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Abstract: In order to solve the flight time problem of Unmanned Aerial Vehicles (UAV), this paper
proposes a set of energy management strategies based on reinforcement learning for hybrid agri-
cultural UAV. The battery is used to optimize the working point of internal combustion engines
to the greatest extent while solving the high power demand issues of UAV and the response prob-
lem of internal combustion engines. Firstly, the decision-making oriented hybrid model and UAV
dynamic model are established. Owing to the characteristics of the energy management strategy
(EMS) based on reinforcement learning (RL), which is an intelligent optimization algorithm that
has emerged in recent years, the complex theoretical formula derivation is avoided in the modeling
process. In terms of the EMS, a double Q learning algorithm with strong convergence is adopted.
The algorithm separates the state action value function database used in derivation decisions and
the state action value function-updated database brought by the decision, so as to avoid delay and
shock within the convergence process caused by maximum deviation. After the improvement, the
off-line training is carried out with a large number of flight data generated in the past. The simulation
results demonstrate that the improved algorithm can show better performance with less learning
cost than before by virtue of the search function strategy proposed in this paper. In the state space,
time-based and residual fuel-based selection are carried out successively, and the convergence rate
and application effect are compared and analyzed. The results show that the learning algorithm has
stronger robustness and convergence speed due to the appropriate selection of state space under
different types of operating cycles. After 120,000 cycles of training, the fuel economy of the improved
algorithm in this paper can reach more than 90% of that of the optimal solution, and can perform
stably in actual flight.

Keywords: hybrid UAV; energy management strategy; reinforcement learning; algorithm improvement

1. Introduction

Owing to today’s mature flight control technology, UAV can perform some very
difficult tasks (such as coastal defense, forest fire prevention, field photography, etc.) in
dangerous environments at a very low cost; thus, research on its power systems, to ensure
efficient flight with long duration, is increasingly important. The existing UAV with an
internal combustion engine as the only energy source has high power requirements, the
internal combustion engine is too heavy and the fuel consumption is high, which is not
in line with the relevant regulations and concepts of green emission reduction. The noise
is also difficult to isolate. Due to the low energy density of the battery, the flight time of
UAV flying in pure electric mode is still the main problem so far, and the battery life is
greatly reduced due to the high charging and discharging frequency. With the diversity
and flexibility of working state, the hybrid power system has gradually become one of the
chosen objects used in UAV power systems. After the battery is added into the powertrain,
the demand for the rated power of the internal combustion engine is greatly reduced in
the selection process, which helps guarantee the light weight of UAV. While ensuring the
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response speed and power performance of the unmanned mobile power system for the
terminal load demand, it can optimize the working point of the internal combustion engine.

Nowadays, the research on energy management strategy of hybrid power system is
mostly focused on hybrid electric vehicles, in which rule-based and optimization algorithms
play two main roles in the research of control strategies. Rule-based strategies are generally
divided into deterministic rules and fuzzy rules. The formulation of rules depends largely
on practical experience, and the use of strategies is limited. The energy management
strategy based on optimization includes equivalent fuel consumption and model prediction,
and gives real-time decisions according to the online calculations of processors. Tao et al. [1]
applied fuzzy control logic to a fuel cell hybrid electric vehicle. Although it has a good
effect in three different working conditions, it is pointed out at the end of the paper that in
order to be a real-time control strategy with strong adaptability, a system that can predict
the future road conditions is needed. In ref. [2], based on a large number of driving data
generated in the past, and the Markov chain, a probability transfer model of demand torque
is established, which is used as the basis for the selection of random driving behavior, and
the continuous/generalized minimum residual method is used for fast rolling optimization.
Compared with dynamic programming [3–5], this online strategy has a certain predictive
effect on the future working conditions, and avoids the huge amount of calculation brought
about by the large state space dimension. However, compared with the equivalent fuel
method [6], which is also an on-line control strategy, it only saves 4.6% of fuel consumption
and has a lot of room for improvement. Li et al. [7] proposed and applied a dynamic
balance energy management strategy to fuel a cell hybrid power UAV based on the rule-
based energy management strategy. This method ensures the reliability of the whole
power system and enables the UAV hybrid power system to provide stable power output
under different working conditions and environments, but there is a significant lack of
endurance capability.

The existing energy management strategies based on optimization [8–10] lack general-
ization for unknown conditions and adaptability for real-time power demand curves, so it
is difficult to achieve satisfactory results. The complexity of EMS lies in the chosen energy
distribution ratio at the current moment under the premise of unclear future conditions,
which makes it difficult to ensure the local fuel economy and the control effect of the whole
working cycle at the same time.

As a more powerful method, in recent years, some intelligent algorithms have gradu-
ally emerged in the research field, such as deep networks, supervised learning, artificial
neural networks and a series of algorithms including reinforcement learning. Moreover, ow-
ing to the increasing number of successful cases of reinforcement learning in the solving of
continuous decision-making problems [11], it has gradually become prominent in the eyes
of researchers in various engineering control fields. The research on reinforcement learning
started at the end of 1979. The purpose is to prove that the neural network composed of
adaptive neurons is a major driving force for the development of artificial intelligence. Its
inspiration comes from the heterogeneous theory of adaptive system proposed by A. Harry
klopf. In recent years, reinforcement learning has made amazing achievements in games,
pattern recognition and other fields. More and more people have begun to study it and
have attempted to apply it in various fields.

