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Abstract: In this study, we proposed an indoor broadband dual-polarized 2 × 2 MIMO (multiple-
input and multiple-output) antenna having dimensions of 240 mm × 200 mm × 40 mm, for ap-
plication in 5G wireless communication systems. The proposed antenna comprised two vertically
polarized circular monopole antennas (CMAs), two horizontally polarized modified rectangular
dipole antennas (MRDAs), and a ground plane. The distance between the two MRDAs (MRDA1
and MRDA2) was 70.5 mm and 109.5 mm in the horizontal (x-direction) and 109.5 mm vertical
(y-direction) directions, respectively. Conversely, the distance between the two CMAs (CMA1 and
CMA2) was 109.5 mm and 70.5 mm in the horizontal (x-direction) and vertical (y-direction) directions,
respectively. While the CMAs achieved broadband characteristics owing to the optimal gap between
the dielectric and the driven radiator using a parasitic element, the MRDAs achieved broadband
owing to the optimal distance between the dipole antennas. The observations in this experiment con-
firmed that the proposed could operate in the 5G NR n46 (5.15–5.925 GHz), n47 (5.855–5.925 GHz),
n77 (3.3–4.2 GHz), n78 (3.3–3.8 GHz), and the n79 (4.4–5 GHz) bands. Moreover, it exhibited a
wide impedance bandwidth (dB magnitude of S11) of 101% in the 2.3–7 GHz frequency range, high
isolation (dB magnitude of S21), low envelope coefficient correlation (ECC), gain of over 5 dB, and
average radiation efficiency of 87.19%, which verified its suitability for application in sub-6 GHz 5G
wireless communication systems.

Keywords: 5G; MIMO; dual polarization; broadband

1. Introduction

Mid-band 5G, also called the mid sub-6 GHz band, is gaining widespread atten-
tion owing to the intensive usage by general 5G subscribers. While some countries have
considered expanding their 5G frequency band above 4 GHz, other countries have al-
ready done so [1]. Among the various mid sub-6 GHz bands, the n77 (3300–4200 MHz)
and n78 (3300–3800 MHz) bands have been widely adopted in several countries; this is
only feasible by using a sub-6 GHz 5G antenna operating in the n46 (5150–5925 MHz),
n47 (5855–5925 MHz), and n79 (4400–5000 MHz) bands. A high channel capacity, dual-
polarization, and broadband are essential factors for wireless communication [2].

The most popular method to realize a broadband dipole antenna is using two or-
thogonal crossed-dipole antennas with a reflector or cavity [3–7]. However, it is difficult
to achieve bandwidth over 100% using the conventional crossed-dipole MIMO antenna.
The conventional structures for which it is difficult to achieve broadband characteristics
cannot cover all 5G bands in the current situation of expanding 5G bands. In addition,
crossed-dipole antennas have little space between the ports. The lack of space between
the ports makes it difficult to use relatively big N-type connectors which widely use the
wireless industry and wireless modules. However, the hybrid monopole/dipole structure
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gives sufficient space between the ports. It makes it easier to use a relatively big N-type
connector and connect the antenna with a wireless module.

Many studies on broadband monopole antennas with a parasitic element have been
reported [8–10]. In study [8], a novel dual band notched monopole antenna with increased
bandwidth is proposed. It is a radiator on top of the substrate and ground plane with
L-shaped slots and a parasitic at the bottom of the substrate to enhance the bandwidth.
Similarly, Refs. [9,10] proposed monopole antennas with parasitic elements.

