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Abstract: As transportation becomes more convenient and efficient, users move faster and faster.
When a user leaves the service range of the original edge server, the original edge server needs to
migrate the tasks offloaded by the user to other edge servers. An effective task migration strategy
needs to fully consider the location of users, the load status of edge servers, and energy consumption,
which make designing an effective task migration strategy a challenge. In this paper, we innovatively
proposed a mobile edge computing (MEC) system architecture consisting of multiple smart mobile
devices (SMDs), multiple unmanned aerial vehicle (UAV), and a base station (BS). Moreover, we
establish the model of the Markov decision process with unknown rewards (MDPUR) based on the
traditional Markov decision process (MDP), which comprehensively considers the three aspects of
the migration distance, the residual energy status of the UAVs, and the load status of the UAVs. Based
on the MDPUR model, we propose a advantage-based value iteration (ABVI) algorithm to obtain
the effective task migration strategy, which can help the UAV group to achieve load balancing and
reduce the total energy consumption of the UAV group under the premise of ensuring user service
quality. Finally, the results of simulation experiments show that the ABVI algorithm is effective. In
particular, the ABVI algorithm has better performance than the traditional value iterative algorithm.
And in a dynamic environment, the ABVI algorithm is also very robust.

Keywords: mobile edge computing (MEC); unmanned aerial vehicle (UAV); task migration; energy-
efficient; load balancing; Markov decision process (MDP)

1. Introduction

Nowadays, with the rapid development of smart mobile devices (SMDs) and online
applications, users’ requirements for services is increasing. In the real scene, while SMDs
are portable, and with limited computation and storage capability. To solve this problem,
mobile edge computing (MEC) is proposed, in which users can offload their task to the
nearby devices which have strong computation and storage capability, thereby reducing
the delay and energy consumption of SMDs [1]. However, the service scope of a single
edge server is limited . When a SMD deviates from the service range of its original edge
server, it is hard to feedback the results to the SMD [2].

To guarantee the service quality of users, task migration has become a very promising
method. Specifically, task migration means that the original edge server migrates the tasks
offloaded by users to other edge servers to ensure the service quality of users and reduce
the energy consumption of SMDs. However, task migration may cause service interruption
or additional network overhead . Therefore, the quality of the task migration strategy
will directly affect the service quality of users, the load status of the edge servers, and the
energy consumption generated by the task migration. At present, some researchers focus
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on the cost of task migration [3], or only on the service quality of users [4]. But few people
consider the load of edge servers. As far as we know, the load of the edge servers will affect
the operating efficiency of the program and the service life of the edge servers. Therefore,
the research direction of this paper is not limited to one aspect, but considers the following
three aspects comprehensively, namely the cost of task migration, the load status of the
edge servers and the quality service of the users. The purpose of this paper is to design
an efficient task migration strategy to achieve load balancing and reduce the total energy
consumption of the unmanned aerial vehicle (UAV) group under the premise of ensuring
user service quality.

In the process of designing an efficient task migration strategy, it is necessary to
consider a three-layer MEC system composed of SMDs, a UAV group, and a base station
(BS). In such a three-layer MEC system, the UAVs in the UAV group act as dynamic edge
servers [5], while the BS acts as a static edge server [6]. The advantages of the UAVs as dy-
namic edge servers are twofold. First, compared with the traditional cellular infrastructure
communication MEC, the communication technology between UAVs has received more
attention, and new research hotspots are constantly emerging [7]; second, UAVs have the
advantages of high maneuverability, fast mobility, and unrestricted geographic location,
which make up for the shortcomings of static edge servers with a fixed geographic location
and no flexibility. At the same time, the BS as the static edge server can greatly alleviate
the limited computing and storage capabilities of the UAVs. Therefore, the UAV group
and the BS can provide users with more stable and flexible services [8]. In addition, the
task migration strategy focuses on the migration decision. When a UAV in the UAV group
receives the computing task offloaded by a SMD, the UAV will first decide on whether
to migrate based on the computing resources required by the task. When the computing
resources required for the task are too large and the current UAV is unable to handle it,
the current UAV will directly migrate the task to other UAVs or the BS for processing. It
also needs to be considered that in real scenes, the energy of the UAV is limited. When the
energy of the UAV is too low, it will withdraw from the UAV group and cannot provide
services to users. Therefore, in this paper, an efficient task migration strategy is designed in
a three-layer MEC system composed of SMDs, a UAV group, and a BS. Moreover, the task
migration strategy can help the UAV group achieve load balancing and reduce the total
energy consumption of the UAV group on the premise of ensuring user service quality.In
general, we select multiple migration targets and then calculate the migration strategy.
From these alternative migration strategies, we select the optimal migration strategy.

In previous studies, it has been proved that Markov decision process (MDP) can be
used to solve the task migration problem [9]. Based on Markov decision process (MDP),
we established the Markov decision process with unknown rewards (MDPUR) model, in
which the return function fully considers the load state and residual energy state of the
UAVs. In addition, we also designed the advantage-based value iteration (ABVI) algorithm
combining the parent-generation crossover (PC) algorithm to get the optimal migration
strategy. Compared with the traditional value iteration algorithm, the ABVI algorithm
has better performance, which not only ensures the service quality of users but also helps
the UAV group to achieve load balancing, improve the flight time of the UAV group and
reduce the total energy consumption of the UAV group. The main contributions of this
paper are as follows.

• This paper combines dynamic edge servers (i.e., UAVs) with a static edge server (a
BS) for the first time and establishes a three-layer MEC system consisting of SMDs,
a UAV group, and a BS. Meanwhile, the communication model, delay model, and
energy consumption model based on the MEC system are established.

• We designed the ABVI algorithm combining the PC algorithm, which can reduce
the total number of value iterations, improve the efficiency of obtaining the optimal
migration strategy, and further ensure the service quality of users.

• We establish the MDPUR model, in which the return function r is very innovative
and dynamically adjusted according to the load state and residual energy state of the



Electronics 2021, 10, 190 3 of 30

UAVs, which makes the ABVI algorithm very robust. In addition, each UAV in the
MDPUR model is equivalent to a node on the migration path, and the state of the
node is defined as dynamically changing, which is more in line with the UAV-enabled
MEC scene. Meanwhile, the validity of the ABVI algorithm and its feasibility in actual
scenes are proved.

• In the process of solving the optimal task migration strategy, we consider advantage
vector. In a given initial state, each migration action will change the state of the UAVs.
At the same time, in the iteration process of the ABVI algorithm, we will classify the
value function vectors, which is beneficial to improve the accuracy of solving the
optimal migration strategy. In particular, we are not limited to a single target node,
but solve multiple migration strategies through the ABVI algorithm, which greatly
enhanced the reliability of task migration.

The rest of this paper is shown below. Section 2 introduces the related work in this
research field. In Section 3, the system model, MDPUR model and problem formulation
are described. Then, in Section 4, the ABVI algorithm and the PC algorithm are proposed.
Also, we analyze the results of the simulation experiment in Section 5. Finally, Section 6
summarizes the paper.

2. Related Work

At present, to improve the performance of the MEC system, more and more researchers
have introduced UAV into a MEC system, established a UAV-enabled MEC system, and
launched a series of research work from the perspective of task migration. In the fol-
lowing, we introduce the research status in terms of task migration and UAV-enabled
communication. The existing task migration work is mainly focused on reducing delay and
migration costs [10]. In References [11,12], researchers use the MDP framework to predict
the users’ possible mobile location so that the obtained migration decision can reduce the
delay of task transmission. In Reference [13], S. Wang et al. propose a prediction module
that can predict the future cost of each user, which can help the system calculate the task
migration decision. In addition, A. Ceselli et al. apply deep learning techniques to the
prediction of user mobility [14]. Although these methods are very effective in simulations,
they are difficult to apply to actual scenarios because they take a long time to collect user
information. In contrast, the proposed method in our paper only needs to know the status
of the edge servers and the location of the users in each time period.

At the same time, a considerable part of the research work does not start from pre-
dicting user movement. In Reference [15], Liu et al. propose an efficient one-dimensional
search algorithm, which can obtain the migration strategy with the lowest average delay.
In Reference [16], the researchers consider the impact of latency and reliability on user
service quality and propose a new type of network design. Moreover, this paper restricts
the types of tasks, and not all tasks can be migrated. Besides, Liqing Liu et al. consider
both task migration delay and migration cost, and finally construct a multi-objective op-
timization problem [17]. However, the above papers mainly focus on latency and ignore
other indicators. From the related papers, we found that the load status of the edge servers
also directly affects the service quality of users [18]. When the load of the edge servers
is too high, the task processing delay will also increase accordingly, which will affect the
service quality of users. Therefore, it is necessary to consider the load status of the edge
servers [19]. At present, few researchers consider the load status of the edge servers, the
service quality of users, and energy consumption at the same time.

