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Abstract: Conventionally, public key certificates bind one subject with one static public key so that
the subject can facilitate the services of the public key infrastructure (PKI). In PKI, certificates need to
be renewed (or revoked) for several practical reasons, including certificate expiration, private key
breaches, condition changes, and possible risk reduction. The certificate renewal process is very
costly, especially for those environments where online authorities are not available or the connection
is not reliable. A dynamic public key certificate (DPKC) facilitates the dynamic changeover of the
current public–private key pairs without renewing the certificate authority (CA). This paper extends
the previous study in several aspects: (1) we formally define the DPKC; (2) we formally define the
security properties; (3) we propose another implementation of the Krawczyk–Rabin chameleon-hash-
based DPKC; (4) we propose two variants of DPKC, using the Ateniese–Medeiros key-exposure-free
chameleon hash; (5) we detail two application scenarios.

Keywords: dynamic public key certificate; chameleon signature; certificate renewal; wireless sensor
networks; perfect forward secrecy

1. Introduction

Certificates act as the critical tokens in conventional PKI systems. With the trust
of the CA, a validated certificate allocates communicating partners the tasks of entity
authentication, document signature verification, session key distribution and agreement,
and other functions.

For several practical reasons, a subject’s public–private key pair will need to be
renewed from time to time [1,2], for example because a private key has been compromised,
to reduce the risks of services (such as session key generation) related to a specific private
key, or to specify the different terms for different public keys; however, the certificate
renewal process is very costly and is very difficult or even infeasible in some scenarios, for
example if there is no reliable communication between different entities and their certificate
authorities or it is infeasible to set up such an online authority for certain Internet of Things
(IoT) networks, ad hoc networks, and Wireless Sensor Networks (WSN).

One possible solution to providing several public–private key pairs in one certifi-
cate is by specifying several public keys and delivering the private keys to the subject
through a secure channel. This solution might help in some situations but it is not scalable
and not secure in many scenarios. Firstly, the long list of private keys requires a larger
tamper-resistant memory space. Secondly, all of the key pairs need to be generated when
the certificate is issued. This creates a large burden on the CA or the requesters, limiting
the scalability. Thirdly, if the entity is compromised, then all services related to the com-
promised private keys are discredited, while storing all the private keys simultaneously
increases the risk of being compromised.

In our previous study [3] based on the Krawczyk–Rabin chameleon signature [4,5], we
proposed the dynamic public key certificate (DPKC), whereby the subject of the certificate
can dynamically coin new public–private key pairs on the spot, such that a verifier can
validate the new public keys using the same certificate. Please note that this new approach
does not totally exclude the certificate renewal process but facilitates the owner’s capacity

Electronics 2021, 10, 2009. https://doi.org/10.3390/electronics10162009 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-1054-109X
https://doi.org/10.3390/electronics10162009
https://doi.org/10.3390/electronics10162009
https://doi.org/10.3390/electronics10162009
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10162009
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10162009?type=check_update&version=2


Electronics 2021, 10, 2009 2 of 14

to change the public key dynamically during the certificate validation period. This new
approach has several advantages and potential new applications. It facilitates the change
of the public key dynamically, thereby reducing both the client’s burden of maintaining
several public–private key pairs and the authority’s burden of managing many certificates
per client. The owner can eliminate obsoleted private keys from storage to reduce the
risks while generating new keys for the same certificate. It dramatically reduces the costs
related to communication with the CAs (or even eliminates the requirement for online CAs
in some applications). Several applications for this new approach will be introduced in
Section 5.

Related Work

Efficient key management is quite challenge in various networking environments.
For symmetric-key-based systems, the challenges include the predistribution of keys, the
redistribution of keys, or the generation of new keys via key agreements [6–8]. For net-
works with PKI [6–14], the challenge lies in designing efficient and reliable cryptographic
algorithms, as well as methods to distribute, renew, and revoke certificates. We focus on
key management for PKI systems in this paper.

Within the context of grid communications, Mohamed et al. [9] designed new certifi-
cate formats, CA hierarchies, and renewal processes to improve the efficiency of smart
grid communications. Wu and Zhou [6] integrated elliptic curve cryptographies (ECC)
and symmetric key techniques to improve the efficiency and accessibility of smart grid
communications. Metke et al. [10] studied key management for smart grid communications
and decided that PKI is the most effective solution for securing grids.

Regarding ad hoc networks, He et al. [7] proposed the combined integration of se-
curity keys, such that both communication overheads are reduced and lightweight key
management is achieved. Other studies [11,12] focused on distributing the management of
public keys. By utilizing user acquaintances and certificates, another previous study [13]
proposed a public key management system with a self-organizing function. Another
study [14] designed efficient key-management schemes to effectively deter active attacks,
while in [8] secure key revocation and renewal schemes were designed using ECC and
symmetric encryptions.

Conventional public key certificates facilitate authentication and non-repudiation
services, prohibiting escrow of the corresponding private key; on the other hand, identity-
based (ID-based) cryptosystems [15] inherently own the escrow key properties, while the
authority that owns the escrow keys can naturally recover encrypted data when necessary.
Conventionally, in order to implement the two kinds of public key services mentioned
above, one needs to build two independent public key systems—one is the certificate-based
PKI and the other is the ID-based cryptosystem. Lin et al. [16], based on chameleon hashes,
proposed a novel key management infrastructure that integrates the “inherent key escrow”
characteristic of ID-based encryption [15] into a PKI that can specify two public keys in one
certificate, of which one public key is used for key escrow and the other is a conventional
public key.