In ref. [12], an energy management strategy of equivalent minimum fuel consumption
based on reinforcement learning is adopted to control the energy of a power system with
three power sources: capacitor, battery cell and fuel cell. The algorithm adopts a hierarchical
power splitting structure, which extends the battery and fuel cell life and effectively reduces
the amount of calculation. Xu et al. [13] produced different combinations of the Q-Learning
algorithm, rule-based control strategy and minimum equivalent fuel algorithm, and the
control results are compared with single algorithm. It was proven that the reinforcement
learning algorithm and other typical control strategies have better control effects than a
single algorithm after reasonable combination. Gen et al. [14] adjusted the equivalent factor
of equivalent fuel consumption with the help of a deep deterministic strategy gradient
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algorithm of deep reinforcement learning. Although the fuel consumption was reduced to a
certain extent, the advantages of reinforcement learning could not be brought into full play
due to the limitations of the ECM algorithm. An energy management strategy involving a
series–parallel plug-in hybrid electric bus based on a deep deterministic strategy gradient
is proposed by the author [15]; the optimal energy allocation of the bus is distributed in
continuous space using a model-free reinforcement learning algorithm. This method has
some limitations in the application scenarios. There is a certain degree of contradiction
between the fact that reinforcement learning is used to realize the function of model
prediction and the fact that the essence of action selection is exact model prediction. There
are also some related research studies about training and intelligent algorithm optimization
under different working conditions [16,17]. Although the robustness of the results is good,
the convergence effect has become a problem. Similarly, the means of application of the
reinforcement learning algorithm and the setting of state space parameters [18–20] also
have a great impact on the results.

In the application of UAV, most of the EMS are aimed at energy saving and emission
reduction [21–23], including some research on the exploiting of solar energy [23], which is a
very green and promising research field. However, as the current technology is not mature
enough and extremely dependent on the natural conditions, it cannot be widely used.
J.A. et al. [24] described the power source, energy management strategy and power system
structure of current UAV in detail, and their advantages and limitations are pointed out.
The possible problems of UAV in future development are also predicted, which provides a
good source of guidance and references for applied research on hybrid power in UAV.

In order to solve the flight time problem of UAV, this paper takes the range-extended
hybrid UAV developed by our research group as the research platform, uses the idea of self-
adaption to improve the classical double Q learning algorithm in reinforcement learning
theory, and applies it to the energy management strategy. Owing to the model-free feature
of the algorithm, there is no need for complex theoretical modeling of the system in the
research process, and only the real-time external environment state and fuel consumption
are needed as the input of the system in the simulation process. The main research goal
is to use the reinforcement learning algorithm as a tool to make the control effect of the
designed control strategy in any unknown flight cycle approach the optimal solution to the
greatest extent. The improved double-Q learning algorithm in this study gives full play to
its advantages of fast learning speed and good robustness in model-free Markov decision
making problems. The specific application of the algorithm is shown and introduced in
detail in the following chapters.

2. System Modeling
2.1. Hybrid System Modeling

Hybrid power systems usually consist of fuel and a battery. Considering the energy
density and light weight, the range-extended propulsion system developed by our research
group is composed of a two-stroke piston engine power generation system and a lithium
battery in parallel. In this system, the internal combustion engine does not output power
directly, but generates the power through a brushless motor and transmits the electric
energy to the drive motor of each rotor of the UAV. At the same time, it can also store the
excess electric energy in the lithium battery. In the control aspect, the processor processes
the lithium battery status signal and Hall sensor electrical signal, and then transmits them to
the agent as the speed of internal combustion engine and the state of charge (SOC) of energy
storage device. The agent gives the control decision feedback to the Electronic Control Unit
(ECU) combined with the load signal transmitted by the drive motor controller, and the
ECU controls the throttle opening of internal combustion engine. The power system model
is shown in Figure 1, and the main parameters of system components are shown in Table 1.
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Table 1. Main design parameters of the system.

Device Item Parameter

Engine

Cylinders 2
Rated torque 4.6 Nm
Power rating 2.8 Kw
Rated speed 2000–7200 rpm

Alternator

Power rating 2.7 Kw
Phase resistance 0.3 Ω

D-axis inductance 0.09 mH
Q-axis inductance 0.09 mH

Battery
Type Li-Po Graphene

Capacity 5.2 Ah
Voltage (single cell) 4.2 V

2.2. Internal Combustion Engine Modeling

Because only the input and output characteristics of the engine need to be obtained in
the research process, the decision-making oriented experimental data modeling method
is adopted for the engine [25]. The external characteristic data of the engine is obtained
through testing, and the non-linear relationship of the working parameters is expressed by
methods involving look-up tables and interpolation.{

TE = fT(nE, θ)
bE = fm f (nE, TE)

(1)

where TE is the engine torque; nE is the working speed of the engine; θ is the engine throttle
opening; bE is the fuel consumption rate of the engine.