As for the research of MDP-based migration decision, W. Zhang et al. propose an
MDP model based on the status of BSs and edge servers, emphasizing the importance of
reducing the complexity of the algorithm [20]. As far as we know, there are three main
types of MDP-based migration strategies [21]. The one is a migration strategy based on
reinforcement learning, which changes the reward function in the model by observing the
users’ behavior, and then solves the migration path [22]; the other is the optimal migration
strategy based on iteration algorithms such as value iteration or strategy iteration [23].
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Although this kind of strategy was first proposed, it has the disadvantage of too high
complexity; the third is the migration strategy based on the maximum and minimum regret
method [24], this type of migration strategy is classified and sorted under the condition
that all candidate value function sets can be calculated, and then optimize the “minimax
regret” to find the best strategy [25,26]. However, the convergence speed of the algorithm
proposed in these works needs to be improved, and the return function should also be
more in line with the actual scenario.

In order to provide users with flexible services, researchers begin to use UAVs as edge
servers. In recent years, many researchers have focused on the safety of communication
between UAVs and optimizing the flight path of UAVs. In Reference [27], a UAV commu-
nication system based on 5G technology is proposed to enhance the network coverage of
the UAVs and improve the communication security between UAVs. In Reference [28], a
new data distribution model is designed by the researchers to improve the anti-jamming
transmission capability of the UAVs, which can ensure communication security. In addi-
tion, Jingjing Gu et al. propose a new algorithm for mobile users to plan the flight path of
the UAVs to ensure the service quality of users [29]. And an online learning algorithm is
proposed in Reference [30], which optimizes the flight path of the UAVs according to the
distribution state of users to improve throughput. But most of the works do not take into
account the energy consumption of UAVs, which will cause the UAVs to have a shorter
flight time, which ultimately affects the service quality of users.

3. System Model
3.1. Overall Architecture

As shown in Figure 1, we considered a multi-user multi-edge server MEC system with
dynamic task migration and a combination of dynamic and static edge servers. The system
consists of N smart mobile devices (SMD), M four-axis unmanned aerial vehicle (UAV)
and a single base station (BS). Here, each UAV has the functions of hovering and flying,
and UAVs act as dynamic edge servers to provide SMDs with no geographical restric-
tions and more flexible services, while BS as a static edge server has stronger computing
power and can provide more stable and lasting services for SMDs. Specifically, we use
N = {1, 2, ..., N},∀ i ∈ N and M = {1, 2, ..., M},∀ j ∈M to denote the SMD set and UAV
set, respectively. In this paper, the total time T for task migration completion is divided into
K time slots on average, and the length of each time slot t is τ, that is, T = K · τ. Therefore,
we define T = {1, 2, ..., K},∀ t ∈ T to represent the set of time slots. In Figure 1, N SMDs
are randomly distributed in an area. In order to specify the positions of UAV and SMD,
we randomly set the origin within the area, ie (0,0,0), and establish a spatial rectangular
coordinate system. Next, we define the triplet lt

SMD,i = (xt
i , yt

i , 0), ∀i ∈ N to represent the
geographic location of the SMD i at time slot t, where xt

j and yt
j represent the distance of

the SMD i from the origin in the x-axis and y-axis directions at time slot t, respectively.
Similarly, we use lt

UAV,j = (x̃t
j , ỹt

j, Ht
j ), ∀j ∈ M to denote the geographic location of UAV j

at time slot t, where x̃t
j and ỹt

j denote the distance of UAV j from the origin in the x-axis
and y-axis directions at time slot t, and Ht

j denotes the height of UAV j at time slot t, that
is, the distance from the origin in the z-axis direction of time slot t. Because the location
of the base station is fixed and will not change with time, we define lBS = (xBS, yBS, 0) to
represent the geographic location of the base station in the current area of the system. For
ease of understanding, the main symbols involved in this paper are defined in Table 1.
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Figure 1. Overall architecture of the system.

Table 1. Definition of main symbols.

Symbols Definition

N The set of SMDs
M The set of UAVs
T The set of time slots
lt
SMD,i The geographic location of the SMD i at time slot t

lt
UAV,j The geographic location of UAV j at time slot t

lBS The geographic location of the base station in the current area of the system
S̃t

j The maximum service range of UAV j at time slot t
Ht

j The flying height of UAV j at time slot t
Ui The task offloaded from SMD i to the UAV group at t = 0
Fi The total number of CPU cycles required by the computing task offloaded by SMD i
Di The size of tasks offloaded from SMD i to the UAV group
Tdeadline

i The maximum deadline for completing the migration of task offloaded by SMD i
ht

i,j The channel gains of SMD i and UAV j in time slot t
dt

i,j The distance between SMD i and UAV j in time slot t
rt

i,j The uplink transmission power of SMD i to offload tasks to UAV j in time slot t
pt

i,j The transmission power of SMD i offload task to UAV j in time slot t
ht

j,BS The channel gain between UAV j and the BS in time slot t
dt

j,BS The distance between SMD j and BS in time slot t
rt

j,BS The transmission rate of UAV j transfer the task to the BS at time slot t
pt

j,BS The transmission power of UAV j transfer the task to the BS at time slot t
fi,j The computing resources allocated to SMD i by UAV j
Tpro

i,j The time required by UAV j to process task Ui

Tmig
i,j

The time for UAV j to migrate task Ui

Lt
j The length of the task queue of UAV j at time slot t

Et
com,j The computed energy consumption of UAV j in time slot t

Et
mig,j The energy consumption of UAV j migrate tasks to other UAVs or the BS in time slot t

Et
total,j The total energy consumption of UAV j in time slot t

To strengthen the communication capability between UAVs and SMDs on the ground,
current UAVs will install a directional antenna. Since the direction of a UAV directional
antenna has a certain angle with the vertical direction, the range of services provided by
the UAV is related to its height. As shown in Figure 2, we assume that the angle between
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the directional antenna of UAV j and the vertical direction is θ, that is, the antenna angle of
UAV j is θ. Also, the service range of each UAV is a circle. When the antenna angle of a
UAV is fixed, the service range of UAV expands as the UAV height increases; otherwise,
the service range of the UAV shrinks as the UAV height decreases. Specifically, under
the premise of knowing the flying height Ht

j of UAV j at time slot t, we can obtain the

maximum service range S̃t
j , ∀j ∈ M of UAV j at time slot t by Formula (1), and the unit of

service range is square meters.

S̃t
j = (Ht

j · tan θ)2 · π, (1)

where π is the PI. At the same time, the speed of information transmission between SMDs
and UAVs also slows down as the distance increases. In short, to maximize the performance
of the system and avoid the service quality affected caused by the UAV being too far from
the ground, the UAV at any time slot should not exceed the maximum height Hmax preset
by the system. Then, the flight height Ht

j of UAV j at time slot t naturally meets the
following restrictions, namely,

Ht
j ≤ Hmax, ∀j ∈ M, ∀t ∈ T . (2)

UAV j

SMD i

...

UAV j

SMD 1

...

Perpendicular to the ground

Offload from a SMD to a UAV

Return results from a UAV to a SMD

mq

SMD n

)0,,(,

t

i

t

i

t

iSMD yx=

),~,~(,

t

j

t

j

t

j

t

jUAV Hyx=

Figure 2. The service range of unmanned aerial vehicle (UAV) j.

In this paper, after a SMD offloads the task to a UAV, the UAV will process the task
immediately. When the SMD deviates from the service scope of the UAV, on the one hand,
the UAV may transfer the task offloaded by the SMD to another UAV for processing to
ensure the continuous service for SMD; on the other hand, the UAV may also directly
transfer the task to the BS in the current area of the system. The reason why the task is
directly transmitted to the base station by the UAV is that the computing power required
to process the task offloaded from SMD to UAV far exceeds the maximum computing
power of every UAV, the BS as a static edge server has stronger computing power than the
dynamic edge server such as UAV. We describe the above two processes of transferring the
task from the UAV to another UAV and from the UAV to the BS as a task migration process.

Moreover, the main content of our research is to improve the efficiency of task migra-
tion in the MEC system. Therefore, we do not consider the collaborative capabilities of
UAV groups, that is, we consider that the tasks offloaded to UAVs by SMDs are inseparable.
Similar to Reference [31], we do not distinguish between types of tasks. We assume that
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only one task is offloaded to the UAV group by SMD i at t = 0, and the task is defined as
a triple, that is Ui = (Fi, Di, Tdeadline

i ), where Fi represents the total number of CPU cycles
required by the computing task offloaded by SMD i. Di indicates the size of tasks offloaded
from SMD i to the UAV group, and the unit is bit. As for Tdeadline

i , it is the maximum dead-
line for completing the migration of tasks offloaded by SMD i. According to Reference [32],
as long as the task migration occurs in the MEC system, there will be a “migration time”,
that is, the delay caused by the task migration. It can be seen that SMDs will not be able to
get a more timely response to task processing results due to task migration, so reducing
migration time is critical. After completing the overall description of the system, we begin
to introduce the corresponding communication model of the system in the next section.