Krawczyk and Rabin [4,5] defined the notation of chameleon signatures and chameleon
hashing functions. A chameleon hashing function allows the owner of the trapdoor function
to easily find the collisions for a given input; regarding the collision-finding capacity, this
is similar to a conventional cryptographic hashing function. Several other studies [16–20]
have aimed to either extend the chameleon signatures and hashing functions or apply
them in various contexts. One application involved secure vehicular ad hoc network
(Vanet) communications. In [17–21], an onboard unit (OBU) in a car based on chameleon
hashing was used to forge a new ephemeral public key in each session, then using the
corresponding ephemeral private key to securely share a session key with its communicat-
ing partner. Such methods of dynamical ephemeral public key generation might seem to
satisfy the goals of our study at first glance, but they cannot ensure the forward secrecy
if the OBUs are compromised; that is, if an OBU is compromised, then all the previous



Electronics 2021, 10, 2009 3 of 14

communications would be compromised. In Vanet approaches, it is usually assumed that
OBUs are tamper-resistant and that attackers cannot disclose secret values inside an OBU.

Ateniese et al. [22] outlined the requirements for modifying, deleting, or compressing
blocks in blockchain applications; therefore, they proposed new types of blockchains,
whereby the contents of some blocks can be edited by the designated entities when required.
They integrated chameleon hashes into the design of the blockchains. There are some
similarities between their schemes and ours; both approaches leverage the collision-finding
capacities in chameleon hashes to allow the designated entities to properly modify the
input contents of the hashes. A chameleon hash acts as the partial contents of a block in
their scheme [22], while a chameleon hash acts as the partial content of a certificate in
our schemes and the dynamic public keys are the inputs of the hashes. In [23], Bellare
and Ristov proved that chameleon hash functions and Sigma protocols are equivalent and
found new effective designs for chameleon hashes.

Pahl and Donini [24] proposed the use of public key certificates for authenticating
IoT devices in order to strengthen DTLS services. Hewa et al. [25] applied Elliptic Curve
Qu–Vanstone (ECQV) certificates in IoT scenarios and used the blockchain-based smart
contracts to manage the certificates. In view of the heavy certificate validation overheads
for IoT devices, [26] explored the distributed caching related to certificate validation among
IoT devices; their results showed that the design can greatly reduce the validation time of a
device. Another previous study [26] is complementary to ours in the sense that their design
can be integrated with ours to reduce the computational overheads related to certificate
validation; however, previous studies [24–26] did not address the fact that IoT devices are
relatively easily compromised and that private keys inside the devices can be disclosed,
endangering the security of the certificate-related services.

Unlike the tamper resistance assumption in OBU, devices in ad hoc networks, WSNs,
and IoT networks are usually deployed in hostile environments, whereby once the device
is captured, its internal secrets are disclosed. For such scenarios, assuming a device with a
conventional certificate is compromised one day later, then the previous communications
and session keys that are dependent on the private key of the certificate would be endan-
gered too; that is, they cannot provide forward secrecy. This motivated us to propose the
DPKC concept [3]; even if we assume a device with a certificate might be compromised
one day later, the previous communications using the same certificate would still be secure,
meaning it provides forward secrecy.

Even though the above mentioned papers have tackled some of the challenges related
to public key certificates, none of them have addressed the challenges of dynamically
changing a public key in a certificate and providing forward secrecy. In [3], Chien first
formulated the concept of the dynamic public key certificate and then proposed a simple
implementation using the Krawczyk–Rabin chameleon hash and signature approach. In
this paper, we greatly extend the previous study [3] in several aspects: (1) we formally
define the DPKC; (2) we formally define the security properties; (3) we propose another
implementation of the Krawczyk–Rabin chameleon-hash-based DPKC; (4) we propose two
variants of DPKC, using the Ateniese–Medeiros key-exposure-free chameleon hash [27]; (5)
we detail two application scenarios.

2. Preliminaries

Before introducing our schemes, chameleon hashes and signatures and the proof of
knowledge concept are reviewed below.

2.1. Chameleon Hash and Signatures

The notation for chameleon signatures and chameleon hashing functions was first
introduced by Krawczyk and Rabin [4,5]. A chameleon hashing function allows the
owner of the trapdoor function to easily find the collisions for a given input, except for
the collision-finding capacity, which is similar to a conventional cryptographic hashing
function. Chameleon signatures are secure digital signatures on the chameleon hashes
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of the messages. Both undeniable signatures [28] and chameleon signatures simultane-
ously provide non-transferability and non-repudiation; undeniable signatures achieve
non-transferability in an interactive way, while chameleon signatures do this in a non-
interactive way. The generation of a chameleon signature is computed by the signer alone
and the verification of a chameleon signature is performed by the verifier alone. Because a
chameleon signature is a signature on the chameleon hash of the message, the designated
recipient can find the collisions of the chameleon hash. If the recipient delivers such a
collision for a chameleon signature, then the signer repudiates the collisions by offering the
original message–signature pair or by offering another collision.

