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Abstract: Nowadays, music genre classification is becoming an interesting area and attracting lots
of research attention. Multi-feature model is acknowledged as a desirable technology to realize the
classification. However, the major branches of multi-feature models used in most existed works
are relatively independent and not interactive, which will result in insufficient learning features for
music genre classification. In view of this, we exploit the impact of learning feature interaction among
different branches and layers on the final classification results in a multi-feature model. Then, a
middle-level learning feature interaction method based on deep learning is proposed correspondingly.
Our experimental results show that the designed method can significantly improve the accuracy of
music genre classification. The best classification accuracy on the GTZAN dataset can reach 93.65%,
which is superior to most current methods.

Keywords: music genre classification; feature interaction; neural networks; convolution neural
network

1. Introduction

With the rise of music streaming media services, tens of thousands of digital songs
have been uploaded to the Internet. The key feature of these services is the playlist, which
is usually grouped by genre [1]. The characteristics of different music genres have no strict
boundaries, but music of the same genre has similar features. Through the analysis of these
characteristics, humankind can label many music works according to their genre. These
labels may come from people who publish songs, but it is not a good division. In recent
years, with the rapid development and popularization of the Internet and multimedia
technology, the number of musical works has shown explosive growth. The traditional way
of analyzing and classifying mainly by professionals has gradually become inadequate.
Using computer programs to automatically classify music genres can greatly reduce the
pressure of professionals and improve the classification efficiency.

At present, some mature traditional machine learning algorithms can be selected to
solve the problem of music genre classification, such as Support Vector Machine (SVM), K-
Nearest Neighbor (KNN), Gaussian Mixture Models (GMM) with different fusion strategies,
etc. [2–4]. For the traditional machine learning algorithm, when the amount of data
exceeds a certain threshold, the algorithm performance often has no improvement. In
recent years, intelligent algorithms [5–7] have received extensive attention, especially deep
learning. Compared with deep learning, the traditional machine learning needs extra
feature engineering. Feature engineering is a process of applying domain knowledge to
the creation of feature extractors to reduce the complexity of data and make patterns more
visible to learning algorithms. However, one can transfer the labeled data directly to a
neural network without developing a new feature extractor for each problem. Therefore, in
the fields of computer vision and natural language processing, the performance of most
machine learning algorithms depends on the accuracy of feature recognition and extraction
rather than too much data. Nowadays, deep learning has an excellent ability to solve
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practical problems in many fields. The method based on deep learning has made great
progress in computer vision [8–12], natural language processing [13–16], and other fields.
However, compared with the former two fields, the application degree and quantity of
that method in Music Information Retrieval (MIR) are still very insufficient. Therefore,
deep learning technology is popular for more and more researchers to solve the related
problems in the MIR field [17–19]. This application method can dramatically reduce the
burden of professionals and improve the work efficiency of related applications in the
industry. Meanwhile, it provides a solid foundation and new ideas for solving more
complex problems in the MIR field.

One of the effective tools to describe audio signals is the spectrum of music data. It is
similar to the image, and also a visual representation of signal strength. A large amount of
time-frequency information is stored in the texture of the spectral image [20], which is very
important for distinguishing various kinds of audio. Hafemann et al. [21] confirmed that a
Convolution Neural Network (CNN) can mine rich texture information from the spectrum
and improve the performance of music classification, because CNN is very sensitive to the
texture information of the image. For this reason, music genre classification based on visual
features has achieved remarkable results in recent years. Most of the existing methods
are mainly modified based on the CNN model of image recognition. These methods take
audio spectrogram, Mel-frequency spectrogram and other visual features as the input. In
addition, experiments show that the Mel-frequency spectrogram has more advantages
than other visual features such as the spectrogram due to the perceptual characteristics of
the human ear. Based on the linear CNN model, Zhang et al. [22] combined the max- and
average-pooling operations to provide more statistical information for the upper neural
network. In particular, the upper neural network refers to the following layers of the
current network layer. Inspired by residual learning, Yang et al. [23] proposed a new
CNN topology with the Mel-frequency spectrograms of audio as the input. The topology
uses duplicated convolution layers with different pooling operations, and their outputs
are directly connected to provide more feature information for the classifier. Choi et al.
proposed a Convolutional Recurrent Neural Network (CRNN) model with Mel-frequency
spectrogram as input [24]. The model’s classification accuracy is 86%, which mainly uses
CNN to extract image information and the Recurrent Neural Network (RNN) to extract
time-series information. Liu et al. [25] proposed a model called a Bottom-up Broadcast
Neural Network (BBNN), which mainly uses the improved triple Inception module to
make full use of the underlying information of the Mel-frequency spectrogram to make
classification decisions. The accuracy of the BBNN is 93.7%, which reaches the state-of-the-
art performance on the GTZAN dataset.