Several MIMO antennas with shared radiator have been studied [11–13]. In study [11],
a common radiator coplanar waveguide (CPW) fed a four port multiple-input-multiple-
output (MIMO) antenna for 5G sub-1 GHz, sub-6 GHz and Wi-Fi 6 applications with
a shared radiator is proposed. This antenna has relatively bad impedance bandwidth
(−6 dB). Since the antenna’s impedance bandwidth should be under −10 dB of S11, it
is not suitable for 5G wireless communication. The study [12] proposed a wideband
compact Yagi-like directional MIMO antenna with a shared radiator. It also has insufficient
impedance bandwidth of 28%. In addition, a wearable four port MIMO antenna with a
shared radiator in [13] shows insufficient bandwidth of 4.1%. These studies show that a
MIMO antenna with a shared radiator can make the antenna size compact, but it is hard to
achieve impedance bandwidth over 100%.

If the MIMO antenna does not have a shared radiator and is composed of indepen-
dent radiators, it must have considered high isolation and mutual coupling between each
radiator. The mutual coupling suppression between independent radiators is essential for
the high isolation. There are several mutual coupling suppression techniques such as neu-
tralization lines [14,15], defected ground structure [16–18], pin or varactor diode [19–22],
electromagnetic bandgap decoupling structure [23], etc. The easiest way to increase the
isolation is to increase the distance between the radiators.

In this study, we propose a simple broadband monopole antenna with a parasitic
element and dipole antenna composing a dual-polarized 2 × 2 multi-input multi-output
(MIMO) antenna. This MIMO antenna comprises two circular monopole antennas (CMAs)
and two modified rectangular dipole antennas (MRDAs) in different biased directions for
dual polarization in indoor 5G wireless communication systems. The proposed MIMO
antenna exhibited a wide impedance bandwidth (dB magnitude of S11), high isolation
(dB magnitude of S21), and low envelope correlation coefficient.

2. Single Antenna Element

Figure 1 shows the CMA used in this study. The antenna had dimensions 80 mm ×
80 mm × 33 mm and comprised driven circular and parasitic circular radiators manufac-
tured on a 0.8 mm thick FR4 substrate (εr = 4.4, tan δ = 0.02) and a ground plane. The
driven radiator (R1), having a diameter of 32 mm (≈λ/2 at 2.2 GHz), was used to determine
the resonant frequency, and the driven element was the impedance matched with the gap
between the dielectric and driven element. Figure 2 shows the simulated and measured
values of the voltage standing wave ratio (VSWR) based on the distance between the
driven element and the dielectric (D1). An EM simulation tool Ansys HFSS was used to
simulate. It was observed that the smaller the gap between the driven element and ground
plane, the better the impedance match. The parasitic radiator (R2), having a diameter of
10 mm (≈λ/2 at 7 GHz), was used to analyze the wide impedance bandwidth. Figure 3
shows the simulated and measured CMA S11 values in the presence and absence of the
parasitic element.
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Figure 3. Simulated and measured CMA return loss with and without parasitic elements.

Figure 4 shows the three different versions of the MRDA. Figure 4a shows the first
version of the MRDA. It has no notch at the edge of radiator. Figure 4b,c show the second
and final versions of the MRDA. The final version of the MRDA achieved a wide impedance
bandwidth owing to an added slot at the edge of radiators. Figure 5 shows the S11 value of
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the first, second, and final versions of the MRDA. It shows that the final version of MRDA
has the widest impedance bandwidth of 142.77% (6.23–1.04 GHz).
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Figure 6 shows the proposed MRDA, which is used in this study. The antenna had
dimensions 100 mm × 100 mm × 30 mm, and comprised radiators (+ and −), a feeding
line fabricated on a 1.6 mm thick FR4 substrate (εr = 4.4, tan δ = 0.02), and a ground plane.
Radiator (+) and the feed line were designed on the top layer of the MRDA, whereas
radiator (−) was designed on the bottom layer.
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Figure 7 shows the simulated and measured VSWR values based on the distance
between the radiators in the presence and absence of the ground plane. It was observed
that the antenna exhibits the widest impedance bandwidth in the absence of the ground
plane. However, the ground plane, which acts as a reflector, was introduced to improve
the gain of the MRDA.
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ground plane.