Ateniese and Medeiros reported on the key exposure issue of the Krawczyk–Rabin
chameleon hash construction [4,5], whereby the signer can recover the long-term private
key of the designated receiver if the latter provides a collision. Later, Chen et al. [29]
showed that the ID-based solutions [27] only partially solve the key exposure challenge,
since the recipient needs to have new public–private key pairs for each transaction. Other
studies such as [29–31] proposed several chameleon hash and signature schemes without
the key exposure issue.

It is these properties of non-repudiation, non-forge-ability, and designated recipient
collision-finding capability that we will twist to design our dynamic public key certificate
(DPKC) schemes. Not all chameleon hash and signature schemes can be modified to meet
the requirements of our dynamic public key certificate schemes.

In the following, we introduce the formal definition of a chameleon hash scheme given
by Chen et al. 2009 [31].

Definition 1. The chameleon hash scheme with key exposure freeness includes four efficient
algorithms (SPG, KG, H, F) [31]:

- System Parameter Generation SPG: Upon input of a security parameter k, a proba-
bilistic polynomial time algorithm outputs the system parameters SP;

- Key Generation KG: Upon input of the system parameters SP, a probabilistic polyno-
mial time algorithm outputs a trapdoor–hash key pair (TK, HK);

- Hashing Computation HC: Upon input of a message m, the hash key HK, a cus-
tomized identity I, and a random string r, a probabilistic polynomial time algorithm
outputs the hashed value l = CHash(I, HK, m, r). Note that l is independent on TK.
A customized identity is a string extended from one’s identity with additional infor-
mation (such as roles, transaction identities, etc.) to differentiate one instance from
another. Note that I could be null in some implementations;

- Collision Computation FC: Upon input of a message m, the trapdoor key TK, a
random string r, and another message m′ 6= m, a deterministic polynomial time
algorithm outputs a string r’ that satisfies the following equation:

CHash
(

I, HK, m′, r′
)
= CHash(I, HK, m, r) (1)

A secure chameleon hash scheme with key exposure freeness satisfies the following
properties:

- Collision resistance: For algorithms without the trapdoor key TK, on input of a
message m, another message m′, and a random string r, they cannot output a string r′

that satisfies CHash(I, HK, m′, r′) = CHash(I, HK, m, r) with non-negligible probability;
- Semantic security: The probability distributions of the random values CHash(I, HK,

m, r) and CHash(I, HK, m′, r′) are computationally indistinguishable for all pairs of
messages m and m′;

- Key exposure freeness: Assume a designated receiver does not provide a collision
under m, then no efficient adversary can find a collision for a given chameleon hash
value CHash(I, HK, m, r). Even if the adversary has submitted many polynomial
queries on triples (Ij, mj, rj) of the choice to the oracle, where Ij does not equal the
challenge I, the adversary still cannot find a collision.
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A chameleon signature with key exposure freeness is a secure digital signature on the
chameleon hash value of a message. The following definition is taken from [31].

Definition 2. The chameleon signature scheme with key exposure freeness has a specific denial
protocol and the following algorithms:

- System Parameter Generation SPG: Upon input of a security parameter k, a proba-
bilistic polynomial time algorithm outputs the system parameters, SP.

- Key Generation KG: Upon input of the system parameters SP, a probabilistic polyno-
mial time algorithm outputs a signing–verification key pair (sk, vk) and a trapdoor–
hash key pair (TK, HK);

- Signature Generation SG: Upon input of a customized identity I, the hash key HK,
the signing key sk, a message m, and a random string r, a probabilistic polynomial
time algorithm outputs a signature σ on the chameleon hash value l = CHash(I, HK, m,
r);

- Signature Verification SV : Upon input of a customized identity I, a message m, the
hash key HK, the verification key vk, a random string r, and a signature σ, a determin-
istic polynomial time algorithm outputs a verification decision b ∈ {0, 1};

- Denial Protocol DP: The signer and the judge perform DP in a non-interactive way.
The signer provides the judge with a valid collision (m′, r′) and some auxiliary infor-
mation ϕ to prove the forgery of the given chameleon signature (σ, r) on the message
m. If and only if ϕ is valid and m′ 6= m, the judge concludes that the signature σ on
the message m is a forgery;

- A chameleon signature scheme satisfies the properties [30,31]:
- Unforgeability: Only the signer can generate a valid chameleon signature, the des-

ignated receiver can only produce a forgery of a chameleon signature previously
generated by the signer;

- Non-transferability: The signature is not universal verifiable, whereby a designated
receiver has no way to convince a third party that the signer really provided a signature
on a certain message;

- Non-repudiation: Legitimate signature claims could be denied by the signer;
- Deniability: A forgery of a signature could be denied by the signer;
- Message hiding: To deny the validity of a forgery, the signer does not have to reveal

the original message.