Generally speaking, the above methods only focus on the image level, ignoring the
audio information of the music itself. It is unreasonable for the task of music genre
classification. In the music classification task, images can be extracted from audio data,
so the music classification task can be attributed to the traditional image classification
task. However, this approach ignores the features of music itself. Music is essentially
sound. Sound has many different features, such as zero crossing rate and tempo. These
features can help the model classify music genres better. Nanni et al. [26] proposed a new
audio classification system, which combines visual and acoustic features to achieve good
performance. Similarly, Senac et al. [27] used the spectrogram and eight music features
as the input of the CNN model. On the GTZAN dataset, the late score fusion between
the two feature types achieves 91% accuracy. Dai et al. [28] used Mel-Frequency Cepstral
Coefficients (MFCCs) as the input, mainly using Deep Neural Networks (DNN) to make
full use of large and similar datasets to improve the classification accuracy of small target
datasets. The model accuracy is as high as 93.4%, but the model needs extra work to remark
the audio.

The above methods have achieved excellent performance in music genre classification
tasks. However, none of the above means discuss the interaction between middle-level
learning features and its impact on the classification results of the whole model. In particu-
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lar, the middle-level learning feature refers to the learning features of other layers between
the input and the classifier. Furthermore, the following is simplified as learning features.
Whether it is a multi-feature model or a single input model, the final extracted learning
features are connected or directly sent to the classifier for classification. Considering the
influence of residual learning [29], the bottom learning feature has a particular gain effect
on the upper learning feature. Therefore, we speculate that different types of learning
features have also been in this interactive relationship. To explore this problem, we propose
a Middle-level Learning Feature Interaction (MLFI) method. The method includes two
modes: one-way interaction and two-way interaction. In particular, one-way refers to how
in the multi-feature model, one module learns the learning features of the other module.
Two-way refers to modules that learn from each other’s learning features based on one-way
interaction. So, middle-level learning feature interaction refers to concatenating learning
features A and B and sending them to the following layers of B for training. In this paper,
the model uses visual features and audio features as the input. Therefore, the one-way
interaction mode includes the one-way interaction (audio) mode and one-way interaction
(video) mode. Based on the two one-way interaction modes, the two-way interaction mode
exchanges the role of A and B again. In this paper, the original network architecture is used
to verify the effectiveness of our method. The model consists of a Visual Feature Extraction
(VFE) module, an Audio Feature Extraction (AFE) module, and a classifier. The VFE
module uses the parallel convolution layer to improve the CRNN model of Choi et al. [24]
to extract more low-level and time-series information from the Mel-frequency spectrogram.
The AFE module uses multi-dense layers to process audio features.

The main contributions are listed as follows:

1. MLFI optimizes the multi-feature models. This is the method reported so far to
maximize the classification accuracy while ensuring speed. Compared with the
BBNN model with the highest accuracy 93.7%, the running speed of our method is
only half of the former.

2. MLFI is a simple and very general method for multi-feature models. Firstly, as long as
the appropriate interaction mode is found, the classification accuracy can be greatly
improved. Secondly, our research verifies that in the multi-feature model using
MLFI, the learning features close to the input and output have a better impact on
improving the classification accuracy, which is an important and core contribution of
this research.

3. It is also proved by the MLFI method that using more learning features as interactive
information may produce a gain effect or inhibit other learning features from playing
a role.

4. As mentioned above, the interaction between middle-level learning features and their
impact on the classification results of the multi-feature model are not discussed in the
existing methods.

The rest of this paper is organized as follows. Section 2 introduces the typical visual
and audio features in MIR. The details of our networks are described in Section 3, followed
by the experimental setup and results in Section 4. Finally, we conclude and describe
potential future work in Section 5.