The fuel consumption per unit step is obtained by integration:

fuel =
∫ T

0
PE·bE·Cdt (2)
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where PE is the engine power; C is a constant; bE is the fuel consumption rate of the engine.

2.3. Generator Modeling

The motor used in the study is a permanent magnet synchronous motor. In order
to facilitate the simulation and test, the generator and rectifier are modeled as a whole
generation unit. As shown in Figure 2, in the modeling process, the load is converted into
an equivalent resistance value, and, together with the speed of the motor, is used as the
input of the generation unit. The output includes the reverse torque of the generator, the
output voltage/current of the rectifier, and the generation efficiency. Under different loads
and speeds, the output characteristics of the generating unit can be obtained by looking up
the experimental data. The test bench is shown in Figure 3, and the test method involves
the use of a high-power motor to drive the generator to rotate. The current output end
is connected with resistors with different resistance values to simulate different working
conditions. The speed can be displayed in real time. The external rotor of the generator is
connected with the driving motor by coupling, the generator stator is connected with the
test bench, and the torque sensor is connected with it to measure the reverse torque of the
generator. The output current of the generator flows to the load after passing through the
three-phase rectifier circuit.
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The efficiency of the generating unit is obtained by dividing the output power of the
rectifier by the input power of the generator:

η =
IA ×UA

TA × nE/9549
(3)

where UA and IA are the output voltage and output current; TA is the torque of the
alternator; nE is the working speed of the engine.

2.4. Energy Storage Device Modeling

In order to accurately describe the energy storage system, the second-order Thevenin
model [26] is used to describe the battery. Owing to the addition of one RC circuit, the
electrochemical polarization and concentration polarization of the battery can be accurately
simulated. The circuit model is shown in Figure 4, where UOCV represents the open circuit
voltage of the battery; Cb indicates the energy storage capacity of the battery; R0 represents
the ohmic internal resistance of the battery; RE and CE represent the electrochemical polar-
ization resistance and capacitance of the battery; Rd and Cd each represent the concentration
polarization resistance and capacitance of the battery. Figure 5 shows the Hybrid Pulse
Power Characteristic (HPPC) test data when the SOC is 0.6. When the current in the figure
is negative, it is indicated that the battery is discharging, and when it is positive, it is
indicated that the battery is charging. The voltage rises slowly after the battery discharge,
which can be used as the zero input response of the battery model.

.
SOC.
Ue.
Ud
Ut

 =


− η

Cb
I

− 1
ReCe

Ue +
1

Ce
I

− 1
RdCd

Ud +
1

Cd
I

UOCV(SOC)− IR0 −Ue −Ud

 (4)

where η is the efficiency of the battery in the charge and discharge state; Ut is the output
voltage of the lithium battery; I is the current; Ue and Ud are the voltage of electrochemical
polarization and concentration polarization.
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Through the polynomial fitting of the test data, the relationship between the SOC and
OCV is obtained. The specific values of the parameters in the battery model under different
states of charge are identified by the Hybrid Pulse Power Characteristic experiment.

2.5. Cooling System Modeling

In the power system, the cooling fan is driven to rotate by connecting with the engine
output shaft. At the same time, the cooling air duct is used to cool the cylinder block of
the internal combustion engine. Because the research object of this paper is in low altitude
flight, the influence of wind speed on the cooling fan can be ignored; thus, the relationship
between the speed and power consumption is obtained through the ground experiment in
Figure 6 by using the brushless motor to drive the cooling fan to rotate. The relationship
curve is shown in Figure 7.
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3. Energy Management Strategy
3.1. Introduction

In sequential decision problems, the Markov decision model (MDP) [27–29] is a
mathematical model that simulates the randomness strategy and return of agents when
the system state has Markov properties. The Markov property is a common property of all
Markov models, which means that the current state is only related to the state and action
of the previous discrete time point, and is independent of the state and action of other
times. In the existing decision-making model, it can promptly discard useless historical
information and avoid excessive processing of signal coupling, which helps it to take
the lead in terms of the learning efficiency and effectiveness of random strategies. While
simplifying the problem, it retains the main relationship, and can predict the future only
based on the one-step dynamics of the environment. With its great simplicity and efficiency
in the research process, some environments that do not fully have Markov properties have
also been modeled by scholars using MDP, and have achieved good results.

p(si+1|si, ai, · · · , s0, a0) = p(si+1|si, ai) (5)

The reinforcement learning algorithm is an intelligent algorithm to solve the cumu-
lative revenue problem under discrete-time MDP. In this paper, we adopt the double Q
learning algorithm, which is derived from the Q-Learning algorithm in the reinforcement
learning algorithm family. The algorithm mainly includes three objects: the actor, the
environment and the reward. Just like in Figure 8, the actor applies the action at at the
current discrete time point to the environment and takes it as input together with the
current state St in each interaction between the agent and the environment, and then the
agent observes a new state St+1 of the environment at the next discrete time point and
receives a reward rt+1 as output. Under the action of the given strategy π(a|s) of the agent,
the environment evolves from the initial state to the final state. In the process of continuous
interaction between agents and the environment (Figure 8), the MDP trajectory, as shown
below, is formed, which is a collection of all actions, states and rewards.