3. MIMO Antenna

Figure 8 illustrates the 2 × 2 MIMO antenna with four CMAs. The overall dimensions
of the MIMO antenna with four CMAs were 250 mm× 250 mm× 34.6 mm. The CMA1 and
CMA3 were vertically polarized and the CMA2 and CMA4 were horizontally polarized.
To the CMA, the ground plane is an electrical ground plane. The distances between each
CMA were 142.5 mm in the horizontal (x-direction) and 142.5 mm vertical (y-direction)
directions, respectively.
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Figure 8. 2 × 2 MIMO (multiple-input and multiple-output) antenna with four CMAs.

Figure 9 shows the S11 of the MIMO antenna with four CMAs and Figure 10 shows
S21 of the fo MIMO antenna with four CMAs. The MIMO antenna with four CMAs has
simulated bandwidth of 118.9% (1.78–7 GHz) and has peak isolation of 15.4 dB at 2.38 GHz.
It shows that the MIMO antenna with four CMAs is suitable for 5G wireless communication.
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However, the MIMO antenna with four CMAs size is large. To reduce the size of the MIMO
antenna, this study proposed a hybrid structure MIMO antenna with two CMAs and
two MRDAs.
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Figure 10 illustrates the proposed broadband dual-polarized 2 × 2 MIMO antenna.
The overall dimensions of the antenna were 242 mm × 200 mm × 40 mm. The two CMAs
and MRDAs were vertically and horizontally polarized, respectively. To the CMA, the
ground plane is an electrical ground plane. However, the ground plane is not connected
to the MRDA, and it acts as a reflector. The distances between the two MRDAs (MRDA1
and MRDA2) were 70.5 mm and 109.5 mm in the horizontal (x-direction) and 109.5 mm
vertical (y-direction) directions, respectively. Conversely, the distance between the two
CMAs (CMA1 and CMA2) was 109.5 mm and 70.5 mm in the horizontal (x-direction) and
vertical (y-direction) directions, respectively. Figure 11 shows the prototype of the proposed
2 × 2 MIMO antenna.
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Figure 12 shows the simulated and measured S11 values of the proposed antenna.
The measured impedance bandwidth of CMA1 and CMA2 (dB magnitude S11) was
113.2% (1.94–7 GHz), and that of MRDA1 and MRDA2 (dB magnitude of S11) was 101% (2.3–7 GHz).
The proposed antenna operated successfully the 5G NR n46 (5.15–5.925 GHz), n47 (5.855–5.925 GHz),
n77 (3.3–4.2 GHz), n78 (3.3–3.8 GHz), and n79 (4.4–5 GHz) bands. Figure 13 shows the
simulated and measured S21 values of the proposed 2 × 2 MIMO antenna. The isolation
between CMA1 and CMA2 is relatively low in the frequency range 1.4–2.88 GHz, which can
be improved by increasing the distance between them. However, as the distance between
CMA1 and CMA2 increases, the gain decreases relatively. Therefore, the distance between
CMA1 and CMA2 was traded off to meet the requirements of isolation and gain.

Electronics 2021, 10, x FOR PEER REVIEW 7 of 12 
 

 

 
(b) 

Figure 10. Proposed 2 × 2 MIMO antenna: (a) overall view; (b) top view. 

 
(a) 

 
(b) 

Figure 11. Prototype of 2 × 2 MIMO antenna: (a) top view; (b) side view. 

 
Figure 12. Simulated and measured 𝑆ଵଵ values of the proposed broadband dual-polarized 2 × 2 
MIMO antenna. 

Figure 12. Simulated and measured S11 values of the proposed broadband dual-polarized
2 × 2 MIMO antenna.



Electronics 2021, 10, 2141 8 of 12
Electronics 2021, 10, x FOR PEER REVIEW 8 of 12 
 

 

 
Figure 13. Simulated and measured 𝑆ଶଵ values of the proposed broadband dual-polarized 2 × 2 
MIMO antenna. 