Note that a general chameleon hash without an emphasis on the key exposure freeness
property is similar to the above definition with the following exceptions. The hash key HK
is the public key of the designated recipient, the TK is the private key, and the customized
identity I is not mandatory in the corresponding algorithms. Additionally, the key exposure
freeness property is not mandatory. Likewise, a general chameleon signature without an
emphasis on the key exposure freeness is similar to the above example with the following
exceptions. The hash key HK is the public key of the designated recipient, the TK is the
private key, and the customized identity I is not mandatory in the corresponding algorithms.
Additionally, the message recovery property and the message hiding property are not
mandatory.

2.2. Proof of Knowledge

A prover who knows a secret number x = logg Y ∈R Zq wants to convince a verifier
of their knowledge without exposing the secret, which is called the proof of knowledge of
a discrete logarithm. The implementation of the proof of knowledge, based on the Schnorr
signature [32] on message (g, Y), is reviewed as follows. The prover chooses r ∈R Zq
and computes c = h(g, Y, gr) and s = r − csmodq, whereby h() is a cryptographic hash
function. The prover accepts the proof (c, s) if and only if c = h(g, Y, gsYc). We refer to this
requirement as ZK-proof (logg Y) in the rest of this paper.
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Similar constructions could be obtained to prove the knowledge x = logg Y = logg W
without exposing x as follows [33]. The prover chooses r ∈R Zq and computes c =
h(g, g, Y, W, gr, gr) and s = r− csmodq. The prover accepts the proof if and only if (c, s)
satisfies c = h(g,

→
g , Y, W, gsYc, gsWc). We refer to this requirement as ZK-proof (logg Y =

logg W) in the rest of this paper.

3. The Proposed Dynamic Public Key Certificates

This section formally defines the dynamic public key certificate and proposes several
implementations. The ADPKC scheme behaves similarly to a conventional public key
certificate in PKI, except that the subject (the owner) of the certificate can choose the new
public keys and any verifiers can check the validity of the dynamic public keys using the
same certificate.

Definition 3. The dynamic public key certificate (DPKC) scheme involves three kinds of entities,
namely the CA, registered client (U), and verifier (V), whereby the CA is a trusted entity. The
scheme has six efficient algorithms (SPG, KG, DPKCG, DPKCV, DPKF, DPKV):

- System Parameter Generation SPG: Upon input of a security parameter k, a proba-
bilistic polynomial time algorithm outputs the system parameters SP, which includes
the public key of the CA, PubCA, which is trusted by all entities. The corresponding
private key is securely owned by the CA;

- Key Generation KG: Upon input of the system parameters SP, a probabilistic polyno-
mial time algorithm outputs a public–private key pair (PubU , PrivU) for each regis-
tered entity U;

- Dynamic Public Key Certificate Generation DPKCG: To generate a dynamic public
key certificate, the CA requires the information that an ordinary certificate has. The
information includes the public key PubU and the other necessary information, such
as the identity of the issuer (the CA), the identity I of the subject, the algorithms, the
parameters, the valid period, and the application scopes; we denote these other data
as <U . The CA generates a dynamic public key certificate, as defined in Equation (2),
where SigCA(<U ||CHash(I, PubU , m, r)) is the CA’s signature on the data <U and the
chameleon hash CHash(I, PubU , m, r). Note that I in CHash(I, PubU , m, r) could be
null in some implementations (that is, CHash(Null, PubU , m, r) = CHash(PubU , m, r)):

DCertU ≡ <U ||I||PubU ||(m, r)||SigCA(<U ||CHash(I, PubU , m, r)) (2)

- Dynamic Public Key Certificate Verification DPKCV : Given the CA’s public key
PubCA and a dynamic public key certificate DCertU ≡ <U ||I||PubU ||(m, r)||
SigCA(<U ||CHash(I, PubU , m, r)) , a decision b ∈ {0, 1} is output;

- Dynamic Public Key Finding DPKF: This algorithm consists of two sub-algorithms,
whereby the first one randomly generates new public–private key pairs, while the
second one, based on the new key pairs, generates the corresponding data, which
satisfies CHash(I, PubU , m, r);

- The 1st sub-algorithm. Upon input of (PubU , PrivU), a probabilistic polynomial time
algorithm outputs two public–private key pairs (Pub1U , Priv1U) and (Pub2U , Priv2U).
Please note that Pub1U could be the initial public key PubU , while the second key pair
(Pub2U , Priv2U) is the one that preserves forward secrecy in the applications;

- The 2nd sub-algorithm. Given DCertU (which includes I, m, r, etc.), the long-term
trapdoor key PrivU (or a related converted trapdoor), and the new key pairs, a
deterministic (or probabilistic) algorithm outputs a string r′, such that it satisfies
CHash(I, PubU , m, r) = CHash(I, Pub1U , m′ = Pub2U , r′). It may also generate an
optional proof, which depends on the implementations;

- Dynamic Public Key Verification DPKV: Given the CA’s public key PubCA and a dynamic
public key certificate DCertU ≡ <U||PubU||(m, r, I)|| SigCA(<U||CHash(I, PubU, m, r)) ,
two public keys Pub1U and Pub2U , r′, and the optional proof, a verification decision
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b ∈ {0, 1} is output. The decision is based on the results of the verification of the
certificate, the verification of which Equation (3) provides, and the validity of the
optional proof:

CHash(I, PubU , m, r) ?
=CHash(I, Pub1U , m′ = Pub2U , r′) (3)