2. Pre-Processing and Feature
2.1. Visual Features

Researches show that it is difficult for people to perceive the frequency on a linear scale.
Compared with the high-frequency domain, human beings are better at distinguishing
the low-frequency domain. For example, humankind can easily differentiate the variance
between 500 Hz and 1000 Hz, but find it hard to sense the difference between 10,000 Hz
and 10,500 Hz, even though the two pairs have the same span. The Mel scale is a perceptual
scale of pitches judged by listeners to be equal in distance from one to another. Stanley
Smith Stevens, John Volkman, and Newman named it [30] based on the definition of
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frequency. The following is an approximate mathematical conversion between the Mel
scale and the linear frequency scale hertz:

Mel( f ) = 2595× lg(1 +
f

700
). (1)

Then, the energy spectrum needs to pass through a set of Mel scale triangular filter
banks (as shown in Figure 1) to get the Mel-frequency spectrogram. The frequency loudness
of the triangular filter is defined as:

Hm(k) =


0 , k ≤ f (m− 1)

2(k− f (m−1))
( f (m+1)− f (m−1))( f (m)− f (m−1)) , f (m− 1) ≤ k ≤ f (m)

2( f (m+1)−k)
( f (m+1)− f (m−1))( f (m)− f (m−1)) , f (m) ≤ k ≤ f (m + 1)

0 , k ≥ f (m− 1)

(2)

where ∑M−1
m=0 Hm(k) = 1, the number of filters is M.

f[0]         f[1]         f[2]             f[3]               f[4]                     f[5]                         f[6]                           f[7] 

H1[k]       H2[k]        H3[k]            H4[k]                H5[k]                       H6[k]   

. . .

Figure 1. Mel scale filter banks.

Figure 2 visualizes the Mel-frequency spectrogram and spectrogram, some extraor-
dinary differences in the genre are captured, which means that the model we proposed
can learn good visual features. A Mel-frequency spectrogram is a spectrogram where
the frequencies are converted to the Mel scale and closely represents how humans per-
ceive audio. The Mel scale is a scale for the measurement of psychological magnitude
pitch [30]. It transforms the frequency scale so that sounds are at equal distances from
each other. Therefore, a Mel-frequency spectrogram may be easier for the neural network
to extract features from it. The y-axis (frequency) is mapped onto the Mel scale to form
the Mel-frequency spectrogram. Then, the model extracts significant differences from the
Mel-frequency spectrogram of each genre and conducts audio classification tasks based on
autonomous learning. The window size is 2048, and the hop length is 512.
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Figure 2. Mel-frequency spectrogram and Spectrogram.

2.2. Audio Features

We choose nine audio features along different audio dimensions. Aside from the
tempo feature, other features are extracted in the form of mean and variance. The window
size of each frame is 2048, and the hop length is 512. This set of audio features (as shown in
Table 1) provides the best results for our experiments.

Table 1. The set of audio features.

Timbral Texture Features Other Features 1 Other Features 1

Chroma Harmonic component Tempo
Root Mean Square (RMS) Percussive component

Spectral centroid
Spectral rolloff

Zero-Crossing Rate (ZCR)
MFCCs (1–20)

2.2.1. Timbral Texture Features

The chroma feature is the general name of the chroma vector and chromatogram. The
chroma vector contains 12 vector elements, representing the energy of 12 tones in a period
(such as a frame). The same tone level energy of different octaves is accumulated, and the
chromatogram is the sequence of the chroma vectors.

The spectral centroid [31] represents the position of the “centroid” of the sound and
contains important information about the frequency distribution and energy distribution
of the sound signal. It is calculated based on the weighted average of the sound frequency.
Compared with the same length of blues songs, the frequency distribution of metal songs is
denser toward the end. So, the spectral centroid of blues songs will be in the middle of the
spectrum, while the spectral centroid of metal songs will be near the end of the spectrum.
Spectral roll-off is a measurement of the shape of a signal, which represents the frequency
as a specific percentage of spectral energy (such as 85%).

MFCCs of the signal are sets of 20 features, which can simply describe the overall
shape of the spectral envelope and model speech features. ZCR reflects the times of signal
crossing zero and the frequency characteristics. That is the number of times the speech
signal changes from positive to negative or from negative to positive in each frame. This
feature has been widely used in speech recognition and music information retrieval, and it
is usually of higher value for high-impact sounds such as metal and rock. RMS value is the
effective value of the total waveform. It is the area under the curve. In audio, it represents
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the amount of energy in the waveform. The peak value of the waveform is averaged into
the total loudness, which is a more persistent amount than the rapidly changing volume.

2.2.2. Other Features

Tempo, which means “beats per minute”, is a unit of speed. The content and style
of music determine the playing speed of music, which can be roughly divided into three
categories: slow, medium, and fast. It is an important index to describe the content of
music rhythm, which affects individuals’ music experience. The typical tempo range of
hip-hop is 60–100 bpm, and between 115 and 130 bpm for house music.

Generally speaking, many sounds are composed of two elements: harmonic or percus-
sive components. Harmonic components are the ones that we perceive to have a certain
pitch. Percussive components often stem from the collision of two objects. Percussion has
no pitch feature, but it has a clear location in time. The above two kinds of components
provide the harmonic [32] feature and percussive [33] feature, respectively.