The envelope correlation coefficient (ECC) can be defined by Equation (1): 

𝜌௘ = ห∬ 𝐹ଵሬሬሬ⃗ (𝜃, 𝜙)𝐹ଶሬሬሬ⃗ (𝜃, 𝜙)𝑑Ωหଶ∬ห𝐹ଵሬሬሬ⃗ (𝜃, 𝜙)หଶ𝑑Ω ∬ห𝐹ଶሬሬሬ⃗ (𝜃, 𝜙)หଶ𝑑Ω (1) 

In Equation (1), 𝐹௡ሬሬሬ⃗ (𝜃, 𝜙) is the field radiation pattern of the antenna at port n. Solving 
this equation is a complex process, and the field radiation pattern is essential. The field 
radiation pattern can be defined as Equation (2). In Equation (2), 𝐷௡ is maximum directiv-
ity of the antenna. By using Equation (2), the ECC can be calculated as expressed in Equa-
tion (3) [24]. Figure 14 shows the envelope correlation coefficient (ECC) measurements 
based on the simulated and measured S-parameters: 𝐷ଵ4𝜋 ඵ|𝐹ଵ(𝜃, 𝜙)|ଶ𝑑Ω = 1 − (|𝑆ଵଵ|ଶ + |𝑆ଶଵ|ଶ) (2) 

𝜌௘ = |𝑆ଵଵ∗𝑆ଵଶ + 𝑆ଶଵ∗𝑆ଶଵ|ଶ(1 − (|𝑆ଵଵ|ଶ + |𝑆ଶଵ|ଶ))(1 − (|𝑆ଶଶ|ଶ + |𝑆ଵଶ|ଶ)) (3) 

 
Figure 14. Simulated and measured ECC (envelope correlation coefficient) of the proposed broad-
band dual-polarized 2 × 2 MIMO antenna. 

Figure 13. Simulated and measured S21 values of the proposed broadband dual-polarized 2 × 2 MIMO antenna.

The envelope correlation coefficient (ECC) can be defined by Equation (1):

ρe =

∣∣∣∣s →
F1(θ, φ)

→
F2(θ, φ)dΩ

∣∣∣∣2
s
∣∣∣∣→F1(θ, φ)

∣∣∣∣2dΩ
s
∣∣∣∣→F2(θ, φ)

∣∣∣∣2dΩ

(1)

In Equation (1),
→
Fn(θ, φ) is the field radiation pattern of the antenna at port n. Solving

this equation is a complex process, and the field radiation pattern is essential. The field
radiation pattern can be defined as Equation (2). In Equation (2), Dn is maximum direc-
tivity of the antenna. By using Equation (2), the ECC can be calculated as expressed in
Equation (3) [24]. Figure 14 shows the envelope correlation coefficient (ECC) measurements
based on the simulated and measured S-parameters:

D1

4π

x
|F1(θ, φ)|2dΩ = 1−

(
|S11|2 + |S21|2

)
(2)

ρe =
|S11 ∗ S12 + S21 ∗ S21|2(

1−
(
|S11|2 + |S21|2

))(
1−

(
|S22|2 + |S12|2

)) (3)

Electronics 2021, 10, x FOR PEER REVIEW 8 of 12 
 

 

 
Figure 13. Simulated and measured 𝑆ଶଵ values of the proposed broadband dual-polarized 2 × 2 
MIMO antenna. 