3.2. Communication Model

In this section, we introduce the communication model, which consists of three parts,
namely the communication between SMDs and UAVs, the communication between UAVs
and other UAVs and BS, and the communication between BS and SMDs. Obviously, the
three parts of the communication are all wireless rather than wired communication, so the
efficiency of task transmission is mainly affected by the three aspects of distance, noise
power and network bandwidth.

For the communication between SMDs and UAVs, it mainly means that SMDs in the
system offload the corresponding computation tasks to the UAVs, and UAVs return the
result of the tasks computation to the corresponding SMDs. Moreover, multiple SMDs can
simultaneously offload tasks to the same UAV. According to Reference [33], we can know
that the wireless channels between SMDs and UAVs are determined by the location of the
SMD links. Therefore, the channel gains ht

i,j of SMD i and UAV j in time slot t is as follows,

ht
i,j =

h0

(dt
i,j)

2 , (3)

where h0 represents the channel gain between a SMD and a UAV when the distance is
one meter, and dt

i,j represents the distance between SMD i and UAV j in time slot t. For
simplicity, we directly use the Euclidean distance to define dt

i,j, that is,

dt
i,j =

√
(xt

i − xt
j)

2 + (yt
i − yt

j)
2 + (Ht

j )
2. (4)

Also, regarding the transmission rate between SMDs and UAVs, according to Refer-
ence [34], the rate of wireless transmission is mainly determined by four aspects: network
bandwidth, channel gain, transmission power, and noise power. We define the transmission
rate of SMD i offload tasks to UAV j in time slot t, that is,

rt
i,j = Bi,j · log2(1 +

pt
i,j · ht

i,j

σ2
SMD

), (5)

where Bi,j represents the channel bandwidth between SMD i and UAV j, and σ2
SMD rep-

resents the noise power between SMDs and UAV group. pt
i,j represents the transmission

power of SMD i offload task to UAV j at time slot t. In particular, in real application
scenarios, SMDs rely on battery power, which means that the energy of SMDs is limited. In
addition, the transmission power mentioned in the previous content will directly affect the
residual energy of the battery, so we set the maximum transmission power of SMD pmax

SMD.
So pt

i,j satisfy the following inequality,

0 ≤ pt
i,j ≤ pmax

SMD, i ∈ N , j ∈ M, t ∈ T . (6)

For the communication between UAV and other UAVs and BS, it mainly means that
UAVs can transfer the computation tasks that cannot be processed to other UAVs or BS, and
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multiple UAVs can also transfer tasks to the same UAV or BS at the same time. It should be
noted that since the task migration between UAV and the task migration between UAV
and BS involves the same communication principle, we only describe the communication
process between UAVs and BS. Similar to the communication process in the first part, we
use ht

j,BS to represent the channel gain between UAV j and the BS. The specific formula is
as follows,

ht
j,BS =

h̃0

(dt
i,BS)

2 , (7)

where h̃0 represents the channel gain between UAV and the BS when the distance is one
meter. dt

j,BS represents the distance between SMD j and BS in time slot t, and the specific
definition is as follows,

dt
j,BS =

√
(xt

j − xt
BS)

2 + (yt
j − yt

BS)
2 + (Ht

j )
2. (8)

In addition, the transmission rate and the constraint of the transmission power of UAV
j transfer the task to the BS at time slot t are shown in Formulas (9) and (10), respectively.

rt
j,BS = Bj,BS · log2(1 +

pt
j,BS · ht

j,BS

σ2
UAV

), (9)

0 ≤ pt
j,BS ≤ pmax

UAV , j ∈ M, t ∈ T , (10)

where Bj,BS and σ2
UAV are the channel bandwidth between UAV j and the BS and the

noise power between the UAV group and the BS, respectively. Pm
UAV ax is the maximum

transmission power of the UAVs in the system. In addition, the transmission rate and
transmission power of task migration between UAVs are defined as rt

UAV and pt
UAV ,

respectively. And rt
UAV and pt

UAV satisfy rt
UAV = rt

j,BS and pt
UAV = pt

j,BS, respectively.

3.3. Delay Model

In this section, we introduce the delay model of the system. Before introducing in
detail, we first describe the specific process of task migration. Figure 3 shows the specific
process of task migration by UAV j, where fi,j represents the computing resource allocated
to SMD i by UAV j. And the meaning of Fi

fi,j
is the time required for UAV j to process task

Ui offloaded by SMD i. With the rapid growth of the number of real-time applications
in SMDs, the length of time the edge server spends processing tasks will seriously affect
the service quality of the users. We did a survey, the survey results show that: when the
threshold is greater than 1.2 s, the number of users is the highest, which users believe has
seriously affected the service quality. Therefore, we assume that once UAV j processes a
task for more than 1.2 s, it is considered that the computation power required by the task
exceeds the maximum computation power of UAV j. Whether the time spent by UAV j in
processing tasks exceeds 1.2 s corresponds to two cases. Case 1, When UAV j processes a
task for more than 1.2 s, to ensure that the task can be processed smoothly and provide
good service for SMD i, UAV j needs to migrate the task to another UAV or the BS, and
then rely on the another UAV that still has strong computing power or the BS with stronger
computation power than UAVs to handles task Ui. Case 2, when UAV j does not spend
more than 1.2 s processing task Ui, UAV j still handle task Ui offloaded by SMD i.
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Figure 3. Service range of UAV j.

Under case 2, to scientifically and efficiently determine the task migration timing
of UAV j, we define the following two task migration triggering conditions. One of the
triggering conditions is dt

i,j · sin θ > S̃t
j , which indicates that SMD i has left the service

range of UAV j at time slot t. At this time, to continue to provide services to SMD i, UAV
j needs to migrate the task Ui that has been offloaded onto it. Another trigger condition
is based on the focus on the quality of user service in this paper. Specifically, each UAV
in the system will regularly send a very small data packet to the SMDs within its service
range. After receiving the data packet, the SMDs will send a response to the UAV. Through
the above operations, we can calculate the “response time” of SMDs. We believe that if the
“response time” of SMD i is greater than 1.5 s, it indicates that the service quality of SMD i
is not good, and task Ui in UAV j needs to be migrated. In summary, as long as one of the
above two conditions is met, task migration is required.

When SMD i offloads task Ui to UAV j and the computing resources required by
the task do not exceed the maximum computing power of UAV j, UAV j allocates the
corresponding computing resources to SMD i and starts processing task Ui. In the previous
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content, we have defined fi,j to represent the computing resources allocated to SMD i by
UAV j , so the time required by UAV j to process task Ui is defined as

Tpro
i,j =

Fi
fi,j

. (11)

When task migration conditions in Figure 3 are met, UAV j will migrate the task to
another UAV or the BS. Therefore, the time for UAV j to migrate task Ui is defined as
follows,

Tmig
i,j =

Di

1
K ·

K−1
∑

t=0
rt

j,BS

=
Di

1
K ·

K−1
∑

t=0
rt

UAV

=
K · Di

K−1
∑

t=0
rt

UAV

.
(12)

Since the transmission speed changes with time, we use the average transmission speed
for calculation. Also, Tmig

i,j also needs to meet the following restrictions, that is,

Tmig
i,j ≤ Tdeadline

j , i ∈ N , j ∈ M. (13)

In other words, in the process of task migration, we must ensure that the migration time of
task Ui is transferred to another UAV or the BS cannot exceed Tdeadline

i , so as to guarantee
the service quality of the users.

From the previous content, we know that UAV may receive multiple task requests
from multiple SMDs at the same time. Here, we assume that the process of offloading tasks
from SMDs is continuous. Therefore, we use Lt

j to denote the length of the task queue of
UAV j at time slot t, and the specific definition of Lt

j is as follows,

Lt
j =

N

∑
i=1

∫ t

0
rt

i,jdt−
∫ t

0
µt

jdt + δUAV,j, (14)

where δUAV,j represents the program that UAV j must execute to maintain the normal
operation of UAV j, such as the operating system. As for µt

j , it is the total number of UAV j
processing tasks in time slot t, in bits. And µt

j satisfies the following equation, that is,

µt
j =

N

∑
i=1

fi,j · τ
c

, (15)

where c is the CPU cycles required by a UAV to handle any type of computing task.
Although UAVs have much more computing power than SMDs, their computing

and storage capabilities are also limited. Therefore, fi,j and Lt
j satisfy inequality (16) and

inequality (17), respectively.

f t
i,j ≤ f max

UAV , i ∈ N , j ∈ M, t ∈ T , (16)

where f max
UAV is the maximum computing power of UAV.

Lt
j ≤ Lmax

UAV , j ∈ M, t ∈ T , (17)

where Lmax
UAV is the maximum storage space corresponding to the task queue of UAV.