3. Proposed Design and Approach

This paper discusses the influence of learning feature interaction between different
branches and layers on the final classification results in the multi-feature model. Consider-
ing that a Mel-frequency spectrogram is still an image, the model uses a CRNN structure
for visual feature extraction. For audio feature combination, the model uses a direct and
effective DNN structure for audio feature extraction. Thus, the model consists of a VFE
module, an AFE module, and a classifier.

We mainly refer to the parameter settings in papers [22–28]. Then, based on the
references, a random search determines the hyper-parameters of the model. We will
provide a statistical distribution for each hyper-parameter. For each iteration, the random
search will set the hyper-parameters by sampling the distribution defined above. The
sampled hyper-parameters yield a model. The classification accuracy of the model is
evaluated through 10-fold cross-validation. Finally, the best hyper-parameter combination
is selected to form the final model.

3.1. The Visual Features Extractor (VFE) Module

Based on the CRNN model [24], the VFE module uses parallel convolution to optimize.
It includes 3-layer two-dimensional convolution (as shown in Figure 3), 1-layer parallel
convolution, and 2-layer RNN. For parallel convolution, one branch output uses max-
pooling, and the other uses average-pooling. The beneficial aspect is that it provides more
statistical information for the following layers and further enhances the recognition ability
of the model.

In each convolution operation process, except the first convolution layer has 64 differ-
ent kernels of equal size, the other convolution layers have 128 kernels. The size of each
convolution kernel is 3 × 3, and the hop length is 1. Furthermore, each convolution kernel
forms a mapping relationship with all the underlying features. The convolution kernel is
covered at the corresponding position of the input. Multiply each value in the convolution
kernel and the value of the corresponding pixel in the input. Furthermore, the sum of the
above products is the value of the target pixel in the output. Repeat this operation for
all positions of the input. After each convolution, the Batch Normalization (BN) [34] and
Rectified Linear Unit (ReLU) operations are implemented. We also add a max-pooling layer
(which only works on one branch of parallel convolution layers) to reduce the parameters.
Furthermore, it helps the model to expand the receptive field and achieve non-linearly.
The filter sizes of pooling operations mainly adopt 2 × 2 with stride 2, 3 × 3 with stride 3
for the first and second pooling operations separately, 4 × 4 with stride 4 for the others.
The function of the convolution layer and pooling layer is to map the original data to the
hidden layer feature space.
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Convolution
(3, 3)

BN

Max-/Average-Pooling

Dropout(0.1)

Conv(filter num)-
Max(filter size)

Conv(filter num)-
Aver(filter size)

Figure 3. Convolution block. In order to simplify the network representation, each convolution block
contains four different layers. Convolution blocks are divided into two types according to different
pooling operations: Conv-Max block and Conv-Aver block. The dropout ratio is set to 0.1 [24]. In
particular, BN is Batch Normalization.

The VFE module uses 2-layer RNNs with Gated Recurrent Units (GRU) to summarize
temporal patterns on the top of two-dimensional 3-layer convolutions and 1-layer parallel
convolutions (as shown in Figure 4). Considering that humans may pay more attention to
a prominent rhythm when recognizing the music genre, only the branch output of parallel
convolution using max-pooling operation is put into RNNs. Instead of simply adding
outputs together, we concatenate the output of RNNs and the branch output of parallel
convolution (which uses an average-pooling operation) to avoid losing some information.
Then, we get a vector with a length of 160.

Conv(64)-Max(2, 2)

Conv(128)-Max(3, 3)

Conv(128)-Max(4, 4)

Conv(128)-Max(4, 4)Conv(128)-Aver(4, 4)

RNN

Dense(1024)

Dense(512)

Dense(256)

Dense(128)

Dense(64)

concatenate

Dense(10) + 
SoftMax

Visual features
(128, 130)

Audio features
(55,)

VFE module AFE module

Figure 4. The original network architecture. It is a benchmark model to evaluate the effectiveness of
middle-level learning feature interaction method.
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3.2. The Audio Features Extractor (AFE) Module

The AFE module consists of five dense layers. The size of each is 1024, 512, 256,
128, and 64. We use the ReLU as an activation function and then execute BN transform
immediately to regularize our model. A dropout layer of 0.4 is added after each BN
layer [35] to alleviate the over-fitting problem in the experiment. Finally, the AFE module
will output a vector with a length of 64.