The envelope correlation coefficient (ECC) can be defined by Equation (1): 

𝜌௘ = ห∬ 𝐹ଵሬሬሬ⃗ (𝜃, 𝜙)𝐹ଶሬሬሬ⃗ (𝜃, 𝜙)𝑑Ωหଶ∬ห𝐹ଵሬሬሬ⃗ (𝜃, 𝜙)หଶ𝑑Ω ∬ห𝐹ଶሬሬሬ⃗ (𝜃, 𝜙)หଶ𝑑Ω (1) 

In Equation (1), 𝐹௡ሬሬሬ⃗ (𝜃, 𝜙) is the field radiation pattern of the antenna at port n. Solving 
this equation is a complex process, and the field radiation pattern is essential. The field 
radiation pattern can be defined as Equation (2). In Equation (2), 𝐷௡ is maximum directiv-
ity of the antenna. By using Equation (2), the ECC can be calculated as expressed in Equa-
tion (3) [24]. Figure 14 shows the envelope correlation coefficient (ECC) measurements 
based on the simulated and measured S-parameters: 𝐷ଵ4𝜋 ඵ|𝐹ଵ(𝜃, 𝜙)|ଶ𝑑Ω = 1 − (|𝑆ଵଵ|ଶ + |𝑆ଶଵ|ଶ) (2) 

𝜌௘ = |𝑆ଵଵ∗𝑆ଵଶ + 𝑆ଶଵ∗𝑆ଶଵ|ଶ(1 − (|𝑆ଵଵ|ଶ + |𝑆ଶଵ|ଶ))(1 − (|𝑆ଶଶ|ଶ + |𝑆ଵଶ|ଶ)) (3) 

 
Figure 14. Simulated and measured ECC (envelope correlation coefficient) of the proposed broad-
band dual-polarized 2 × 2 MIMO antenna. 
Figure 14. Simulated and measured ECC (envelope correlation coefficient) of the proposed broadband
dual-polarized 2 × 2 MIMO antenna.



Electronics 2021, 10, 2141 9 of 12

Figure 15 shows the simulated and measured peak gain. The antenna exhibited a gain
of over 5 dB in the 2–6 GHz band. The MRDA exhibited a peak gain of 9.6 dB at 5 GHz
and the CMA exhibited a peak gain of 7.07 dB at 4.5 GHz. In addition, it exhibited average
measured radiation efficiency (gain to directivity ratio) of 87.19%.
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Figure 15. Simulated and measured peak gain of the proposed broadband dual-polarized 2 × 2
MIMO antenna.

Figure 16 shows the simulated and measured XZ-plane (E-plane) and XY-plane (H-
plane) radiation pattern of the CMA at 3.5 GHz and 5.5 GHz. For CMA, vertical polarization
is co-polarization and horizontal polarization is cross-polarization. The figure shows that
the simulated and measured CMA has a quasi-omnidirectional radiation pattern at both
3.5 and 5.5 GHz.
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Figure 16. Simulated and measured CMA radiation pattern in (a) 3.5 GHz XY-plane; (b) 3.5 GHz XZ-plane;
(c) 5.5 GHz XY-plane; and (d) 5.5 GHz XZ-plane.
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Figure 17 shows the simulated and measured YZ-plane (E-plane) and XY-plane
(H-plane) radiation pattern of the MRDA at 3.5 GHz and 5.5 GHz. For MRDA, verti-
cal polarization is cross-polarization and horizontal polarization is co-polarization. The
figure shows that the simulated and measured MRDA has a quasi-directional radiation
pattern at both 3.5 and 5.5 GHz.

Electronics 2021, 10, x FOR PEER REVIEW 10 of 12 
 

 

Figure 16. Simulated and measured CMA radiation pattern in (a) 3.5 GHz XY-plane; (b) 3.5 GHz 
XZ-plane; (c) 5.5 GHz XY-plane; and (d) 5.5 GHz XZ-plane. 

Figure 17 shows the simulated and measured YZ-plane (E-plane) and XY-plane (H-
plane) radiation pattern of the MRDA at 3.5 GHz and 5.5 GHz. For MRDA, vertical polar-
ization is cross-polarization and horizontal polarization is co-polarization. The figure 
shows that the simulated and measured MRDA has a quasi-directional radiation pattern 
at both 3.5 and 5.5 GHz. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 17. Simulated and measured MRDA radiation pattern in (a) 3.5GHz XY-plane; (b) 3.5GHz 
YZ-plane; (c) 5.5GHz XY-plane; and (d) 5.5GHz YZ-plane. 