A secure dynamic public key certificate scheme has the following properties specified
below:

- Collision resistance: No efficient algorithm without the long-term trapdoor key
PrivU , upon input of a message m and a random string r, outputs another message m′

and a string r′ that satisfy CHash(I, PubU , m, r) = CHash(I, Pub1U , m′ = Pub2U , r′),
with non-negligible probability;

- Unforgeability: Only the CA can produce a valid dynamic public key certificate.
Additionally, the subject of a certificate can only produce a collision of the chameleon
hash specified in that certificate;

- Public verifiability: The validity of a dynamic public key certificate and its corre-
sponding public keys can be verified by any party;

- Forward secrecy: Even if the subject of a dynamic public key certificate might be
captured one day and all its current memories are compromised, all of the previous
ephemeral private keys Priv2U should still be secure.

We can see that even though dynamic public key certificates are based on chameleon
hashes, they own different features. For examples, the semantic security of a message is
not required in DPKCs, while forward secrecy is necessary in DPKCs. We now introduce
some new implementations of DPKC schemes.

3.1. A New Implementation Using the Krawczyk–Rabin Chameleon Hash

The Krawczyk–Rabin chameleon hash is introduced as follows. Let the prime factors
be p and q, such that p = kq + 1, where q is a large prime factor; g is a generator for a
subgroup of order q in Z∗p. Let PrivU ≡ x ∈ Z∗q be the long-term private key of a recipient
U and PrubU ≡ Y ≡ gxmodp be the long-term public key. The chameleon is defined as
CHash(Null, Y, m, r) = gmYrmodp;

The proposed DPKC scheme is defined as follows:

- System Parameter Generation SPG, Key Generation KG: The parameter initializa-
tion and the private–public key generation are the same as that in the Krawczyk–Rabin
scheme; however, in our scheme, each registered user U has two initial key pairs
(Pub1U,0 ≡ gx10 , Priv1U,0 ≡ x10) and (Pub2U,0 ≡ gx20 , Priv2U,0 ≡ x20).

- Dynamic Public Key Certificate Generation DPKCG: The CA generates a DPKC for
U, using DCHash_1 defined in Equation (4).

DCertU ≡ <U ||I||Pub1U,0||(Pub2U,0, r0)||SigCA(<U ||CHash(I, Pub1U,0, Pub2U,0, r0)),

where DCHash_1 is defined as:

CHash(I, Pub1U,0, Pub2U,0, r0) ≡gh(Pub2U,0,Pub1U,0)Pub1U,0
r0= gh(gx20 ,gx10 )(gx10)

r0modp (4)

- Dynamic Public Key Certificate Verification DPKCV : Given a DCertU ≡ <U ||I||
Pub1U,0||(Pub2U,0, r0)||SigCA(<U ||CHash(I, Pub1U,0, Pub2U,0, r0)) , a verifier validates
the certificate by performing signature verification on the CA’s signature SigCA(<U ||
CHash(I, Pub1U,0, Pub2U,0, r0));

- Dynamic Public Key Finding DPKF: For ith (i ≥ 1) renewable public keys, the
user U chooses two new key pairs (Pub1U,i ≡ gx1i , Priv1U,i ≡ x1i) and (Pub2U,i ≡
gx2i , Priv2U,i ≡ x2i) and then computes ri as defined in Equation (5). The new dynamic
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public key tuple is (Pub1U,i, Pub2U,i, ri, ZK-proof (logg Pub1U,i)), where ZK-proof
(logg Pub1U,i) is a zero-knowledge proof of the knowledge logg Pub1U,i:

ri = [h(Pub2U,0, Pub1U,0) + x10 · r0 − h(Pub2U,i, Pub1U,i)]x1i
−1modq (5)

(that is, h(Pub2U,0, Pub1U,0) + x10 · r0 = h(Pub2U,i, Pub1U,i) + x1i · rimodq).

Please note that the owner, instead of keeping the initial private keys (x10, x20), can
keep the last ephemeral private keys (x1i, x2i) only to find a valid public key tuple for
the next session, since CHash(I, Pub1U,0, Pub2U,0, r0) = CHash(I, Pub1U,i, Pub2U,i, ri) =
CHash(I, Pub1U,i+1, Pub2U,i+1, ri+1) as long as the equation h(Pub2U,0, Pub1U,0) + x10 · r0
= h(Pub2U,i, Pub1U,i) + x1i · rimodq = h(Pub2U,i+1, Pub1U,i+1) + x1i+1 · ri+1 holds. This
design has the advantage that the owner only keeps the last tuple to save space;

- Dynamic Public Key Verification DPKV : Given the certificate DCertU and the new
public key tuple (Pub1U,i, Pub2U,i, ri, ZK-proof (logg PubU,i)), a verifier first checks

the validity of DCertU and then checks whether CHash(I, Pub1U,0, Pub2U,0, r0)
?
=