Aτ = {s0, a0, r1, s1, a1, r2, s2, a2, · · · , sT−1, aT−1, rT , sT} (6)
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where T is terminal discrete time point; s0 is the initial state; sT is the terminal status.
Due to the randomness of the strategy and state transition, the Markov trajectory also has
randomness, and the probability is as follows:

p(Aτ) = p(s0)
T−1

∏
i=0

π(ai|si)p(si+1|si, ai) (7)

where p(s0) obey the initial state distribution; π(ai|si) refers to the probability that the
strategy π selects action ai at state si. The purpose of continuous interaction between actor
and environment is to learn the best strategy and maximize the long-term benefits.
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Under strategy π, the degrees of preference for taking different actions in a specific
state S are quantified into specific values and expressed by function Q(s,a), which is the
expected return after the state action pair appears in the MDP trajectory. Furthermore, the
discount factor γ is used to ensure that the cumulative revenue under continuous tasks is
bounded. With more and more returns observed, the average value will converge to the
expected value:

Return(St, at) =
T

∑
i=t+1

γi+1−tr (8)

Q(St, at) ← average (Returns(St, at)) (9)

The function values of discrete state action pairs are stored in the agent in the form of
a table (Q list).

When the result distribution of different actions is unknown in the model-free [30]
situation, which means the probability distribution of the next state S’ can not be obtained,
the state action value function Q(s,a) help in choosing the next action only by knowing
the current state information. This caters well to the characteristics of instability and
uncertainty of power demand in the practical application process, which is also the main
reason that the control effect of hybrid EMS has been greatly limited for a long time. In
addition, this paper aims to solve the flight time problem of UAV under variable operating
conditions, so the total fuel consumption under the complete operating cycle is taken as
the minimization objective, which is consistent with the cumulative revenue problem.

3.2. MDP Action and State Space

In the Markov Decision Process, the state space refers to a group of parameters with
limited dimensions. It is used for the description of environmental information and action
selection. The more parameters in the state space, the more accurate the description of the
environment and the stronger the reliability. However, with the increase in dimensions, the
computational burden will be greatly increased, and the convergence speed will be greatly
reduced. From the perspective of effects in terms of practical application, the gain is not
worth the loss. Therefore, it is very important to select the appropriate state variables in
the limited state space dimension. According to the characteristics of the research objective
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and its application scenario, the speed, lithium battery state of charge, flight time and
power demand of the small internal combustion engine are selected as a state space group,
while the speed, lithium battery state of charge, remaining fuel and power of small internal
combustion engine are selected as another state space group for comparison and analysis.

S1 = { s = [p, t, v, o]T
∣∣∣p ∈ P, t ∈ T, v ∈ V, o ∈ O} (10)

S2 = { s = [p, f , v, o]T
∣∣∣p ∈ P, f ∈ F, v ∈ V, o ∈ O} (11)

where P and V each represent the array of discrete power demand and internal combustion
engine speed values; T and F each represent the array of discrete flight time and remaining
fuel values and the elements in each array form an arithmetic sequence; O is the discrete
value array of the lithium battery charge level.

In reinforcement learning theory, the role of strategy π is to determine the agent’s
choice of action at different times. The ultimate goal of agent learning is to find the best
strategy to maximize its long-term benefits.

∑
a

π(ai|st) = 1 (12)

where π(ai|st) represents the probability of selecting action ai in state st under strategy π.
The improvement of the strategy is usually based on its corresponding value function

Qπ(St, a). When the function Q(St, a) converges to the current strategy π, we can use it as
a reference to optimize the strategy as below:

πnew(argmaxaQπ(St, a)
∣∣St) = 1 (13)

πnew(argmaxaQπ(St, a)
∣∣St) = 1− σ (14)

where the former situation in Formula (13) is for deterministic strategies; the latter case in
Formula (14) is for the randomness strategy and σ is usually set to a small probability to
ensure the exploration of other actions.

The research objective of this paper includes two kinds of energy sources. The role
of the power system control strategy is to coordinate the energy between the two on the
premise of ensuring the power output. Because the generator and the output shaft of the
internal combustion engine are mechanically connected in the system, the required power
Pdem needs to be distributed between the power generation system and the lithium battery
(Pbat, PAl). In this paper, the throttle opening of the internal combustion engine is regarded
as the only action variable, and the output power of the alternator is changed by its control.
Furthermore, the output power of the energy storage device Pbat is determined by the load
signal transmitted to the ECU from the controller of the driving motor under the rotor
and the PAl , which indirectly takes advantage of the fast response speed of the battery to
ensure the dynamic performance of the system. The discrete action set is as follows, where
ai represents the throttle opening in the actionable region.