3.3. Network Structure

As shown in Figure 4, the VFE module, AFE module, and classifier constitute the
whole network model. In particular, the model in Figure 4 is a benchmark model to measure
the excellence of our method, and we call it the original model in the following. Finally,
we concatenate the outputs of the two modules to form an eigenvector with a length of
224. Fully Connected (FC) layers usually play the role of “Classifier” in the whole neural
network. However, in this paper, we only use one FC layer with SoftMax function for
classification to reduce the parameters. It is easier to interpret the correspondence between
feature maps and genres and less prone to over-fitting than traditional multi-layer fully
connected layers. Since the last layer uses the SoftMax function, we will get the probability
distribution. In general, the SoftMax function is defined as:

δ(z)j =
ezj

∑K
k−1 ezk

(3)

3.4. Middle-Level Learning Feature Interaction Method

One-way interaction (audio) mode: The model shown in Figure 5 is in one-way
interaction (audio) mode. Visual learning features play a complementary role in this mode.
The output in the VFE module and the output of the dense layer in the AFE module are
concatenated and then put into the upper dense layer for training. In this mode, the VFE
module provides two kinds of learning features: A (visual learning features obtained
through RNN layer) and B (add the visual learning feature of Conv-Aver layer based on A).
According to these two learning features, one-way interaction (audio) mode is divided into
one-way interaction sub-mode A and one-way interaction sub-mode B. The audio feature
extraction module provides four learning features in different layers, thus forming four
connection paths: (1, 1’), (2, 2’), (3, 3’), (4, 4’). In particular, the above connection paths
have a feature. For example, connection paths 1 and 1’ cannot exist simultaneously in the
current mode.

One-way interaction (vision) mode: The model shown in Figure 6 is in one-way
interaction (vision) mode. Audio learning features play a complementary role in this mode.
The output of the dense layer in the AFE module and the output of the fourth Conv-Max
layer are concatenated and then put into the RNN layer for training. In this mode, the
audio feature extraction module provides five learning features on different layers, thus
forming five connection paths: a, b, c, d, and e.

Two-way interaction mode: The two-way interaction mode is a combination of the
above two one-way interaction modes. The AFE module can provide four audio learning
features, and the corresponding paths are b, c, d, and e. Generally speaking, we can
get eight different situations in this mode. For easier description, according to the two
learning features provided by the VFE module, we divide the two-way interaction mode
into two-way interaction sub-mode A and two-way interaction sub-mode B.
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Conv(64)-Max(2, 2)

Conv(128)-Max(3, 3)

Conv(128)-Max(4, 4)

Conv(128)-Max(4, 4)Conv(128)-Aver(4, 4)

RNN

Dense(1024)

Dense(512)

Dense(256)

Dense(128)

Dense(64)

concatenate

Dense(10) + 
SoftMax

Visual features
(128, 130)

Audio features
(55,)

concatenate4

4
'

concatenate3

concatenate2

concatenate1

3
'

2
'

1
'

1

2

3

4

1

A or BA

B

4

3

2

4

3

2

1

Figure 5. The network architecture using one-way (audio) interaction.

Conv(64)-Max(2, 2)

Conv(128)-Max(3, 3)

Conv(128)-Max(4, 4)

Conv(128)-Max(4, 4)Conv(128)-Aver(4, 4)

RNN

Dense(1024)

Dense(512)

Dense(256)

Dense(128)

Dense(64)

concatenate

Dense(10) + 
SoftMax

Visual features
(128, 130)

Audio features
(55,)

concatenate0
a

b

c

e

d

Figure 6. The network architecture using one-way (visual) interaction.

4. Experimental Setup and Results
4.1. Dataset

G. Tzanetakis and P. Cook collected the GTZAN dataset [36] for their well-known
paper on music genre classification tasks [37]. The dataset has ten genres, including blues,
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classical, country, disco, hip-hop, jazz, metal, pop, reggae, rock, and 100 songs per genre.
Each file is sampled at 22,050 Hz, 16 bits, and then stored in a 30-s monophonic .wav format.
Although the dataset is small and old, it still widely serves as a benchmark in academia.

4.2. Preprocessing

First of all, load the audios as source data and split them into a nearly 3-s window [22].
Specifically, 66,149 sampling points are reserved every three seconds, and fragments with
insufficient length will be discarded. This step can increase the amount of data and simplify
the transformation process (such as the Mel-frequency spectrogram). At the same time,
to make the model learn the characteristics of each genre better, the data sequence is
scrambled after the dataset is segmented. Experiments show that this is very important.
Table 2 shows the GTZAN dataset description.

Table 2. GTZAN Dataset Description.