CHash(I, Pub1U,i, Pub2U,i, ri) holds and the validity of ZK-proof (logg PubU,i). If U fol-
lows the DPKF, then the equation should hold, since CHash(I, Pub1U,0, Pub2U,0, r0) =
gh(Pub2U,0,Pub1U,0)Pub1U,0

r0 = gh(Pub2U,0,Pub1U,0)+x10·r0 = gh(Pub2U,i ,Pub1U,i)+x1i ·ri

= gh(Pub2U,i ,Pub1U,i)Pub1U,i
ri = CHash(I, Pub1U,i, Pub2U,i, ri);

- Another variant of this construction is letting CHash(I, Pub1U,0, Pub2U,0, r0) ≡
gr0 Pub1U,0

h(Pub2U,0,Pub1U,0) = CHash(I, Pub1U,i, Pub2U,i, ri), ZK-proof (logg PubU,i). and
ri = x10 · h(Pub2U,0, Pub1U,0) + r0 − x1i · h(Pub2U,i, Pub1U,i)modq;

3.2. An Implementation Based on the Ateniese–Medeiros Key-Exposure-Free Chameleon Hash

The Ateniese–Medeiros key-exposure-free chameleon hash is based on the Nyberg–
Rueppel signature [34], whereby p and q are two large prime factors, such that p = 2q + 1;
g is a generator of a subgroup of quadratic residues Qp ∈ Z∗p, while g is of order q. The
recipient U selects a private key x ∈ [1, q− 1], while the public key is Y = gxmodp. The
chameleon hash is defined as follows: CHash(Y, m, (r, s)) ≡ r− (Yegsmodp)modq, where
r, s ∈R Zq, e = h(m, r).

Now, we construct a DPKC scheme as follows:

- System Parameter Generation SPG, Key Generation KG: The parameter initializa-
tion and the private–public key generation are the same as that in the Ateniese–
Medeiros scheme; However, in our scheme, each registered user U has two key pairs
(Pub1U,0 ≡ gx10 , Priv1U,0 ≡ x10) and (Pub2U,0 ≡ gx20 , Priv2U,0 ≡ x20).

- Dynamic Public Key Certificate Generation DPKCG: The CA generates a DPKC for
U, using DCHash_2 as defined in Equation (6):

DCertU ≡ <U ||I||Pub1U,0||(Pub2U,0, (r0, s0))||SigCA(<U ||CHash(Pub1U,0, Pub2U,0, r0, s0)),

where DCHash_2 is defined as:

CHash(Pub1U,0, Pub2U,0, (r0, s0)) ≡ r0 − (Pub1U,0
h(Pub2U,0,r0 ·gS0modp)modq (6)

- Dynamic Public Key Certificate Verification DPKCV : Given DCertU ≡ <U ||I||
Pub1U,0||(Pub2U,0, (r0, s0)|)| SigCA(<U ||CHash(Pub1U,0, Pub2U,0, (r0, s0))) , a verifier
validates the certificate by performing signature verification on the CA’s signature
SigCA(<U ||CHash(Pub1U,0, Pub2U,0, (r0, s0))) ;

- Dynamic Public Key Finding DPKF: For ith (i ≥ 1) renewable public keys, the
user U chooses one new key pair (Pub2U,i ≡ gx2i , Priv2U,i ≡ x2i) and the old one
(Pub1U,0, Priv1U,0), then executes the following steps:

(1) The user chooses k′ ∈ [1, q− 1];
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(2) The user computes ri = CHash(Pub1U,0, Pub2U,0, (r0, s0)) + (gk′modp)modq,
ei = h(Pub2U,i, ri), and si = k′ − ei · x10modq.

Then, the new public key tuple (Pub2U,i, (ri, si)) satisfies Equation (7):

CHash(Pub1U,0, Pub2U,i, (ri, si)) = CHash(Pub1U,0, Pub2U,0, (r0, s0)) + (gk′modp)modq
− (Pub1U,0

h(Pub2U,i ,ri ·gSi modp)modq = CHash(Pub1U,0, Pub2U,0, (r0, s0))
(7)

- Dynamic Public Key Verification DPKV : Given the certificate DCertU and the new
public key tuple (Pub2U,i, (ri, si)), a verifier first checks the validity of DCertU , then
checks whether CHash(Pub1U,0, Pub2U,0, (r0, s0)) =CHash(Pub1U,0, Pub2U,i, (ri, si))
holds. If U follows the DPKF, then the equation should hold as shown in (1).

In [30], Ateniese and Medeiros showed another version of the chameleon hash as
CHash(Y, m, (r, s)) ≡ rYegsmodp. Based on this chameleon, we can construct a DPKC scheme
in a similar way. Here, we let C = CHash(Pub1U,0, Pub2U,0, (r0, s0)) ≡ r0Pub1U,0

h(Pub2U,0,r0) ·
gs0modp in the certificate, choose a random number k ∈ [1, q− 1], the compute ri = Cgk and
k + x10 · h(Pub2U,i, ri) = −simodq. Then, we obtain CHash(Pub1U,0, Pub2U,0, (r0, s0)) =
CHash(Pub1U,0, Pub2U,i, (ri, si)).

4. Security Analysis

The security properties of the proposed dynamic chameleon hashes (DCHash) and the
proposed DPKC schemes are analyzed here. Because our DPKC schemes apply a secure
digital signature on the content of a DPKC and the chameleon hash value (DCHash) of the
content, the unforgeability of the DPKC is assured when the corresponding chameleon
hashes (DCHash) are collision-resistant to all entities (except the designated recipient,
which here is the subject of the certificate); therefore, we only need to prove that the
proposed DCHashs are collision-resistant to all except the designated recipient, which here
is the subject of the certificate.