Table 1 presents a comparison among various existing wide band MIMO antennas 
and the proposed broadband MIMO antenna. It is observed that the proposed antenna 
provides the widest bandwidth. The proposed MIMO antenna has a bandwidth of 2.3–7 
GHz (101.07%) and low envelope correlation coefficient under 0.1 at the operating fre-
quency. It also has a peak gain of 9.69 dBi at 5 GHz. 

  

Figure 17. Simulated and measured MRDA radiation pattern in (a) 3.5GHz XY-plane; (b) 3.5GHz YZ-plane; (c) 5.5GHz
XY-plane; and (d) 5.5GHz YZ-plane.

Table 1 presents a comparison among various existing wide band MIMO anten-
nas and the proposed broadband MIMO antenna. It is observed that the proposed an-
tenna provides the widest bandwidth. The proposed MIMO antenna has a bandwidth of
2.3–7 GHz (101.07%) and low envelope correlation coefficient under 0.1 at the operating
frequency. It also has a peak gain of 9.69 dBi at 5 GHz.
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Table 1. Comparison between the existing wide band MIMO antennas and proposed MIMO antenna.

Reference Port
Number

Operating
Frequency (GHz) Antenna Size

Enhance
Bandwidth
Technique

Isolation Peak
Gain ECC

[25] 2 1.5–2.8 (60%)
4.7–8.5 (58%) 0.25λ × 0.31λ × 0.004λ Slot 15 dB< 7 dBi <0.01

[26] 4 2.32–2.95 (23.9%) 0.57λ × 0.57λ × 0.22λ Slot 17 dB< 7 dBi <0.003

[27] 2 1.71–2.69 (44.5%) 0.78λ × 0.78λ × 0.31λ Slot 30 dB< 7 dBi <0.00425

[28] 4 1.8–2.9 (46.8%) 0.84λ × 0.72λ × 0.009λ Slot 15 dB< 10 dBi <0.1

[29] 2
3.1–3.35 (7.75%)

3.55–5.65 (45.65%)
5.95–10.65 (88.59%) 0.36λ × 0.7λ × 0.01λ Notch 20 dB< 4.2 dBi <0.002

[30] 2 2.12–2.8 (27.6%)
4.95–6.65 (29.3%) 0.35λ × 0.28λ × 0.01λ Parasitic element 15 dB< 6.4 dBi <0.024

Proposed 4 2.3–7 (101%) 1.53λ × 1.85λ × 0.3λ Parasitic element
Notch 15 dB< 9.69 dBi <0.1

4. Conclusions

In this study, we proposed a broadband dual-polarized 2× 2 MIMO antenna for appli-
cation in 5G wireless communication systems, comprising two vertically polarized circular
monopole antennas, two horizontally polarized modified rectangular dipole antennas, and
a ground plane. The CMAs achieved broadband characteristics owing to the distance be-
tween the driven element and the dielectric, using a parasitic element, whereas the MRDAs
achieved broadband characteristics owing to the distance between the radiators. The dimen-
sions of the proposed MIMO antenna were 242 mm×200 mm×40 mm, and it exhibited an
impedance bandwidth (dB magnitude of S11) of 101% (2.3–7 GHz). The isolation between
the antennas was over 20 dB in the 5G NR n46 (5.15–5.925 GHz), n47 (5.855–5.925 GHz),
n77 (3.3–4.2 GHz), n78 (3.3–3.8 GHz), and n79 (4.4–5 GHz) bands. The peak gain was
observed to be over 5 dB. The results of this study verify that the proposed 2 × 2 MIMO
antenna is suitable for application in indoor 5G wireless communication systems.
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