A = {a1, a2, a3 · · · ak} (15)

3.3. Reward Function

The setting of reward function can guide the optimal solution, and also has a certain
impact on the algorithm quality and convergence speed. The purpose of this paper is
to extend the flight time by reducing the fuel consumption of the hybrid system, so the
negative value of fuel consumption per step rk+1 is taken as the benefit. At the same time,
in order to ensure the service life of lithium battery and avoid overcharge and discharge,
a revenue punishment mechanism is set here: when the charge of energy storage device
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deviates from the healthy range (less than 20% or more than 80%), a larger penalty is given
to the corresponding state action group as revenue.

rk+1 = −
∫ TK+1

TK

m f dt (16)

where m f is instantaneous fuel consumption rate; TK is the time corresponding to state SK;
TK+1 is the time corresponding to state SK+1.

3.4. Theoretical Basis

Due to the uncertainty of working conditions and the wide range of states, the Markov
decision model can not be obtained, which means that the state transition probability
Function TPF is unknown.

TPF : S× A× S→ [0, 1] (17)

where the first S and A in the formula represent the current state and the action that
has been performed, and the second S and [0, 1] represent all the different states that
the environment can present at the next moment and their corresponding probabilities
between 0 and 1. Furthermore, this inevitably leads to the failure to calculate the state
value function under the given strategy; Q Learning [31–33] wisely uses experience to solve
the problem of model prediction. To put it another way, its learning of the value function
occurs through the expectation of samples rather than direct calculation. Each interaction
sample between the agent and the environment produces an update to the table, as shown
in the following formula:

Q(St, at)← Q(St, at) + α[r + γargmaxaQ(St+1, a)−Q(St, at)] (18)

where the discount factor γ is used to ensure that the cumulative revenue under continuous
tasks is bounded; r is the reward; the update speed is determined by the learning efficiency
a; St is the state of the environment at discrete time point t while at is the action taken
at the state St; a is the action used to generate the update target r + γargmaxaQ(St+1, a).
With the continuous interaction between the agents and the environment under the control
of strategy π, the list continues to update and gradually converges to the Q function of
strategy π.

Because the Q(S, a) is only an estimate of the value of the pair of state actions under the
policy, not the real value, the implicit maximum estimation will be propagated backward
along the Markov trajectory by the item r + γargmaxaQ(St+1, a) in Formula (8), which
will produce a great obstacle to the convergence speed. In Table 2, double Q learning
algorithm divides the Q list into two sets (Q1 and Q2) and uses them to learn the real Q
functions (Table 2, line: 01). We obtain the maximum action A∗ from one Q list and use
it to generate the update target from another Q list, and the two lists exchange roles with
the same probability (Table 2, line: 10–13). The double learning method needs twice the
chip memory, but it can achieve the purpose of using unbiased estimation instead of biased
estimation on the premise of avoiding the enlargement of the computational burden, which
greatly increases the learning speed.

In Table 2, we can see that in every discrete time point from the beginning of the
initial state to the final state (Table 2, line: 03), the agent chooses the action guided by the
maximum Q value with a large probability σ (Table 2, line: 05–06), while other state action
spaces are explored with a small probability 1− σ (Table 2, line: 07–08). After interacting
with the environment and obtaining the output (Table 2, line: 09), an update is generated
to the Q function (Table 2, line: 10–13).
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Table 2. Pseudo code of the original double Q learning algorithm.

Inputs: 5-D Q(S, a) table; Discount factor γ; Learning rate α; Exploration probability σ
Outputs: near global optimal strategy

01: Initialize Q1 list and Q2 list arbitrarily;
02: for each MDP trajectory:
03: for each discrete time step t = 0:T~1:
04: observe the state St(o, p, t, v):
05: if temp0 (a random number between 0 and 1) > σ:
06: at = argmaxa(Q1(St, a) + Q2(St, a));
07: else:
08: at = randomly choose an action;
09: Take action at and observe the next state St and rt+1;
10: If temp1 (a random number between 0 and 1) <= 0.5:
11: Q1(St, at) = Q1(St, at) + α(rt+1 + γQ2(St+1, argmaxaQ1(St+1, a))−Q1(St, at));
12: else:
13: Q2(St, at) = Q2(St, at) + α(rt+1 + γQ1(St+1, argmaxaQ2(St+1, a))−Q2(St, at));
14: St = St+1;

In the double Q learning algorithm, with each time step, the choice of strategy for
action changes because of the update of the Q function (Table 2, line: 10–13) by the sample
in the previous step (St−1, at−1, rt, St), rather than changing the strategy when the Q
function converges to Qπ(S, a) of the current strategy, as mentioned in Section 3.2. This
is supported by the theory of generalized strategy iteration (GPI) [34,35], which is also
the application basis of model-free Markov decision process [30]. As shown in Figure 9,
the agent alternately evaluates the value function (Table 2, line: 10–13) and obeys the
greedy-strategy guided by the Q function (Table 2, line: 05–06) step by step. Thus, the
strategy can choose the most valuable action with high probability 1− σ in each state while
continuing to update and explore the Q function value of other state action pairs with
probability σ. The two processes influence each other and establish optimization goals for
each other. According to the theory of GPI, they will move towards the optimal strategy
and its Q function with the advance of the agent learning process.
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3.5. Algorithm Improvement and Application

However, the convergence speed of the strategy and algorithm is important for its
practical application. In the process of finding the optimal strategy, the agent needs to
traverse the vast state action space, and the improvement of the strategy is also the process
of increasing the value of the Q function. This paper adopts the idea of a fixed strategy
search and refines the high return areas (state action pairs) of the Q list in the middle and
later stages of the learning process, which can help to lock the decision-making route in the
high return area earlier, so as to improve the sample efficiency and control effect of learned
strategies π at the end of the learning process.