In addition to some delay overhead, the system also has energy consumption overhead.
Therefore, we introduce the energy consumption model of the system in detail below.
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3.4. Energy Consumption Model

In this section, we introduce the energy consumption model of the system. We focus
on the energy consumption of three parts, namely the flight energy consumption of UAVs,
the computing energy consumption of UAVs, and task migration energy consumption of
UAVs.

For flight energy consumption of UAVs, according to Reference [35], it can be known
that the flight energy consumption of a UAV is mainly determined by the flight speed,
acceleration, and altitude of the UAV. The flight speed vt

j (m/s) and acceleration at
j (m/s2)

of UAV j at time slot t are defined as follows, respectively.

vt
j =

‖lt
UAV,j − lt−1

UAV‖
τ

, (18)

at
j =

vt
j − vt−1

j

τ
. (19)

Therefore, we can get the flight energy consumption of UAV j during time slot t, that
is,

Et
f ly,j = k1‖vt

j‖3 +
k2

‖vt
j‖
(1 +

‖at
j‖2

g2 ) + k3 · ‖Ht
j‖2, (20)

where k1, k2 and k3 satisfy Equations (21)–(23), respectively.

k1 = 0.5 · ρ · M̃j · τ, (21)

where ρ (kg/m3) represents the air density in the flying area of the UAVs, and M̃j is the
mass of UAV j.

k2 =
2 · (M̃j)

2 · τ
π · w3 · cj

, (22)

where π stands for PI, and w (m/s) is wind speed. As for cj, it is the number of revolutions
per second of the propeller of UAV j.

k3 =
g · τ

2
, (23)

where g is the acceleration of gravity.
Besides, during the flight of the UAVs, we also restrict the speed, acceleration, and

trajectory of the UAVs, and these restrictions corresponding to inequality (24), inequality
(25), and inequality group (26), respectively.

‖vt
j‖ ≤ vmax, j ∈ M, t ∈ T , (24)

‖at
j‖ ≤ amax, j ∈ M, t ∈ T , (25)

K−1
∑

t=0
‖lt

j − lt−1
j ‖ ≤ η, j ∈ M, t ∈ T ,

l0
UAV,j = linitial

UAV , lK−1
UAV = lend

UAV .
(26)

Among them, vmax and amax are respectively the maximum speed and maximum
acceleration of the UAV in flight, while linitial

UAV and lend
UAV respectively represent the initial

position and final position of the UAV. η is a non-negative small value.
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For the computed energy consumption of the UAVs, it mainly refers to the energy
consumed by the UAVs to process the task of SMDs offload. The computed energy con-
sumption Et

com,j of UAV j in time slot t is expressed as follows, that is

Et
com,j = k ·

(
N

∑
i=1

fi,j

)
· τ, (27)

where k is the effective switching capacitance of the CPU in the UAV group and is deter-
mined by the hardware architecture of the CPU [36].

As for the task migration energy consumption generated by UAV, as the name implies,
which is the transmission energy consumption caused by UAV during task migration. The
migration energy consumption is mainly determined by the transmission power of UAV.
We use Et

mig,j to denote the energy consumption of UAV j migrate tasks to other UAVs or
the BS in time slot t, and the specific definition is as follows,

Et
mig,j =

{
pt

UAV · τ, if the migration destination is a UAV,
pt

j,BS · τ, if the migration destination is a BS.
(28)

In summary, the total energy consumption of UAV j in time slot t is expressed as
follows, that is,

Et
total,j = φ1 · Et

f ly,j + φ2 · Et
com,j + φ3 · Et

mig,j, (29)

where φ1, φ2, and φ3 are weighting factors, which coordinate the proportion of the three
energy consumptions of UAVs’ flight energy consumption, UAVs’ computing energy
consumption and UAVs’ migration energy consumption.

3.5. Problem Formulation

In the previous content of the paper, we introduced the UAV-enabled MEC system and
established mathematical models from four aspects, that is, architecture, communication,
delay, and energy consumption. To sum up, we have three main optimization goals, and as
shown below.

• Reduce the energy consumption of UAVs. Since the power of UAVs is limited, it is
particularly important to reduce the energy consumption of UAVs. In the previous
mathematical model, we have learned that the energy consumption of UAVs is mainly
related to the three aspects of flight energy consumption, computing energy consump-
tion, and migration energy consumption. Since the flying range of UAVs is fixed, we
mainly extend the stagnation time of UAVs by reducing the computational energy
consumption and migration energy consumption, to avoid some UAVs from leaving
the UAV group early due to excessive energy consumption.

• Achieve the load balancing of the UAV group. When the MEC system needs to migrate
SMD offload tasks, in addition to the migration energy consumption, we also need
to pay close attention to the load status of each UAV in the UAV group. If load of a
certain UAV is too high, we will not use it as an “endpoint edge server” to provide
services to SMDs, so the MEC system will choose a UAV with a lower load to provide
services to SMDs. In the end, we can make full use of the computing resources of the
UAV group and achieve load balancing for the entire UAV group.

• Improve the service quality of the users. In addition to the above two points, user
service quality cannot be ignored. In the process of dynamically migrating tasks
offloaded by SMDs, it is inevitable that “service interruption” will occur. We believe
that the shorter the service interruption time, the higher the service quality of the
users. In this model, we will set a threshold. If the time required for task migration
is higher than the threshold, we will not adopt this migration strategy and choose
another migration strategy to complete the dynamic migration of tasks for SMDs until
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the migration time is less than the threshold, so as to ensure service quality of the
users.

In summary, we define the following objective function, and also include the above
Equations (2), (6), (10), (13), (16), (17) and (24)–(26).

P1 : min
π̃

K−1

∑
t=0

M

∑
j=1

Et
total,j

s.t. Lt
j ≤

M
∑

j=1
Lt

j

M
+ ε, j ∈ M, t ∈ T ,

Tmig
i,j ≤ δ, i ∈ N , j ∈ M,

(30)

where π̃ represents the migration strategy. ε represents a minimum error value. The
purpose of setting the minimum error value is to improve the robustness in the MEC
system. As for δ, it is a threshold used to limit the task migration time. The inequality

Lt
j ≤

M
∑

j=1
Lt

j

M + ε, j ∈ M, t ∈ T and Tmig
i,j ≤ δ, i ∈ N , j ∈ M are to ensure that the load

balancing of the UAV group and the service quality of the users, respectively.
Obviously, there are many variables in problem P1, and these variables will change

with time, making it difficult to find the optimal solution, so we use the Markov decision
model to find the optimal task migration strategy.

4. Dynamic Task Migration Strategy
4.1. Markov Decision Processes with Unknown Rewards (MDPUR)

In this section, we will introduce the algorithm of the paper. In the UAV-enabled MEC
scenario, the information interaction between the MDs and the UAVs is affected by the
environment, such as the wind speed and air density that we mentioned earlier. Besides,
the service quality of the users is also the focus of our attention. In summary, how to get
the optimal migration strategy under the circumstances of not only paying attention to
environmental factors but also considering service quality has become a difficult point.

In this paper, we use the MDPUR algorithm to solve this problem. The MDPUR
algorithm is different from the traditional MDP. The MDPUR algorithm is an improvement
over MDP. In particular, the MDPUR algorithm reduces the number of value iterations
utilizing classification and filtering, thereby increasing the speed of the algorithm. The
specific improvements of the MDPUR algorithm are as follows.

• Consider the dominance vector. In the process of solving the optimal migration
strategy, we considered the dominance vector. In a given initial state, each action
will change the state of the UAVs. And we will classify the result of value iteration.
The advantage of this is that it can improve the accuracy of solving the optimal task
migration strategy.

• Improve the traditional value iteration method. The previous value iteration solution
is too complicated, which will lead to high complexity of the algorithm, so we have
improved on the traditional value iteration method. After each value iteration is
completed, we will calculate the probability of each vector value function in the
dominant vector set as the parent vector, and then select the two groups with the
highest probability as the parent and perform the cross operation, and finally calculate
the new descendant value function. If the result is better than all the previously
calculated value functions, then use it to replace the optimal solution of the current
iteration. Otherwise, give up the processing of the offspring. We call the above-
mentioned value iteration method “parent crossover algorithm”, which can reduce
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the total number of MDPUR median iterations and increase the running speed of the
MDPUR algorithm in the MEC system.

• Set dynamic UAV status. In the MDPUR algorithm, each UAV is equivalent to a node
on the migration path. We define the state of the node as dynamically changing, which
is more in line with the UAV-enabled MEC scenario and proves the feasibility of the
algorithm. In the end, it is beneficial to apply the algorithm to real life.

In this paper, the MDPUR algorithm finally obtains the optimal task migration strategy
after considering the distance of task migration, the residual energy state of the UAVs, and
the load state of the UAVs. Not only does the algorithm not occupy too much computing
resources of the UAVs, but it also has a very strong ability to find solutions. Especially in
a dynamic environment, the MDPUR algorithm has very high flexibility and robustness.
In the following content, we directly define a UAV as a node on the task migration path,
which is more conducive to understanding. For example, node j represents UAV j.