Theorem 1. The proposed DCHash_1 is collision-resistant to all except the designated recipient,
who is the subject of the certificate.

Proof. We first assume that the attacker (not the subject) can forge another collision (Pub1U,i,
Pub2U,i, ri, ZK-proof (logg PubU,i)) for DCHash_1, then we show the contradiction whereby
the attacker owns the private keys of the subject. Assume the attacker finds the collisions that sat-
isfy CHash(I, Pub1U,0, Pub2U,0, r0) = gh(Pub2U,0,Pub1U,0)Pub1U,0

r0 = gh(Pub2U,0,Pub1U,0)+x10·r0 =
CHash(I, Pub1U,i, Pub2U,i, ri) = gh(Pub2U,i ,Pub1U,i)Pub1U,i

ri = gh(Pub2U,i ,Pub1U,i)+x1i ·ri ; this im-
plies that the attacker who forges x1i = logg Pub1U,i can derive the secret x10 = logg Pub1U,0.
This contradicts the security of the DLP problem. This proves the collision resistance to all
except the designated recipient, who is the subject of the certificate. �

Theorem 2. The proposed DCHash_2 is collision-resistant as long as the long-term private key is
secure.

Proof. This result is trivial, since we only substitute m = Pub2U,i in the Ateniese–Medeiros
chameleon hash CHash(Y, m, (r, s)) ≡ r − (Yegsmodp)modq, whereby r, s ∈R Zq, e =
h(m, r). The collision-resistant property of the Ateniese–Medeiros chameleon hash was
proven in [27]. �

Now, the forward secrecy of the dynamic public keys Pub2U,i is proven as follows.

Theorem 3. All of the proposed DPKC schemes ensure the forward secrecy of the dynamic private
keys Priv2U,i when the subject eliminates all previous obsolete private keys Priv2U,i from its storage
and the DLP problem is difficult.
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Proof. In the calculations of the proposed CHash, only the ephemeral public keys Pub2U,i
are used, while the corresponding private keys Priv2U,i are never used in the calculations.
All pairs (Pub2U,i,Priv2U,i) are randomly and independently generated. So long as all of
the previous obsolete private keys Priv2U,i are deleted from storage and the DLP problem
is hard, adversaries cannot derive the private keys. �

5. Applications

Public keys facilitate many security services, such as authentication, signatures, and
encryption. A DPKC scheme allows a subject to dynamically change the public keys
and provides the forward secrecy for the previous private keys, even if we assume that
the subject might be compromised one day later. This could have several potential new
applications, in addition to the conventional applications.

5.1. General Application Scenarios

One main application opportunity is applying the DPKC schemes in those scenar-
ios where public key certificates are desirable but an online CA is not available or the
connection is not reliable.

The CA only keeps the original signed DPKC certificates. In order for both the CA and
any verifier to verify whether a new public key is valid, they need the original certificate
and the new public key tuple, which is (Pub2U,i, (ri, si)), as shown in Section 3.2. A verifier
should keep the new public key tuple if it requires a jurisdiction from a third party later;
this requirement is just like that in a conventional digital signature where a verifier needs a
signature and the message to validate its validity.

The verification of each new public key tuple is independent from other instances for
the same DPKC certificate and there is no requirement to record the tuple history in order
to verify any instance.

5.2. General Applications in WSN/IoT Scenarios

In IoT/WSN scenarios, nodes (things) are usually deployed in unprotected areas.
Data are encrypted and then transmitted in a hop-to-hop manner back to their backend
servers. The security of the source-to-destination path depends on the security of the
encryption of each link along the path; therefore, any breaches from any links along
the path back to the backend servers would compromise the whole system security. In
many implementations, the encryption of each link is based on the public key of the
nodes. With the DPKC schemes introduced in Section 3, applications with DCertU ≡
<U ||I||Pub1U,0||(Pub2U,0, (r0, s0))||SigCA(<U ||CHash(Pub1U,0, Pub2U,0, r0, s0)) can use
the dynamic public keys Pub2U,i to generate public-key-based encryptions, periodically
change the public keys, and delete the obsoleted ones. Even if a node might be compro-
mised one day later, the encryptions that were based on previous public keys would still
be secure.

Nodes in WSN/IoT can change (public key, private key) pairs on the spot without
accessing one-line CA servers. This is very useful for those WSN/IoT scenarios where
online CA services provided or reliable and-cost-effective connections cannot be ensured.

5.3. Integration with Non-Perfect Forward Secrecy Key Agreement Schemes to Provide Perfect
Forward Secrecy

Many IoT devices and mobile devices are resource-limited, meaning the computational
or communicational complexity of a protocol will significantly affect the performance of
the devices in terms of battery life, delay, and other factors; therefore, even although both
key agreement and forward secrecy are desirable properties in such applications, they are
not enforced in several related standards and not implemented in many products [35–40].