In the pseudo code of the improved algorithm (Table 3), we add the integer variable
Episodes and database Rewards (Table 3, line: 01) in order to track the number of refine-
ments happening in the Q list and the cumulative income of the trajectory chain before
each refinement. After 40,000 Markov trajectories, the reward of the whole trajectory is
compared with that before the last mesh refinement every 10,000 scenes (Table 3, line: 04,
18). If the income increases by 10%, the high return will be further refined (Table 3, line:
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18–20), which means more state action pairs are added in the high return area of the Q list
to obtain a discrete (S, a) group with smaller intervals, so that the agent can have more
accurate state positioning and finer action selection. At the same time, the agent is free
from the exploration and traversal of dense discrete state action pairs with low Q value.

Table 3. Pseudo code of the improved double Q algorithm.

Inputs: 5-D Q(S, a) table; Discount factor γ; Learning rate α; Exploration probability σ
Outputs: near global optimal strategy

01: Initialize Q1(S, a) and Q2(S, a) arbitrarily; Chain = Episodes = 0; Rewards = [−1000];
02: for each MDP trajectory:
03: reward = 0;
04: If Chain/40,000 = = 10,000:
05: ε = 1;
06: for each time step t = 1~T:
07: observe the state St(o, p, t, v):
08: if temp (= random(0,1)) > σ:
09: at = argmaxa(Q1(St, a) + Q2(St, a));
10: else:
11: at = randomly choose an action;
12: Take action at and observe the next state St+1 and r; reward = reward + r;
13: If temp (= random(0,1)) <= 0.5:
14: Q1(St, at) = Q1(St, at) + α(rt+1 + γQ2(St+1, argmaxaQ1(St+1, a))−Q1(St, at));
15: else:
16: Q2(St, at) = Q2(St, at) + α(rt+1 + γQ1(St+1, argmaxaQ2(St+1, a))−Q2(St, at));
17: St = St+1;
18: If ε = 1 and reward/Reward [Episodes] < 0.9:
19: Refine high Q table, ε = 0;
20: Rewards.append (reward), Episodes = Episodes + 1;
21: Chain = Chain + 1

In the algorithm application framework of Figure 10, the agent selects actions at of
throttle opening in a greedy manner according to two Q lists (Table 3, line: 08–11) in the
current state St. After receiving the signal, the ECU transmits it to the steering gear to
control the internal combustion engine. At the end of a time step, the identified SOC,
internal combustion engine speed (RPM) and drive motor load (P) will be used as the
next state quantity St+1 together with the flight progress information (Table 3, line: 12).
Meanwhile, the engine fuel consumption model in the ECU, with engine speed and torque
as input, calculates the total fuel consumption in this step time, and its negative value will
be used as a reward rt+1 (Table 3, line: 12). Subsequently, the Q1 list and Q2 list in the agent
will be updated randomly with equal probability (Table 3, line: 13–16), and the selection of
the next action (Table 3, line: 17, 08–11) also begins. The above process circulates in each
Markov trajectory until the end, and the agent starts to track the revenue and prepares to
refine the Q1 and Q2 list every 10,000 trajectories (Table 3, line: 04–05, 18–20).
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4. Results and Discussion

In the process of simulation, this paper uses the power demand curve obtained from
the real historical flight data to train the control strategy algorithm, including 76 long- time-
flights and 112 short-time flights. According to the frequency of the corresponding flight
tasks in the actual flight of the UAV, the power demand curves are sorted randomly, and the
agents are allowed to learn repeatedly. After reaching a certain degree of convergence, the
learning effect is tested by the historical flight curve independent of the training samples.
This part compares and analyzes the economy and convergence speed of the algorithm’s
learning effect under different application modes, including the design of state variables,
the comparison of the improved double Q learning method and original learning method,
and the selection of charging and discharging frequency control functions. Finally, taking
the global optimal result obtained by dynamic programming algorithm as the standard, the
calculation cost and economy are evaluated and the practical application value is discussed.

4.1. Convergence Analysis

According to the previous discussion in this paper, the following figure is the com-
parison of the simulation test results of the improved learning models of double Q search
learning, double Q learning and Q learning. The classification of the state action space
and the setting of the initial function value of the three learning models are completely
consistent. Figure 11 shows the comparison results of the total reward of a single trajectory
after every 40,000 flight trajectories of training. At the beginning of learning, the state
action value function and greedy factor ξ are set as smaller to ensure a larger exploration
rate in the early stage. With the passage of time, the agent gradually enters the training
stage, and the growth rate of the average income of the learning model gradually slows
down. It is worth noting that in the improved double Q learning strategy, as the learning
process goes on, every refinement of the state action space of the high return area can bring
a promotion of revenue growth. Here, the new table function values of the high return area
are equal to the Q function value of the state action pair with the smallest difference from
its norm value.
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Compared with Q-Learning, the double Q-Learning model is more effective owing
to the ingenious avoidance of the obstruction of convergence speed caused by the maxi-
mization of deviation. Furthermore, the fluctuation of the average income data is greatly
reduced, especially in the early stage. We can see from Table 4 that in the early training pro-
cess, the variance of the whole screen return of Q learning is several times or even dozens
of times of that of double Q learning. Although the stability advantage of convergence
gradually decreases with the passage of time, the double Q learning model fluctuates in a
relatively small range in terms of the average trajectory return. In addition, it can be seen
from the last line of Table 4 and Figure 12 that the improved double-Q learning model
benefits from the improvement in the accuracy of the state action space that happens in the
middle and later stages of the process, which causes the strategy to lock into the vicinity of
the optimal solution more quickly, and shows better performance in terms of stability as
well as improvements in the speed of the strategy.