4.2. Mathematical Model of the MDPUR Algorithm

In this section, we begin to establish the mathematical model on which MDPUR is
based. Similar to traditional MDP, we define a six-tuple {S ,A, p̃, r, γ, β}, where S is the
set of state space. A is the set of actions, and p̃ is the state transition probability. As for
r : S ×A → R and γ ∈ [0, 1], they represent the reward function and the discount factor,
respectively. The discount factor indicates the importance of future reward relative to
current reward. The last item β in the six-tuple is the initial state distribution of the nodes.
Next, we conduct a specific analysis of the above.

4.2.1. State Space Set, Action Set, State Transition Probability

Because the state of each UAV changes with time, we use St
j to denote the state

of UAV j in time slot t. Based on that the system contains M UAVs, we define S =
{St

1, St
2, ..., St

j , ..., St
M}∀j ∈ M, ∀t ∈ T to represent the state space set of the UAVs. Moreover,

we consider the three aspects of the UAVs’ position, the UAVs’ residual energy, and
the UAVs’ load into the state space of the MEC system. Therefore, St

j is a triple and
St

j = {lt
UAV,j, bt

j , pt
j}. Among them, lt

UAV,j is the position of UAV j in time slot t. bt
j and pt

j
are the residual energy state and load state of UAV j in time slot t, respectively. Next, we
introduce the residual energy state and load state of the UAVs in detail.

For the residual energy state of the UAVs, since most of the energy supply of the
UAVs are derived from the lithium battery carried by itself, we define Ct

j to represent the
residual energy of UAV j in time slot t, in joules (J). Because we have already defined the
total energy consumption of UAV j in time slot t, that is Et

total,j, the iteration formula of Ct
j

is as follows{
Ct+1

j = Ct
j − φ1 · Et

f ly,j − φ2 · Et
con,j − φ3 · Et

mig,j = Ct
j − Et

total,j,

C1
j = Cmax

j ,
(31)

where C1
j is the residual energy state of UAV j in the first time slot (that is, the initial energy

state), and Cmax
j is the maximum residual energy of UAV j. To understand the residual

energy state of UAV j in time slot t more intuitively, we define bt
j as a percentage, which

can intuitively represent the residual energy as a percentage of its maximum energy. In
particular, the specific formula corresponding to bt

j is as follows.

bt
j =

Ct
j

Cmax
j

. (32)

For the load status of the UAV. We believe that the UAV task queue length can
indirectly reflect the load status of the UAV, that is, the greater the UAV task queue length,
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the higher the UAV load. We define pt
j to represent the load state of UAV j in time slot t,

the specific formula is as follows.

pt
j =

Lt
j

Lmax
UAV,j

· 100%. (33)

Similar to bt
j , pt

j is also a percentage, which can visually indicate the load status of the UAV.
For example, pt

j = 90% indicates that the load of UAV j in time slot t is 90%. At this time,
UAV j needs to process a large number of tasks and the load is high.

After building the state space Set of the UAVs, we now start to build the action Set of
the UAVs. In the MDPUR algorithm, when the system acts, the state of the corresponding
UAV will change accordingly. There are M nodes in the paper, so we can think that the
action set A contains M actions. The specific formula is as follows.

A = {aj|j = 1, 2, ..., M}, (34)

where aj refers to the task is migrated to UAV j
As for the state transition probability, we define p̃(s′|s, a) to represent the state transi-

tion probability that the state changes from s to s′ after performing action a.

4.2.2. Reward Function

In general, the size of the reward function r can directly reflect whether a certain state
or action is good or bad for the current state, and we can understand it as a numerical cost.
In this paper, we will comprehensively consider the two information of the load state and
residual energy state of the UAV. Different from the previous MDP, the value of the reward
function r in this paper is obtained by the dot product calculation of two vectors, so the
definition of the reward function is as follows.{

λ̃ = (ω1, ω2),
r̃s,aj = (1− ρt

j, bt
j),

(35)

rs,aj = λ̃ · r̃s,aj = λ̃ ∗ (r̃s,aj)
T = ω1 · (1− ρt

j) + ω2 · bt
j , (36)

where λ̃ and r̃s,aj are binary vectors. rs,aj is the value of the reward function obtained by
selecting action aj for state s. When the load of the UAV is lower, rs,aj is larger. Similarly,
when the residual energy of UAV is more, rs,aj is larger; on the contrary, when the UAV
load is higher or the residual energy is less, rs,aj is smaller. In addition, ω1 and ω2 are
weighting factors, which satisfy ω1 + ω2 = 1, 0 ≤ ω1 ≤ 1 and 0 ≤ ω2 ≤ 1. Although the
load state of UAV and the residual energy state of UAV are considered by the MDPUR
algorithm at the same time, the priority of the two is different in different situations. The
following describes the case where the load state or the residual energy state is considered
first under the two conditions.

In condition 1, after the UAV group just took off, the UAVs in the UAV group have
more residual energy at this time, so when the MEC system performs task migration for
the task offloaded by a SMD, we first consider the load state of the UAVs, followed by
the residual energy state of the UAVs. Therefore, the value of ω1 will increase and the

corresponding value of ω2 will decrease. In condition 2, when 1
M ·

M
∑

j=1
≤ 50%, that is to say,

the overall residual energy of the UAV group is low, in order to maximize the lag time of
the UAVs with the lower residual energy in the UAV group, we first consider the residual
energy state of the UAVs, followed by the load state of the UAVs. Therefore, the value of
ω1 will decrease and the corresponding value of ω2 will increase. After introducing the
reward function in the model, we will define the value function in the next section.
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4.2.3. Value Function

Before introducing the value function, we first introduce a concept “long-term ex-
pected reward”, the value of the long-term reward can directly reflect the advantages
and disadvantages of the strategy. In theory, we can use a long-term expected reward
to evaluate the pros and cons of any strategy. In other words, the value function is the
concrete expression of the long-term expected reward. The value function Vπ̃(s) in this
paper is different from the value function in the general MDP, the specific definition is as
follows.

Vπ̃(s) = rs,π̃(s) + γ · ∑
s′∈S

p̃(s′|s, π̃(s)) ·Vπ̃(s′), (37)

where π̃ represents the strategy, it is a mapping from the state set to the action set, namely
π̃ : S → A. Whereas π̃(s) refers to taking action π̃(s) in state s, Vπ̃(s) represents the value
function of each strategy, that is, π̃(s) : S → ∇. s′ is the next state. Formula (37) is the
recursive regression form of the value function, from which we can understand that the
value of a state is composed of the reward of the state and the subsequent state value in a
certain proportion. And We usually call the Formula (37) the Bellman equation. Regarding
γ, we have already introduced it earlier. It means that the conversion factor and the value
range is 0 ≤ γ ≤ 1. Especially, The role of the conversion factor is to ensure that the value
function converges during the recursive process.

In this model, we also consider the initial states of the UAVs, and the formula is
defined as follows.

Es,β[Vπ̃(s)] = ∑
s∈S

β ·Vπ̃(s) = β ·Vπ̃
(38)

4.3. Markov Decision Processes with Unknown Rewards (MDPUR) Algorithm

Now, we start to solve the optimal migration strategy π̃∗. Among all possible MDP
strategies, the expected value of π̃∗ is the largest, and π̃∗ is expressed as follows

π̃∗ = arg max
π̃

β ·Vπ̃ (39)

Earlier we have carefully introduced the Markov decision process(MDP) model under
the UAV-enabled MEC system. Below, we specifically explain the solution process of the
joint optimization problem (30). To get the optimal strategy, we have proposed the MDPUR
algorithm, which is mainly composed of two parts, namely the dominant value iteration
algorithm and the parent crossover algorithm. The specific steps are as follows.

Step 1: Initialization. First, we need to collect the information of the nodes (that is,
UAVs) and establish a state set S and an action set A. The research in the paper is to
optimize the three aspects of the energy consumption of the UAV group, the load balancing
of the UAV group, and the service quality of users. Therefore, this is a joint optimization
problem.

Step 2: Calculate the reward function and value function. In the model, the size of
the reward function r is mainly determined by the load state of the node and the residual
energy state of the node, which helps the UAV group to achieve load balancing as soon as
possible and improve the hang time of the UAV group. Then we can get the information of
the target node through the location of the SMD, because the service range of the node may
overlap, so the target node in this paper can be one or more. After we have determined the
target node, we can calculate the value function.

Step 3: Dominant value iteration. Before iterating over the dominant value, we
need to set a threshold ζ and then start the first iteration of the value function. If the
absolute value of the mathematical expected difference between the value function Vπ̃

n
of the n-th iteration and the value function of the (n + 1)-th iteration is less than ζ (that
is, ||Es,β(Vπ̃

n )− Es,β(Vπ̃
n+1)|| ≤ ζ is satisfied), then stop the iteration and execute step 5

directly; Otherwise, continue execute step 3. After each iteration, we will classify the value
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function and determine the dominant value function in this iteration, and then execute
step 4.

