based DDoS intrusion detection methods or systems. The dataset-collected
attacks are aimed at a single victim server that is connected to the campus’s backbone
router. Spoofed source IP addresses were randomly generated in attack packets. Over 4000
active hosts were included in the data trace, which was recorded on the backbone.

The BOUN DDoS dataset has a huge number of NTF records, totaling more than
nine million records (total 9,335,605). The training for such a number of images may
take a great deal of time, so we randomly select a smaller number of NTF records for the
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experiment and form two clusters from them. The first cluster contains NTF records for
training—19,035 DDos attack traffic NTF records and 39,073 attack-free user traffic NTF
records. The second cluster contains NTF records for testing—12,411 DDos attack traffic
NTF records and 34,412 attack-free user traffic NTF records. In our experiments on the
BOUN DDos dataset to train and create the ML.NET serialized model (Mlmodel.zip), as the
training set, we used BOUN_DDos_training-set.csv with 58,108 NTF records, and to test the
created model, we used the testing set BOUN_DDos_testing-set.csv with 46,823 records.

Every BOUN DDos dataset record has 12 NTFs; two of them are optional, namely Time
(conditional time of row features recorded) and Frame number (the frame number of each
row of features recorded). In our approach, the frame number is used as a unique image
name. The last ten NTFs describe DDos attack or attack-free user traffic records and are
used for recognition. These ten NTFs are as follows: Frame_length, Source_ip, Destination_IP,
Source_Port, Destination_Port, SYN, ACK, RST, TTL, TCP_Protocol. For IP addresses, in our
approach, we use an encoding practice in which each IPv4 address is mapped to a C#
unsigned 32-bit integer variable, and IPv6 addresses are encoded as numerical integer
values. Other NTFs, namely SYN, ACK, RST, and TCP_Protocol from categorical values,
are encoded as numerical integer values. The normalization rule is not needed on the
BOUN DDos dataset NTFs, because all values are in the C# 32-bit unsigned integer range.
When the NTFs of all BOUN DDos dataset records are encoded and parsed, each row is
transformed into a four-channel ARGB image whose width is ten and height is one.

Based on our empirical results (see Table 8), images successfully were recognized as
DDoS attack traffic and as attack-free user traffic. Our experimental results show that when
detecting two classes of traffic, precision is very high for DDos attack traffic (99.7%) and
attack-free user traffic (99.7%). The confusion matrix is depicted in Figure 14 and the ROC
curve is depicted in Figure 15.

Table 8. Precision of recognized images using ML.NET created model on BOUN DDos train-
ing dataset.

Directory Name
(Attack Label)

Training
Dataset

No. of Images

Testing Dataset
No. of Images

No. of
Classified
Images on

Testing Dataset

Precision

DDoS attack 19,035 12,411 12,330 0.9973
Normal trafic 39,073 34,412 34,493 0.9967

Total 58,108 46,823 46,823 -
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4.2.6. Comparison of Intrusion Detection Precision

We evaluate our results against other authors’ results [24] using a DL model for image
recognition on the KDD and CSE-CIC-IDS2018 datasets (see Table 9).

Table 9. Comparison of intrusion detection precision of recognized images using ML.NET created model on UNSW-NB15
training dataset employing oversampling approach.

Classification

Kim et al. [24] Proposed Approach

RNN
Model in
Case of

CSE-CIC-
IDS
2018

Precision

RNN
Model in
Case of
KDD

Precision

ML.NET
Model in
Case of
UNSW-
NB15

Precision

ML.NET
Model in
Case of
BOUN
DDos

Precision

Binary class bening 0.8175 bening 0.99 Normal 0.9341 Normal 0.9967
attack 0.6 attack 1.00 Attack 0.774 DDos 0.9973

Multiclass

bening 0.7275 bening 0.77 Analysis 0
DoS-Hulk 0.37 Neptune 0.92 Backdoor 0.027

DoS-
SlowHTTPTest 0.79 Smurf 1.00 DoS 1

DoS-
GoldenEye 0.91 - - Exploits 0.4634

DoS-
Slowloris 0.84 Fuzzers 0.2415

DDoS-
LOIC-
HTTP

1 Generic 0.9795

DDoS-
HOIC 0.44 Normal 0.8869

Reconnaissance 0.6285
Shellcode 0.3267
Worms 0

Note that the perfect result achieved by some of the other methods does not mean that the corresponding method will behave well on other
publicly available benchmark datasets, where the number of attacks, attack classes, and NTF records differ.