Table 4. Convergence comparison of different algorithms.

Training Progress
(×400 Trajectories) 100–110 200–210 300–310 400–410

Fuel consumption average/variance average/variance average/variance average/variance
Q Learning 418.4 g/4007.7 340.6 g/813.1 301.6 g/237.1 296.4 g/16.1

Double Q Learning 355.4 g/1104.3 298.6 g/51.9 294.7 g/56.4 290.2 g/8.7
Proposed double Q Learning 320.4 g/137.1 275.9 g/5.2 263.2 g/1.8 262.3 g/0.6

Note: g = grams.
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4.2. Economic Analysis

In this section, the two state spaces proposed in 3.2 are, respectively, applied to the
training model proposed in this paper, and the power curves in the same flight database
mentioned above are used to train them. In order to compare the adaptive performance
of the two state variables in an unknown environment, after 120,000 flight trajectories
of training, three short-time and three long-time flight load curves from the historical
flight data, independent of the training samples shown in Figure 13, are used to test the
learning effect.
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In the two state spaces, we set the state variable components of flight process infor-
mation as the flight time and the remaining fuel volume, respectively (in the simulation
process, it is assumed that UAV always carries the same mass of fuel at every take-off).
From the simulation results in Figures 14 and 15 and Table 5, we can see that the description
effect of flight time in short flights is better than that of remaining fuel. The reasons for
this phenomenon are as follows: 1. In short-time flights, the correlation coefficient between
the flight process and time is relatively large because the total times of cycle consumption
are similar and the load curve is relatively stable. 2. In the training process of the learning
model based on the remaining fuel, the state space of the agent is separated from the
description of the real flight process, and due to the greedy selection in the same orbit
strategy algorithm, it will produce a biased estimation of the real flight process with the Q
function value learned from a large amount of flight data as the reference. As a result, the
fuel consumption of different missions tends to approach the average fuel consumption of
the simulation results of the working cycle in the training database, thus breaking away
from the load characteristics of strange working conditions 3. The state space, which takes
the actual flight time as the flight process information, also contains the current energy
source states of the hybrid power system and the required power of the whole machine.
In the energy management problem, it is a complete description that includes unknown
environmental state information, and ignores the influence of previous sequential decisions
on the moment; thus, the near optimal decision generated from Q list of the historical flight
data will give full play to the advantages of Markov decision model. In addition, due to
the fact that the fuel volume state is not always equal before each short-time flight mission,
there are also some problems related to the practical application of the controller.

Table 5. Total fuel consumption of single cycle.

Long Time
Trajectory 1

Long Time
Trajectory 2

Long Time
Trajectory 3

Short Time
Trajectory 1

Short Time
Trajectory 2

Short Time
Trajectory 3

S1/g 935.57 966.48 1291.71 388.88 517.21 451.07
S2/g 879.63 914.66 1235.05 409.45 552.67 491.02
S1/S2 106.36% 105.67% 104.59% 94.59% 93.58% 91.86%

Note: g = grams.
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In view of the large variance of flight time in the actual long-time flight mission, in
order to test the robustness of the learning effect, three load curves with long discrete
flight times are selected to test the control strategy. In the Figures 16 and 17, we can see
the learning effects of two different state spaces under long-time flight trajectories, which
shows good performance in terms of both operating point optimization and economy.
The reason is that the time parameter will give more and more warning of the end of the
flight mission as the flight process goes on. Because of the enhancement of this notice,
the controller tends to complete the remaining flight in a more fuel-efficient manner, that
is, more electric energy is obtained from the energy storage device and supplied to the
terminal drive motor, which leads to the disorder of the regulation function of the working



Electronics 2021, 10, 1929 18 of 23

point in the later flight period under the changeable environment. It deviates from the
purpose of exerting the endurance of the power system in long-time flights. However, in
the case of variable flight trajectories, the learning model with remaining fuel as the source
of information on progress obtains the action of any time point from the Q list according to
the greedy strategy, and the action is the result of many ergodic measures of the state in the
past training. This kind of ergodicity can, at any time, be under any working condition. Its
optimal action is to lock the operating point of the internal combustion engine in the high
efficiency region to the greatest extent in the future flight process. Thus, in the long-time
flight problem, compared with the short-flight time, the state space with the remaining fuel
as the flight process information can show better effect.
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4.3. Charge–Discharge Frequency Analysis