Step 4: Perform the parent crossover (PC) algorithm. We use the parent crossover
algorithm to process the dominant value function and update the calculation result to the
new dominant value function set, and then continue to Step 3.

Step 5: Determine the optimal migration strategy π̃∗. When the iteration is completely
stopped, we will sort the value function of the last iteration according to the size of
absolute value and choose 5 optimal strategies, and then we will calculate the total energy
consumption of the corresponding UAV group. The strategy with the lowest total energy
consumption is the optimal strategy π̃∗. If the migration time Tmig

i,j corresponding to the
strategy π̃∗ does not satisfy the Formula (32), return to Step 3 to recalculate.

Next, we will separately introduce how to use the advantage-based value iteration
algorithm and the parent crossover algorithm to solve the optimal migration strategy and
analyze the performance of the MDPUR algorithm.

4.3.1. Advantage-Based Value Iteration (ABVI) Algorithm

In this section, we propose a new algorithm. We call this algorithm an advantage-
based value iteration (ABVI) algorithm. Next, we introduce how to use the ABVI algorithm
to get the optimal strategy and analyze the performance of the ABVI algorithm.

First, we define ζ as the threshold for value iteration. When ||Es,β(Vπ̃
n )−Es,β(Vπ̃

n+1)|| ≤
ζ is satisfied, the value iteration is stopped. Before performing the ABVI algorithm, we
need to know how to calculate the corresponding strategy through the value function.
Here, we define an intermediate variable that is often used in the solution process, namely
the action value function Qπ̃ : S ×A → r, which is described as follows.

Qπ̃(s, aj) = rs,aj + γ · ∑
s′∈S

p̃(s′|s, aj) ·Vπ̃(s′), (40)

where Qπ̃(s, aj) refers to the choice of action aj in state s, and other states adopt the
expected reward of strategy π̃. When the strategy does not display records and only has
the value function Vπ̃ , the action value function is recorded as Q. And the strategy π̃ can
be calculated by the following formula.

π̃(s) = arg max
aj∈A

Q(s, a) (41)

At the same time, we calculate the difference d(s, aj) between the action value function
Qπ̃(s, aj) and the value function Vπ̃(s), the specific formula is as follows.

d(s, aj) = Qπ̃(s, aj)−Vπ̃(s). (42)

In addition, because the paper also considers the distribution of the initial state of
the node, the difference between Qπ̃(s, aj) and Vπ̃(s) corresponding to the mathematical
expectation D(s, aj) is as follows.

D(s, aj) = Es,β[Qπ̃(s, aj)]−Es,β[Vπ̃(s)] = β{Qπ̃(s, aj)−Vπ̃(s)}. (43)

Moreover, d(s, aj) in Formula (42) and D(s, aj) in Formula (43) can also be called advan-
tages, and these two values will be applied in the later iteration of the advantage value. The
so-called advantage-based value iteration is to transform the traditional value function into
a vector value function, and then iterate the value. After each iteration, we compare and
classify these vector-valued functions. Then, the advantage-based value function set con-
tinues to the next round of value iterations until it is satisfied ||Es,β(Vπ̃

n )−Es,β(Vπ̃
n+1)|| ≤ ζ

stops iterating.
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In the process of advantage-based value iteration, it is undoubtedly very difficult to
compare vector-valued functions. Here, we define two methods for comparing vectors.
The first vector comparison method is pareto dominance, which is a very common vector
comparison method and described in Definition 1.

Definition 1. For a given two d-dimensional vectors λ1 = (q1, q2, ..., qd) and λ2 = (p1, p2, ..., pd),
we can know

λ1 � λ2 ⇔ qi ≥ pi, ∀i, 0 ≤ i ≤ d. (44)

when qi ≥ pi is satisfied, vector λ1 is better than vector λ2.

The second vector comparison method is the vector dot product. In the previous
content, we defined λ̃. For a given two two-dimensional vectors, λ1 = (q1, q2) and
λ2 = (p1, p2), we have

λ̃ ∗ (λ1)
T ≥ λ̃ ∗ (λ2)

T ⇒ λ1 � λ2. (45)

Here, we will calculate the dot λ̃ with λ1 and λ2, respectively. Because they are
two-dimensional vectors, the calculation result is a real number, and then we compare the
vectors by comparing the size of the two real numbers.

Next, we begin to define the vector value function, because the reward function of this
paper is mainly determined by the load state and residual energy state of the nodes, so the
corresponding vector value function is two-dimensional, the specific formula is as follows.

Vπ̃
(s) = rs,aj + γ · ∑

s′∈S
p̃(s′|s, π̃(s)) ·Vπ̃

(s′), ∀s, (46)

rs,π̃(s) = (ω1 ∗ (1− ρt
j), ω2 ∗ bt

j). (47)

Among them, rs,π̃(s) is a two-dimensional vector, and it is calculated from vector λ̃
and vector r̃s,aj . As for the calculation method, it is a new vector formed by multiplying the
corresponding elements in the vector.

After determining the vector value function, we can easily get the mathematical
expectation of the vector value function considering the initial state distribution of the
node, and it is expressed as follows.

Vπ̃
= Es,β[V

π̃
(s)] = ∑

s∈S
·Vπ̃

(s). (48)

In the process of vector value iteration, we also need to define π̃ ŝ,â to solve the set of
advantage-based value function, and π̃ ŝ,â is expressed as follows.

π̃ ŝ,â =

{
π̃(s), i f s 6= ŝ,
â, i f s = ŝ.

(49)

Definition 2. If Vπ is not the optimal vector value function, then there must be a state s that

makes λ̃ ∗ (Vπ̃ ŝ,â
)T ≥ λ̃ ∗ (Vπ̃

)T true after selecting action ā.

Because the only difference between π̃ and π̃ ŝ,â is state ŝ, the vector action value
function satisfies the following inequality.

λ̃ · Q̃π̃(ŝ, π̃ ŝ,â(ŝ)) = λ̃ ·Vπ̃ ŝ ,â
(ŝ) ≥ λ̃ ·Vπ̃

(ŝ) (50)
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Next, we take π̃ ŝ,â and π̃ as examples to analyze the advantages of π̃ ŝ,â. Therefore,
Equation (50) can be obtained.

D(ŝ, â) = Es,β[V
π̃ ŝ,â

]−Es,β[V
π̃
] = ∑

s∈S
β ·Vπ̃ ŝ,â

(s)− ∑
s∈S

β ·Vπ̃
(s) (51)

In Formula (51), D(ŝ, â) is the difference between the mathematical expectation of the
vector value function π̃ ŝ,â and the mathematical expectation of the vector value function π̃,
which is also called the advantage of the vector. Because the difference between π̃ ŝ,â and π̃
is the state ŝ, we can finally get the advantage of (ŝ, â) by combining Formulas (50) and (51),
that is,

D(ŝ, â) = β ·Vπ̃ ŝ,â
(ŝ)− β ·Vπ̃

(ŝ)

= β{Q̄π̃(ŝ, π̃ ŝ,â(ŝ))−Vπ̃(ŝ)}

= β{Qπ̃
(ŝ, â)−Vπ̃(ŝ)}.

(52)

The above is the process of the first round of vector value function iteration. In the
subsequent iterations, we assume that (ŝ2, â2), (ŝ3, â3), or (ŝn, ân) may appear in addition
to (ŝ, â). Therefore, we define π̃′′ = π̃ ŝ2,â2 to indicate that the state hats2 selects the action
hata2 in the second round of iteration. Moreover, the role of π̃′′ is similar to the previous
π̃ ŝ,â. Hence, we have inequality (53) in the second round of value iteration.

λ ·Es,β[V
π̃′′
] ≥ λ ·Vπ̃ ŝ1,â1 ≥ λ ·Es,β[V

π̃
]. (53)

Correspondingly, the advantages of the vector value function in the second round are
as follows.

D(ŝ2, â2) = Es,β[V
π̃′′
]−Es,β[V

π̃
]

= Es,β[Q
π̃
(s, π̃′′(s))]−Es,β[V

π̃
]

= ∑
s∈S

β{Q̄π̃(ŝ2, â2)−Vπ̃
(s)}.