To reduce the computational overhead for a client in adopting the Diffie–Hellman key
agreement, Chien [41] formulated the modified computational Diffie–Hellman problem
(MCDHP) and introduced an approach that can easily transform existent Diffie–Hellman
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key agreement schemes to their corresponding MCDHP-based variants, such that the com-
putational cost to the clients can be reduced. This solution reduces the costs or concerns
of adopting Diffie–Hellman session keys in resource-limited devices. The transformation
maintains all of the security properties of the original key agreement schemes, except that
forward secrecy is no longer preserved; if a device’s long-term private key is compro-
mised, then all previous session key generations involved with the private key are also
compromised.

Here, we show how we can simultaneously reduce a client’s computational overhead
in the Diffie–Hellman keying process and achieve forward secrecy by integrating both our
DPKC schemes with the MCDHP-based key agreement schemes.

Before detailing the integration process, Chien’s MCDHP-based schemes are briefly
reviewed as follows.

Definition 4. The modified computational Diffie–Hellman problem (the MCDHP) over group G is
formulated as follows. Given gy, gt, g, and x + t, where y, x, and t are random numbers and g is a
generator for G, the task is to output gxy.

Chien [41] proved that the MCDHP problem is as hard as the CDHP problem. Figure 1
depicts a general scheme for converting a CDHP keying process into a MCDHP keying
process. The notation is introduced first and then followed by the explanation of the steps.

Figure 1. (a) The conventional authenticated D-H key agreement. (b) The MCDHP-based authenticated D-H key agreement
with enhanced client efficiency.

5.4. Notations

B, A: B and A denote the identities of the entities Bob and Alice. Here, Alice is the
client.

KAB: Denotes the session key to be established between the two parties.
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T = gt, t,: T = gt denotes the long-term public key for Alice, where t is the corresponding
private key.

X, Y, x, y: X = gx and Y = gy denote the public keys, where x and y are the corresponding
ephemeral private keys.

⊕, ||: ⊕/|| denotes exclusive-OR/concatenation operation.
Pack(X): The goal of this function is to deliver the value X to the receiver, which can be

implemented as a plaintext or an encryption of the value X; its implementation depends on
each specific protocol.

Auth1(.), Auth2(.), Auth3(.): These values denote the authentication codes applied on
the inputs, while the designated receivers can verify the authenticity of the received data.
The implementations depend on each specific protocol.

keyder (.): The derivation function for session keys.
Figure 1a depicts the general process for conventional CDHP-based key agreements.

After exchanging the keying materials X = gx and Y = gy, the two entities compute the
same key KAB = gxy. This simplified process may not include the authentication of the
communicating parties.

Figure 1b depicts the general MCDHP-based D-H key agreement process. Instead of
transmitting X = gx, the client transmits the vector (x + t, T = gt); Bob uses Alice’s public key
T to derive X = gx+t/T = gx. After exchanging the keying materials, the two entities derive
the key KAB = gxy. This MCDHP-based key agreement reduces the client’s one modular
exponentiation at the extra cost of one exponentiation and one modular multiplication at
the server. This arrangement fits many IoT/WSN scenarios, where the devices are very
resource-limited and the servers are resource-abundant.

Now, we are ready to show how one can apply the DPKC in the MCDHP-based key
agreement schemes such that the integrated solution both reduces the client’s computation
costs and provides forward secrecy. The key idea is that a client with DCertU ≡ <U ||I||
Pub1U,0||(Pub2U,0, (r0, s0))||SigCA(<U ||CHash(Pub1U,0, Pub2U,0, r0, s0)) chooses the new
public keys Pub2U,i and notifies the server in the MCDHP-based key agreement schemes
to use this new key Pub2U,i to derive the keying material X and the session key KAB. This
mechanism assures the forward secrecy of the session keys and the previous private keys
Priv2U,j, j < i, even if we assume the device might be compromised one day later. This
integrated solution has several merits: (1) devices can dynamically change their public–
private key pairs without accessing the online CA; (2) the potential benefits of hacking
devices are greatly reduced, in turn greatly reducing the motives for hacking these devices;
(3) the solution can conquer many obstacles that hinder PKI services in IoT applications.

6. Conclusions

In this paper, we have reviewed the dynamic public key certificate, formally formu-
lated the DPKC, and proposed several efficient chameleon-hash-based implementations.
The DPKC allows clients to dynamically choose new public–private key pairs without
renewing their certificates. This could greatly reduce the costs of public key renewal and
overcome many of the obstacles that hinder PKI services in mobile nodes and IoT devices.
Several potential applications have been introduced. One application involves solving the
forward secrecy issues related to link encryption in WSN/IoT scenarios. The security of
the source-to-destination path depends on the security of the encryption of each link along
the path. With the DPKC schemes, a node can use the next node’s dynamic public key to
perform the public key encryption, such that the forward secrecy can be ensured, even if a
node might be compromised later.

The other application involves integrating DPKC schemes with non-perfect forward
secrecy key agreements to fill the void regarding secure key agreements in several mobile
device/IoT security standards. The integrated solution reduces the client’s computational
overhead in the Diffie–Hellman keying process and ensures the perfect forward secrecy of
the session keys and the dynamic private keys. Interesting areas for further studies could
include new efficient implementations of DPKC schemes and new applications.
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