In the process of learning, the SOC of the lithium battery in power system is tracked
and recorded. With the increasing density of discrete points in the state action space,
the intelligent agent has more flexible choice for the system working mode at each time,
which increases the charging and discharging frequency of lithium battery and poses a
threat to the health of the battery. Here, a Smode (SCHA, SDISCHA) variable is added
to the state space as the working mode identification, in which the SCHA indicates that
the lithium battery is in the state of charge and SDISCHA means that the lithium battery
is in the discharge state. Smode is identified by comparing the output power of the
current generation system with the power required for the drive motor at the end of each
step. When Smode is different at the beginning and end of a step, a negative revenue
value rmode is added to the updated target of the value function as the punishment, and
the punishment value determines the strength of the limitation of the charge–discharge
conversion frequency.
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Q(S, A)← Q(S, A) + α
[
r + rmode + γ×maxaQ

(
S′, A

)
−Q(S, A)

]
(19)

Of course, it is not excluded that the variable is transformed twice in one step, which
can help to successfully escape punishment for learning models. Because of the low
probability of this situation and considering the economy and calculation cost of EMS, we
choose to ignore it. Even then we can see in Figure 18 that with the increase in penalties on
S mode, the regulation capacity of the energy storage device and the conversion frequency
of the working mode show a downward trend.

4.4. On-Line Control Analysis

In order to verify the effectiveness of the on-line control, we test the trained control
strategy on-line and off-line in two different conditions using the UAV in Figure 19. In
the actual flight process of the UAV, the calculation speed of the control strategy is greatly
increased by establishing a communication relationship between the flight control system
in Figure 20 and the ground high-performance server. In the actual flight, the average
inference time of a decision is 3.03 ms, which is far less than that of one time step.

In Table 6, the control effect of learning results under unfamiliar conditions is com-
pared with the two kinds of dynamic programming methods with different precision and
rules-based methods: for the DP2 based on dynamic programming with the same state
precision as the RL method used in this paper (the state precision of RL method refers to
the state precision of high return area at the end of strategy search), in the final test results
of two unfamiliar conditions, RL can achieve 94.86% and 97.67% economy, respectively,
compared to that of DP2, and the calculation time is reduced by about half. Compared
with the rule-based EMS, the RL method in this paper saves 22.90% and 17.90% of the
fuel consumption, respectively, under two unfamiliar conditions. The above results show
that the designed EMS scheme can work effectively and stably under different working
conditions. In this paper, we try to transfer the optimal decision sequences of two very
similar power curves to each other using the DP1 method, but the economy can only
reach 82.31% and 77.57%, respectively, compared with the RL method. The reason is that
RL method stores a vast amount of state action value information with efficient training,
followed by the infinite approximation of the optimal Q function. With the increase in the
number of training scenes, the universality of the load curve also increases greatly, which
guarantees the approximation performance for the optimal decision route as shown in the
Figures 21 and 22. The essence of the dynamic programming method is to solve the global
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optimal problem under a specific cycle. Once the load curve changes to a certain extent,
the grafting effect will be greatly reduced.
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Table 6. Comparison of application effects of different control strategies.

DP1 DP2 RL RULE-BSED DP1-
DP2/RL(%)

RULE-
BSED/RL(%)

Offline Offline Offline/Actual Offline
State and action accuracy 0.01 0.005 0.005

Fuel consumption under training
condition A (short-time) 467.31 g 427.28 g 440.78 g/- 545.97 g 106.02/96.94 123.87

Fuel consumption under training
condition B (long-time) 982.34 g 879.10 g 937.80 g/- 1083.03 g 104.74/93.74 115.49

Fuel consumption under strange
condition A (short-time) 455.98 g 418.32 g 447.32 g/429.82 g 557.52 g 101.84/93.51 124.64

Fuel consumption under strange
condition B (long-time) 1142.57 g 1036.38 g 1140.51 g/1092.76 g 1329.72 g 100.18/90.87 116.58

Average calculation cost 18.6 h 74.3 h 37.0 h

Note: g = grams; h = hours.
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4.5. Conclusions

In this paper, the energy management strategy of an augmented UAV based on
Q-Learning is studied and the following results can be obtained: (1) The reasonable se-
lection of state space parameters for different types of flight missions can significantly
improve the control effect. (2) After the improvement of the search type of the algorithm,
the agent can quickly lock the learned decision path near the optimal solution. With the
continuous refinement of the state action space, the energy management strategy can
reduce the calculation cost and increase the economy. (3) In the actual flight test of the
improved Q-Learning algorithm, each decision step is controlled at about only 3 ms by
establishing the communication relationship with the high-performance server on the
ground. Compared with the computer simulation, the control effect can reach more than
95% of the optimal value, which has considerable practical application value. Furthermore,
from a large number of simulation results, we can see that the improved Q-Learning al-
gorithm has great robustness and excellent performance in hybrid energy management
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compared with other algorithms. To a certain extent, it breaks the shortcomings of the
existing control strategy in this field. In future research, we will introduce neural net-
works, and the improvement of empirical efficiency and error estimation will be taken as
breakthrough points.
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