(54)

To speed up the iteration and try to reduce the complexity of the algorithm, we
will use the parent crossover algorithm to process the set of advantage vectors after each
iteration. And the parent crossover algorithm will be introduced in detail in the next
section. Moreover, the ABVI algorithm also considers the initial distribution of the nodes.
The pseudo code of the ABVI algorithm is described in Algorithm 1. In Algorithm 1, Dadv
is the set of advantage vectors, and n is the number of iterations.
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Algorithm 1 The proposed ABVI algorithm
Input: {S ,A, p̃, r, γ, β}, ζ
Output: π̃∗

1: t← 0, n← 1;

2: π̃∗ ← define a strategy as the optimal strategy randomly;

3: /* set all vector value functions to 0 vectors before the iteration starts */

4: V0(s) = (0, 0), ∀s ∈ S ;

5: Set the ω1 and ω2 in the reward function according to the overall energy state of the
UAV group;

6: repeat

7: Dadv ← Φ

8: for each s ∈ S , a ∈ A do

9: Qπ̃
n (s, aj)← rs,aj + γ · ∑

s′∈S
p̃(s′|s, a) ·Vπ̃

n (s′);

10: D(s, a) = β{Qπ̃
(s, a)−Vπ̃(s)};

11: Add D(s, a) to Dadv ;

12: end for

13: Enter Dadv into the Algorithm 2;

14: Receive the result of the Algorithm 2, that is, Dnew
adv ;

15: for each s ∈ S do

16: Vπ̃
(s) = rs,π̃(s) + γ · ∑

s′∈S
p̃(s′|s, π̃(s)) ·Vπ̃

(s′);

17: Find β · ‖Vπ̃
n+1‖;

18: Update π̃∗ = π̃;

19: end for

20: n← n + 1;

21: until ‖Es,β(Vπ̃
n )−Es,β(Vπ̃

n+1)‖ ≤ ζ

4.3.2. Parent Crossover (PC) Algorithm

In this section, we introduce the parent crossover algorithm that is, Algorithm 2 in the
paper.

The idea of the algorithm comes from the ant colony optimization (ACO) algorithm.
The algorithm performs a cross operation on a better solution, thereby increasing the
possibility of seeking the optimal solution. In Algorithm 1, a new set of advantage vectors
will be generated after each round of iteration, and the role of Algorithm 2 is to process
these advantage vectors. For Algorithm 2, more specifically, we first need to calculate the
probabilities of these vectors as the parent and then select two vectors with the highest
probability as the parent vector for the cross operation. Finally, we get the new vector after
the cross operation. If the new vector is better than the optimal vector value function in
the advantage vector set, the new vector is added to the advantage vector set; otherwise,
the advantage vector set is not processed. The parent crossover algorithm is shown in
Algorithm 2 in the form of pseudo code.
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Algorithm 2 The proposed PC algorithm

Input: D̄adv
Output: D̄new

adv

1: Initialize Dadv so that D̄adv contains K vectors;

2: for each 1 ≤ k̃ ≤ K do

3: Calculate the probability of being the parent of the k̃− th vector value function by

p(k̃) =

1
‖Vπ̃

k̃
‖

∑K
i=1

1
‖Vπ̃

i ‖

= 1
V̄π̃

k̃
·∑K

i=1
1

V̄π̃
i

;

4: end for

5: Find two vectors with the highest probability as parents, and define these two vectors
as vector u1 and vector u2;

6: Perform a cross operation on the two parents obtained in the previous step, that is,
ūnew = u1 × u2 ;

7: Compare the optimal value function vector Vπ̃
best in vector unew and vector Dadv;

8: if unew � Vπ̃
best then

9: Dnew
adv ← Add unew to Dadv;

10: else

11: Dnew
adv ← Dadv

12: end if

13: Update Dnew
adv and return it to Algorithm 1;

5. Experimental Results and Discussion

In this section, we use Matlab software to do simulation experiments and evaluate
the performance of the ABVI algorithm based on the experimental results. Finally, we
proved the efficiency and feasibility of the ABVI algorithm through experiments. Next, we
will describe the four aspects of the total energy consumption of the UAV group, the task
migration time, the load state of the UAV group, and the flight time of the UAV group.

5.1. Setting of Experimental Parameters

In the simulation experiment of this paper, we set a flying area of a UAV group, the
area is a rectangle of 1000 m ×1000 m. The UAV group provides services for SMD in this
area. The horizontal movement range of each UAV is 550 square meters. Each UAV has
a fixed flight trajectory during flight and the respective flight trajectories do not overlap.
In the paper, the UAV-enabled MEC system includes both a dynamic edge server (that
is, the UAV group) and a static edge server (that is, a BS). The maximum service range
of each UAV in the UAV group is a circular area with a radius of 170 m, and the service
range of UAV will also change with the change of UAV height. In addition, other relevant
experimental parameters in this paper are defined in Table 2.
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Table 2. Definition of the main experimental parameters.

Parameters Value

The number of UAV M = 35
The number of SMD N = 200
The bandwidth of the network B = 10 MHz
The angle between UAVs’ directional antenna
and vertical θ = 30◦

The initial height of the UAVs 50 m
The maximum flying height of UAVs Hmax = 1000 m
The maximum transmission power of SMDs pmax

SMD = 2.1 W
The maximum transmission power of UAVs pmax

UAV = 150 W
The noise power of SMDs σ2

SMD = 1.69× 10−9 W
The noise power of UAVs σ2

UAV = 2.3× 10−8 W
The maximum CPU cycle frequency of UAVs f max

UAV = 25 GHz
The maximum memory of UAVs 10 T
The density of UAV processing tasks c̃ = 103 cycles/bit
The UAV weight M̃j = 20.9 kg
The air density ρ̃ = 1.313 kg/m3

The range of wind speed [2.5 m/s, 7.1 m/s]
The acceleration of gravity g = 9.8 m/s2

The UAV propeller rotations per second 50 ≤ cj ≤ 160
The maximum speed of UAV vmax = 13 m/s
The maximum acceleration of UAV amax = 7.5 m/s2

The CPU effective capacitance switch of UAV k̃ = 3× 10−16

In the ABVI algorithm of the paper, we also set ς = 10−4 and γ = 0.95. In the
following experiment, in order to be more convincing, we also introduced three algorithms
of the traditional value iteration (TVI), ant colony optimization(ACO), and distance-based
MDP (MDP-SD) to compare with the proposed ABVI algorithm. For ACO algorithm, when
ants are looking for food sources, they can release a hormone called pheromone on the
path they travel, so that other ants within a certain range can detect it. When there are
more and more ants passing through some paths, there will be more and more pheromone,
and the probability of ants choosing this path will be higher. As a result, the pheromone on
this path will increase again, and the ants will follow this path. The probability of road
increases again.

5.2. Analysis of the Total Energy Consumption of the UAV Group

Now, we analyze the total energy consumption of the UAV group. Because the energy
of UAVs is limited, it is very necessary to reduce the energy consumption of UAVs. In the
previous content, we have introduced the energy consumption model of UAVs, and we
found that reducing the cost of task migration is very effective for reducing the total energy
consumption of the UAV group. Therefore, we can know that the quality of the migration
strategy will directly affect the total energy consumption of the UAV group. The specific
experimental results are shown in Figure 4.

In this experiment, we assume that there are 200 SMDs in the experiment to offload
tasks to the UAV group, and the actual number of tasks that need to be migrated after
reaching the UAV group conforms to the Poisson distribution. The ordinate of Figure 4
represents the total energy consumption of the UAV group, and the unit is kilojoule. From
Figure 4, we can find that the total energy consumption of the UAV group increases with
time. Between 0 and 19 min, there are relatively few tasks that need to be migrated for
tasks offloaded by SMDs, so the total energy consumption of the UAV group is growing
at a slower rate. Between 20 and 35 min, the total energy consumption of the UAV
group has grown very fast. Between 36 and 79 min, the growth rate of the total energy
consumption of the UAV group began to slow down, because the number of tasks that
require task migration begins to decrease. From the experiment, we can find that the
curves corresponding to the three algorithms are not smooth. That is because during the
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flight of the UAVs, it will be affected by environmental factors such as air density and
wind speed, so the total energy consumption of the UAV group will be some irregular
changes. In addition, we can also find that the total energy consumption of the UAV group
corresponding to the ABVI algorithm is the lowest, the total energy consumption of the
UAV group corresponding to the MDP-SD algorithm is second lowest. However, the total
energy consumption of the UAV group corresponding to the TVI algorithm is the highest.
The main reason for this result is that both the ABVI algorithm and the MDP-SD take
distance as an influencing factor into the model, so the migration path is generally a smaller
distance, and the corresponding migration costs will also be lower. In contrast, the TVI
algorithm does not consider the effect of distance on migration costs.
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Figure 4. The total energy consumption of the UAV group versus time.

In summary, the proposed ABVI algorithm is effective for reducing the total energy
consumption of the UAV group.

5.3. Analysis of Task Migration Time

In this section, we analyze whether the ABVI algorithm can shorten the task migra-
tion time to improve the service quality of the users through experiments. As we have
mentioned earlier, in the MEC system, shortening task migration time is very important to
improve the service quality of the users. The specific experimental results are shown in
Figure 5, and the experimental parameters we set are the same as in Figure 4.