Genre Tracks Number of Clips

Reggae 100 1000
Metal 100 1000
Pop 100 1000
Jazz 100 1000

Blues 100 1000
Disco 100 999
Rock 100 998

Classical 100 998
Hip-hop 100 998
Country 100 997

Total 1000 9990

As for the input of the VFE module, the Librosa library is used to extract Mel-frequency
spectrograms, which contain about 130 frames each, and each has 128 Mel-filter bands. A
set of 55 audio features are put into the AFE module, setting a frame length of 2048 with a
25% overlap.

4.3. Training and Other Details

All files in the GTZAN dataset are transformed to Mel-frequency spectrograms and
audio features separately by the preprocessing program presented in Section 4.2: the Mel-
frequency spectrogram with size 128× 130 input to the VFE module and the audio features
with the size 55 × 1 input to the AFE module.

For the choice of hyper-parameters, we refer to the experimental results of many
academic papers and industry standards. For example, in the first convolution layer of
the VFE module, the kernel size is set to 3 × 3. We make some other minor adjustments
by referring to other papers and specific examples to meet our special data requirements.
For example, since the dataset we used is small, we choose to split it into training, vali-
dation, and test sets with the ratio of 7/2/1, rather than the ratio of 8/1/1 used in many
papers [22,23,25]. At the same time, instead of using a 3-s window with an overlap rate of
50% at the beginning [22,23], we choose a 3-s window with an overlap rate of 0 according
to the classification accuracy, running time, and data volume. In the process of experi-
mental training, the cross-entropy loss function is applied to the last dense layer (which
uses the SoftMax function) to make its value as small as possible. Cross-entropy mainly
describes the distance between the actual value and the expected output. The smaller the
value of cross-entropy is, the closer the two probability distributions are. Suppose that the
probability distribution p is the expected output, the probability distribution q is the actual
value, H(p, q) is the cross-entropy, and let P and Q be probability density functions of p
and q concerning r, then
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H(p, q) = − ∑
x∈X

p(x) log(q(x)) = −
∫

X
P(x) log Q(x)dr(x) (4)

The optimizer we used is Adam with a default learning rate of 0.01 [25]. If the initial
learning rate is set too small, the network convergence will be very slow, which will
increase the time to find the optimal value. In addition, it is likely to converge into the
local extremum, and cannot find the global optimal solution. Kingma and Lei Ba proposed
the Adam optimizer, which combines the advantages of the Adaptive Gradient Algorithm
(AdaGrad) and Root Mean Square Prop (RMSProp) [38]. The optimizer can deal with
sparse gradient better, that is, the gradient is 0 at many steps. With Adam, our models
trained more quickly and did not plateau as early. Furthermore, our model uses the
ReduceLROnPlatrau() function to decrease the learning rate when the standard estimate
stops improving. The model has trained over 150 epochs and is adapted in each with a
mini-batch size of 128 instances.

Metric: The classification accuracy is evaluated through 10-fold cross-validation [39,40]
across all experiments to get more accurate results. Classification accuracy is the ratio of
the number of correct predictions to the total number of input samples. It works well only
if the number of samples belonging to each class is equal. Considering that the number
of samples used in this paper is the same, this paper takes classification accuracy as the
standard to measure the classification results. We balance the number of songs for each
genre in training, validation, and test sets. Finally, the total classification accuracy is the
average of 10-fold cross-validations.

Experiment Platform: We use the Keras [41] and TensorFlow [42] library to build our
model in python. Librosa library is used to process audio data. All the experiments are
done on Google’s Colaboratory platform.

4.4. Classification Results on GTZAN
4.4.1. Classification Results of One-Way Interaction (Audio) Mode

As is shown in Figure 5, the network topology in one-way interaction (audio) mode
includes two sub-modes. The VFE module provides two visual learning features. The AFE
module provides four audio learning features. To further distinguish, we use the number
of filters in the dense layer to mark. The experimental results in Table 3 contain eight
different situations of the above learning features. In particular, sub-mode B concatenates
the output of the Conv-Avg block based on sub-mode A. The experimental results of the
two sub-modes are analyzed. The highest accuracy of sub-mode A is 93.14%, and the
average accuracy is 92.5675%. The highest accuracy of sub-mode B is 93.65%, and the
average accuracy is 92.42%. Compared with the experimental results of sub-mode A, the
classification effect of sub-mode B has been improved visibly for the two cases of dense
(1024 and 128). Considering that sub-mode B contains more learning features, people
may think that the more interactive information they feel, the more sufficient learning
features, the better the classification effect. However, for other cases, the classification
result of sub-mode B decreases. Therefore, we can know that using more learning features
as interactive information may produce a gain effect or inhibit other learning features from
playing a role.
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Table 3. The experimental results of one-way interaction (audio) mode. If the path label is marked
with “[ ]”, it means that the path implements the middle-level learning feature interaction method.