4.2.7. Summary of Visual Studio 2019 ML.NET Training Classification Results

We use the following evaluation metrics for multiclass classification.
Micro-accuracy computes the average metric by aggregating the contributions of

all classes. It is the proportion of properly anticipated cases. The micro-average does
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not take into account class membership. The accuracy measure is equally weighted for
each sample–class pair. If we detect a class imbalance in a multiclass classification task,
micro-accuracy is preferred over macro-accuracy. Macro-accuracy is the mean accuracy at
the class level. Each class’s accuracy is calculated, and the macro-accuracy is the average
of these accuracies. Essentially, each class contributes the same amount to the accuracy
metric. Minority classes receive the same amount of attention as the larger classes. The
macro-average metric gives each class the same weight, regardless of how many instances
of that class are in the dataset. A value as near to 1.00 as possible is ideal. Macro-accuracy
calculates the metric separately for each class and then averages the results.

Our experimental results regarding the micro-accuracy and macro-accuracy of the
UNSW-NB15 and BOUN DDos training datasets using image classification DNN + ResNet50
with Visual Studio 2019 ML.NET are shown in Table 10. Image dimensions in Table 8
are as follows: W42 × H1 (width 42 pixels, height 1 pixel), W7 × H6 (width 7 pixels,
height 6 pixels), W10 × H1 (width 10 pixels, height 1 pixel). Abbreviations in Table 10:
NRM—proposed normalization rule applied, Not NRM—proposed normalization rule
not applied.

Table 10. Summary of Visual Studio 2019 ML.NET training classification results.

DNN +
ResNet50

UNSW-NB15
Training Dataset

BOUN
DDoS

Training
Dataset

W42 × H1 W7 × H6 W10 × H1

All Attacks Types and Normal
(10 Classes)

Binary
Classifica-
tion

Only
Attacks
(9 Classes)

All Attacks Types
and Normal
(10 Classes)

Binary
Classifica-
tion

NRM Not NRM
NRM

Oversam-
pled

NRM NRM NRM Not NRM Not NRM

Micro-
Accuracy 0.7595 0.7563 0.6592 0.9287 0.6623 0.7231 0.7474 0.9961

Macro-
Accuracy 0.395 0.4469 0.6349 0.9077 0.3459 0.4291 0.4104 0.9949

Training
Time (sec) 29,152.3 29,998.4 64,839.1 31,172.5 22,611.7 30,139.4 31,445.9 20,511.5

5. Conclusions

Machine learning is one of the most popular current technologies in the fourth in-
dustrial revolution since it allows systems to learn and improve from experience, without
having to be explicitly coded. Machine learning methods are being widely used in NIDS. To
classify intrusions, publicly available datasets are used with many NTF records. Analyzing
related works, we noticed that many authors propose NTF records’ transformation into
grayscale and RGB images. Some of them propose various techniques to create image pixels.
Where NTFs are transformed into images, the images are then used for ML classification
and model creation.

This study offers a unique approach for detecting network intrusions through mul-
tistage deep learning image recognition. The network features are converted into four-
channel pictures (Red, Green, Blue, and Alpha). The pictures are used to train and evaluate
the deep learning model, which has been pretrained. On the benchmark UNSW-NB15
network intrusion dataset, the suggested method in the first stage achieves 93.4% accuracy
in the detection of normal traffic. On the benchmark UNSW-NB15 network intrusion
dataset, the suggested method in the second stage, when detecting the type of attack,
achieves 99.8% accuracy in the detection of a generic attack, 86% accuracy in the detection



Electronics 2021, 10, 1854 20 of 21

of a Reconnaissance attack, and 67.9% accuracy in the detection of an Exploits attack. On
the benchmark BOUN DDoS network intrusion dataset, the suggested method achieves
99.7% accuracy in the detection of a DDoS attack, and 99.7% accuracy in the detection of
normal traffic.
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