In Figure 5, the abscissa represents time in units of minutes, and the ordinate represents
average task migration time in seconds. ACO is ant colony optimization. ABVI is the
proposed in this paper, TVI and MDP-SD represent the traditional value iteration algorithm
and the distance-based MDP algorithm, respectively. Here, the average task migration
time represents the average of the time it takes for all SMDs currently in need of task
migration to complete the task migration. This average value can very intuitively reflect
the service quality of the users. In addition, we also set a standard in the experiment, which
is the baseline in Figure 5. As users have higher and higher requirements for real-time
services, reducing the time required for task migration as much as possible has become
our research focus. Through the experiments, we found that when the service interruption
time is less than 0.7 s, the user experience will not be significantly affected. Therefore,
we set the baseline to 0.7 s in the experiment. Since we assume that the number of task
migrations conforms to the Poisson distribution, the number of task migrations is less
between 0 and 19 min, and the average task migration time rises more slowly. However,
the number of task migration begins to grow rapidly between 20 min and 35 min, so the
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average task migration time will also increase rapidly. As time goes on, the number of
task migration begins to slowly decrease between 36 min and 70 min, and the average task
migration time gradually decreases and eventually stabilizes. We can also find that the
curve corresponding to the ABVI algorithm is always lower than the curves of the other
three algorithms. The main reason for this result is that we have fully considered the load
status of the UAV group when designing the ABVI algorithm. In contrast, the other two
algorithms consider less in this respect, and the complexity of the ABVI algorithm is also
lower than the other two algorithms.
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Figure 5. The average task migration time versus time.

In summary, the ABVI algorithm is very effective for reducing task migration time
and improving the service quality of the users.

5.4. Analysis of the Load Status of the UAV Group

In this section, we analyze the influence of the ABVI algorithm on the load status of
the UAV group through experiments. Here, we analyze from two perspectives, one of
which is to calculate the load status of each UAV in the UAV group, and the other is to
calculate the difference between the highest load and the lowest load in the UAV group,
that is range. The specific experimental results are shown in Figures 6–8.
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Figure 6. The initial load state of the UAV group.
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Figure 7. The load status of the UAV group when the UAV-enabled MEC system is running for
35 min.
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Figure 8. The load status of the UAV group when the UAV-enabled MEC system is running for
65 min.

Figures 6–8 respectively show the load state of the UAV at different times. Here, the
abscissa represents the number of each UAV (i.e., UAVj, j = 1, 2, ..., 35), and the ordinate
represents the load status. Moreover, we use decimals to represent the load state. For
example, 0.7 means that the load state of UAV is 70%, and 1 means that the UAV is at the
maximum load state. When the MEC system is just running, each UAV needs to execute an
operating system and other programs in the actual scenario, we set the initial load state of
each UAV in the UAV group to be 0.07. Figure 6 shows the initial load state of the UAV
group. Similar to the experimental parameters in the previous subsection, the UAV group
receives the most tasks in 35 min, and it is also the most prone to an unbalanced load of the
UAV group at this time. From Figure 7, we can find that although some of the UAVs in the
UAV group have higher loads and some have lower loads, the overall trend is balanced
and there is no load imbalance. At 65 min, the number of receiving tasks of the UAV group
began to decrease. From Figure 8, we can find that the UAV group is still in a state of load
balancing.

In summary, by counting the load status of each UAV in the UAV group at different
times, we can find that the ABVI algorithm helps the UAV group achieve load balancing
during the task migration process and avoiding the unbalanced loads in the UAV group.

Besides, we analyze the load status of the UAV group by calculating the difference
between the highest load and the lowest load in the UAV group (i.e., range). For example,
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when the highest load of the UAV group is 0.9 and the lowest load is 0.2, then the difference
between the two is 0.7, which is the range. The larger the range value, the more unbalanced
the load state of the UAV group; otherwise, the smaller the range value, the more balanced
the load of the UAV group. The specific experimental results are shown in Figure 9.
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Figure 9. The comparison of the ABVI algorithm and the other two algorithms in optimizing the
load of the UAV group.

In the experiment, we set a range baseline of load states, the corresponding value of
this baseline is 0.2. More specifically, when the range is less than 0.2, we think that the
UAV group is in a state of load balancing. Otherwise, it is in a state of an unbalanced load.
From Figure 9, we can find that the curve corresponding to the ABVI algorithm is always
lower than the curve corresponding to the other two algorithms. Between 0 and 5 min, the
range becomes larger. This is because the number of tasks received by the UAV groups at
the beginning is relatively small, so some UAVs are vacant, and the range becomes larger.
And between 6 and 70 min, the range sometimes increases slowly but also decreases. The
main reason is that the ABVI algorithm considers the load status of the UAV to the reward
function, so the ABVI algorithm can dynamically adjust the parameters in the algorithm
and make the UAV group achieve load balancing. On the contrary, the remaining two
algorithms do not take the UAV load into account, so the curve corresponding to the TVI
algorithm and the MDP-SD algorithm has been increasing.

In summary, the ABVI algorithm can help the UAV group achieve load balancing, and
the performance of the ABVI algorithm in optimizing the load of the UAV group is higher
than the TVI algorithm and the MDP-SD algorithm.

5.5. Analysis of the Flight Time of the UAV Group

In this section, we analyze whether the ABVI algorithm can improve the flight time of
the UAV group. The flight time of the UAV group is mainly determined by the residual
energy of each UAV in the UAV group. In real life, when the residual energy state of a
UAV is below 0.1 (that is, 10%), the UAV must exit the UAV group and land directly to
the designated location. Therefore, we consider the residual energy state of the UAV as an
influencing factor in the ABVI algorithm, which can avoid that some UAVs consume too
much energy due to too many processing tasks and prevent UAVs withdrew from the UAV
group prematurely.

In Figure 10, the ordinate represents the range of the residual energy states of the
UAV group. This means that we use a range to determine whether the residual energy
of the UAV group is in equilibrium. The large range means that the residual energy of
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some UAVs in the UAV group is too low and the residual energy of some UAVs is too
high, which will cause some UAVs to consume too much energy and exit the UAV group
early. However, the reduction in the number of UAVs in the UAV groups will affect the
service range and service quality of the users. In this experiment, we set a baseline range
of residual energy states, the corresponding value of the baseline is 0.25. When the range
of residual energy states is greater than 0.25, we think that the residual energy gap of some
UAVs in the UAV group is too large, which will reduce the flight time of the UAV group.
On the contrary, When the range of residual energy states is less than 0.25, the residual
energy gap of each UAV in the UAV group is small, and the flight time of the UAV group
will also increase. From Figure 10, we can find that the curve corresponding to the ABVI
algorithm has always been below the baseline.
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Figure 10. The range of residual energy state versus time.

Besides, we also found that the three curves in the Figure 10 are rising from 0 to
35 min. This is because the number of task migrations needs to be following the Poisson
distribution. During this time, the number of tasks that the UAV group needs to process
has been increasing, so the range has grown. Between 35 min and 70 min, the curve
corresponding to the TVI algorithm and the curve corresponding to the MDP-SD began
to fluctuate.There are two reasons for this situation. First, because the TVI algorithm and
the MDP-SD algorithm both use distance as a priority condition when choosing target
migration nodes, when the number of task migrations begins to slowly decrease, some
UAVs that are closer to SMDs still consume high energy, some UAVs farther away from
SMDs have lower energy consumption, which causes the range of residual energy state to
start to fluctuate. Second, the TVI algorithm and the MDP-SD do not fully consider the
impact of the residual energy state of the UAV group on the migration strategy. As for the
ABVI algorithm, it can help the residual energy of the UAV group to be in a balanced state.
In Formula (38), we take the load state and the residual energy state of the UAV group
into the reward function of this model, where ω1 and ω2 will be dynamically adjusted
according to the average residual energy state of the UAV group, to ensure that the residual
energy of the UAV group is in a balanced state and thereby improve the flight time of the
UAV group. Besides, the curve corresponding to the ABVI algorithm is not smooth. The
main reason is that ω1 and ω2 change dynamically during the value iteration process, so
the residual energy state of each UAV group changes irregularly.

In summary, the ABVI algorithm can improve the flight time of the UAV group, and
ensure the integrity of the UAV group to the greatest extent.
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6. Conclusions

In this paper, we combine the dynamic edge servers (that is, the UAVs) and the static
edge servers (that is, the BSs) to innovatively establish a three-layer MEC system. The
purpose of this paper is to design an effective task migration strategy, which can reduce the
total energy consumption of the UAV group as much as possible while ensuring the user
service quality and the load balance of the UAV group. Aiming at this joint optimization
problem, we established the MDPUR model and proposed the ABVI algorithm combined
with the PC algorithm. Moreover, the ABVI algorithm fully considers the influence of
the three factors of the load state of the UAVs, the residual energy state of the UAVs, and
the migration cost on the MEC system. Finally, the simulation experiments in this paper
prove that the ABVI algorithm is more efficient than the traditional TVI algorithm and the
MDP-SD algorithm. Through the ABVI algorithm, we can obtain a more reasonable and
effective task migration strategy, which can not only ensure the user service quality but
also make the UAV group reach a load-balanced state.
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