Learning Feature (A or B) Paths Dense Layer Marker Accuracy (%)

A [1] 2’ 3’ 4’ 1024 92.35
A 1’ [2] 3’ 4’ 512 92.18
A 1’ 2’ [3] 4’ 256 92.60
A 1’ 2’ 3’ [4] 128 93.14

Avg: 92.5675

B [1] 2’ 3’ 4’ 1024 93.65
B 1’ [2] 3’ 4’ 512 91.08
B 1’ 2’ [3] 4’ 256 91.67
B 1’ 2’ 3’ [4] 128 93.28

Avg: 92.42

4.4.2. Classification Results of One-Way Interaction (Vision) Mode

The network topology in one-way interaction (video) mode is shown in Figure 6. Due
to the limitation of the model itself, we only consider one visual learning feature of the
VFE module. The AFE module provides five audio learning features. The experimental
results in Table 4 include five situations composed of the above learning features. The
highest accuracy is 93.11%, and the average accuracy is 91.66%. Compared with the two
sub-modes of the one-way interaction (audio) mode, the improvement of the classification
effect of this mode is not distinct. The experimental results declare that different learning
features as supplementary information have different roles in the classification results.

Table 4. The experimental results of one-way interaction (vision) mode.

Input Size of RNN Paths Dense Layer Marker Accuracy (%)

(72, 16) e 1024 93.11
(40, 16) d 512 91.99
(24, 16) c 256 91.28
(16, 16) b 128 91.79
(16, 12) a 64 91.72

Avg: 91.978

4.4.3. Classification Results of Two-Way Interaction Mode

Because the two one-way interaction modes have good performance in the classifi-
cation task, we want to explore whether the combination of the two one-way modes can
further improve the classification effect of the model. Since dense (64) is the last layer of
the feature extractor, the AFE module provides only four audio learning features. Since
the VFE module provides two learning features A and B, the two-way interaction mode
also includes two sub-modes. For ease of expression, we use A and B to represent the two
sub-modes. As shown in Table 5, the highest accuracy of two-way interaction sub-mode A
is 93.01%, and the average accuracy is 92.39%. However, the worst classification result of
dense (256) is 90.79%. The highest accuracy of two-way interaction sub-mode B is 93.28%,
and the average accuracy is 92.97%, which is the highest average classification accuracy.
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Table 5. The experimental results of two-way interaction mode.

Learning Feature (A or B) Paths Dense Layer Marker Accuracy (%)

A [1] 2’ 3’ 4’ e 1024 93.01
A 1’ [2] 3’ 4’ d 512 90.79
A 1’ 2’ [3] 4’ c 256 92.74
A 1’ 2’ 3’ [4] b 128 92.82

Avg: 92.39

B [1] 2’ 3’ 4’ e 1024 92.84
B 1’ [2] 3’ 4’ d 512 92.72
B 1’ 2’ [3] 4’ c 256 93.04
B 1’ 2’ 3’ [4] b 128 93.28

Avg: 92.97

On the one hand, although the two-way interaction sub-mode A has more learning
features than one-way interaction, its average accuracy is lower than other modes. This
situation shows that more learning features as interactive information may inhibit other
learning features from playing a role. On the other hand, two-way interaction sub-mode B
is established based on two-way interaction sub-mode A, but it has the highest average ac-
curacy. This situation further verifies that more learning features as interactive information
may have a gain effect. Therefore, the combination of the two one-way interaction modes
can improve the classification effect to a certain extent. However, the final classification
result is not the sum of the learning feature effects of two one-way interaction modes.
Furthermore, the role of the learning feature in one mode depends on the value of the
learning feature in the other mode. The key to getting better classification results is to find
the appropriate way and model structure.

4.4.4. Comparison of Each Mode

As can be seen from the above, the classification accuracy of the original model is
90.67%. We can see intuitively from Figure 7 that the classification results of all modes
are better than the original model. The results prove the effectiveness of the proposed
method. By observing the classification accuracy of the five modes under different dense
layer markers, we can see that the classification accuracy of all modes is high at both ends
and low in the middle. It shows that the middle-level learning feature interaction method
to the layer close to the input and output of the model can improve the classification effect
more effectively than other layers. As for why the optimal results often appear at both
ends, we get the following two possible reasons:

1. Considering that dense (128) is closer to the output layer and has a similar degree of
abstraction with the input and output of the RNN layer, the restriction between the
two learning features will be smaller, and the gain effect will be more prominent.

2. Considering that dense (1024) is closer to the input layer, it is equivalent to increasing
the depth of the model for the input and output of RNN, which is conducive to
extracting more effective learning features.

From Figure 8, we can see that all the modes have good classification performance in
the four genres of blues, disco, metal, and reggae. The classification accuracy of country,
pop, and rock is low. On the one hand, we can speculate that the middle-level learning
feature method still has limitations, which can not effectively classify some genres. On
the other hand, we can also infer that these genres have great similarities in audio and
video features.
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Figure 7. Accuracy comparison of each mode.

Figure 8. Comparison of optimal accuracy of each mode.

The classification accuracy is regarded as the primary metric to measure the quality of
the model. A confusion matrix is used to visualize model performance, with each column
representing the predicted value and each row representing the actual category. All the
correct predictions are on the diagonal, so it is easy to see where the errors are from the
confusion matrix because they are all off the diagonal. The confusion matrix allows us to
do more analysis than just get the precision and recall values.

As shown in Figure 8, none of the modes can effectively classify the three genres of
country, pop, and rock. We analyze the optimal confusion matrix in the one-way interaction
(audio B) mode shown in Figure 9. This mode only correctly classifies 90% of country
music and wrongly classifies the other 10% as pop and rock. The classification accuracy
of pop music is 92%, and most misclassifications identify the music as hip-hop and disco.
Rock music classification accuracy is the lowest at only 88%. A large number of them are
classified as country, metal, and pop. On the one hand, we can infer that this music has
many similarities in its visual and audio characteristics. On the other hand, rock music has
indeed influenced many other types of music throughout history.

4.4.5. Comparison to State-of-the-Art

In Table 6, we compare our method with previous excellent results on the GTZAN
dataset. Experimental results show that the best classification accuracy of the method
(one-way interaction (audio) mode) on the GTZAN dataset is 93.65% (10 folds cross-
validation), which reaches the state-of-the-art performance of the current GTZAN dataset.
Our classification result is slightly worse than 93.7% of the BBNN. However, considering
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that BBNN is composed of multiple Inception blocks, it needs a tremendous number of
convolution operations. As shown in Table 7, our method is much faster than BBNN.

Figure 9. Optimal confusion matrix of one-way interaction (audio B) mode.

Table 6. Classification accuracy(%) on GTZAN dataset is compared across recently proposed methods.
In particular, SSD is Statistical Spectrum Descriptor.

Methods Preprocessing Accuracy (%)

CRNN [24] mel-spectrogram 86.5
Hybrid model [43] MFCCs, SSD, etc. 88.3

Combining Visual Furthermore, Acoustic
(CVAF) [26] mel-spectrogram, SSD, etc. 90.9

Music Feature Maps with CNN
(MFMCNN) [27] STFT, ZCR, etc 91.0

Multi-DNN [28] MFCCs 93.4
BBNN [25] mel-spectrogram 93.7

Ours(one-way interaction) mel-spectrogram, ZCR, etc. 93.65

Table 7. Comparison of training speed.

Methods Graphics Processing Unit
(GPU) Compute Capability Run Time/Epoch

BBNN NVIDIA Titan XP (12 GB) 6.1 28 s
ours NVIDIA Tesla K80 (12 GB) 3.7 19 s
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5. Conclusions

This paper proposes a middle-level learning feature interaction method using deep
learning. The method aims to solve the problem that the branches of a multi-feature
model in the existing music genre classification methods are relatively independent and
not interactive, resulting in the lack of learning features for music genre classification.
The classification results of each mode are better than the original network architecture.
Furthermore, we have shown how our method is effective by comparing state-of-the-art
methods. Furthermore, the experimental results prove that the final classification result is
not the total sum of the learning feature effects. Using more learning features as interactive
information may produce a gain effect or inhibit other learning features from playing a role.
Besides, the classification results of all modes show that the learning features near the input
and output have a better gain effect on improving the classification results. The above
conclusions prove that the proper use of the middle-level learning features interaction
method in a multi-feature model can effectively promote the gain effect between different
learning features and improve the classification results.

In the future, we will try new methods, such as adopting acoustic features (e.g., SSD,
Rhythm Histogram (RH)) as the input of the model or fusing attention mechanisms to give
neural networks the ability to focus on their input subset. Meanwhile, we will also research
how to distinguish those genres with similar spectral characteristics.
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