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Abstract: With the goal of creating a flexible spatial parallel robot system in which the elastic
deformation of the flexible link causes a rigid moving platform to produce small vibrations, we
proposed an adaptive sliding mode control algorithm based on a neural network. To improve the
calculation efficiency, the finite element method was used to discretize the flexible spatial link, and
then the displacement field of the flexible spatial link was described based on floating frame of
reference coordinates, and the dynamic differential equation of the flexible spatial link considering
high-frequency vibrations was established through the Lagrange equation. This was combined with
the dynamic equation of the rigid link and the dynamic equation considering small displacements
of the rigid movable platform due to elastic deformation, and a highly nonlinear and accurate
dynamic model with a rigid–flexible coupling effect was obtained. Based on the established accurate
multi-body dynamics model, the driving torque with coupling effects was calculated in advance
for feedforward compensation, and the adaptive sliding mode controller was used to improve the
tracking performance of the system. The nonlinear error was examined to determine the performance
of the neural network’s approximation of the nonlinear system. The trajectory errors of the moving
platform in the X-, Y-, and Z-directions were reduced by 12.1%, 38.8%, and 50.34%, respectively.
The results showed that the designed adaptive sliding mode neural network control met the control
accuracy requirements, and suppressed the vibrations generated by the deformation of the flexible
spatial link.

Keywords: flexible spatial parallel robot; control algorithm; neural network; dynamics

1. Introduction

Parallel robots exhibit good dynamic performance, small cumulative errors, and fast
response speeds. They are widely used in equipment manufacturing, aviation, precision
machining, and other fields [1–3]. As the development of parallel robots has tended toward
high speeds and low weights, the flexible deformation in the system has a significant
influence on the accuracy of trajectory tracking. Therefore, determining how to improve
the precise control of the trajectory and suppress the vibrations generated by the flexible
deformation has become a popular subject of study in flexible parallel robots [4–7]. The
elastic deformation and vibrations caused by the link and joint flexibility are important
factors that affect the accuracy and stability of the system’s trajectory. Most of the current
research focuses on the analysis of joint flexibility [8–11], but there has been less analysis of
the flexibility of the robot arm [12–14]. In one study, the control problems of rigid–flexible
coupled spatial manipulators using a wavelet fuzzy neural network were analyzed [15].
Yang et al. [16] applied a nonlinear proportional–derivative (PD) algorithm to study the
control strategy of the self-excited vibrations caused by large deformations of the flexible
link in the parallel mechanism. Zhang et al. [17] used a hybrid control algorithm with a
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PD feedback controller and strain rate feedback (SRF) controller to actively control the
vibrations of a flexible parallel platform. However, the above research mainly adopted
hypothetical modal methods to describe the displacement field of flexible connecting rods,
ignoring the problem of control and observation overflow caused by high-frequency vibra-
tions. Since a parallel robot with flexible links is a high-dimensional nonlinear multi-body
system with multiple inputs and outputs, it is very difficult to establish a correct dynamics
model and numerically solve it, which affects the complexity and response speed of the
controller. To improve the calculation efficiency of the control system, the deformation of
the flexible link and the establishment of an accurate dynamic model that considers the
rigid–flexible coupling effects are essential. In one study, a sliding film variable structure
controller was used to control a flexible two-freedom-degree parallel machine [18]. In other
studies, the control problems of planar flexible parallel robots were mainly studied [19–21],
but there have been few studies on the control analysis of flexible spatial parallel robots. To
study the control of a spatial parallel robot with a flexible link, Zhang and Han [22] used
the link in the spatial parallel robot as a flexible component to analyze the elastic vibrations,
and combined this with optimal control theory to control the vibrations of the moving
platform at a lower level. To ensure the control accuracy, Stefan et al. [23] suppressed the
vibrations by optimizing the control based on the influence of dynamic parameters on the
system. However, there have been few studies on the control strategy analysis of highly
coupled and highly nonlinear time-varying systems with rigid and spatial flexible links.

Various control strategies, including proportional–integral–derivative (PID), sliding
mode, and neural network control, are commonly used control strategies in the field of
robot control. However, for the parallel robot with flexible spatial links, its dynamic model
is a strongly coupled, highly nonlinear and high index differential algebraic equation. Its
mass matrix is no longer a symmetric matrix, and its stiffness matrix is no longer a constant
matrix, which brings great challenges to the accurate establishment and numerical solution
of the dynamic model. At the same time, it also brings difficulties to the reasonable design
of control strategy. Thus, it is difficult to obtain better control performance through a
single control strategy. To achieve high control accuracy, suppress flexible vibrations, and
achieve dynamic control of the system, a combination of a neural network controller and
an adaptive sliding mode controller was used in this work to study the control of flexible
spatial parallel robots.

This article presents five new contributions:

(1) Unlike previous models, in order to reduce the influence of deformation uncertainty
on the dynamic performance of the system, this model uses the FFR method to
establish an accurate dynamic model with rigid–flexible coupling effects and a small
displacement of the moving platform caused by flexible deformation. Based on the
established precise dynamics model of the system, the pre-calculated driving torque
with coupling effects is subjected to feedforward compensation, and the adaptive
sliding mode controller is used to ensure the tracking performance and improve the
response speed of the system.

(2) The dynamics equation of a flexible spatial beam with high-frequency vibrations is estab-
lished through a combination of the finite element method and the Lagrange equation.

(3) The displacement field of the flexible spatial link is described based on a floating
frame of reference so that the coupling effects in the dynamic model can be considered.
Through the boundary conditions and the coordination matrix, the dynamics equation
of the moving platform that causes a small displacement of the moving platform due
to elastic deformation is considered.

(4) Approximating the effects of nonlinear errors and unknown interference through
neural networks is crucial for achieving high positioning accuracy.

(5) The controller can reach the optimal control performance with only a small number
of hidden layer nodes, which shows that the controller has a simple structure, easy
implementation, and universal applicability.
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2. Flexible Spatial Parallel Robot

The flexible spatial parallel robot is a strongly coupled, time-varying, nonlinear multi-
body system model. In this study, a spatial parallel robot with both flexible and rigid links
in the kinematic branch chain was analyzed as an example, as shown in Figure 1.
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Figure 1. Schematic diagram of a flexible spatial parallel robot.

The flexible spatial parallel robot is composed of a fixed platform, a moving platform,
and three triangular symmetrical kinematic chains. The kinematic chain contains a total
of three components: a driving link, an intermediate link, and a driven link. The driven
link is a slender beam with a uniform circular cross section, and its length-to-diameter
ratio is greater than 20. Therefore, the elastic deformation of the driven link during the
movement of the system will affect the trajectory accuracy of the moving platform and the
system stability. In addition, since the rotation axis of the driven link is perpendicular to
the rotation axis of the driving link and the intermediate link, the driven link is a spatial
flexible link in the global coordinate system. The constraint relationship of the flexible
spatial parallel robot is shown in Table 1.

Table 1. The constraint relationship.

Kinematic Pair Component

Rotating pair Driving link, fixed platform
Rotating pair Intermediate link, driving link
Rotating pair Driven link, intermediate link
Hook hinge Moving platform, driven link

3. Dynamic Model of the Flexible Spatial Parallel Robot
3.1. Dynamic Model of the Flexible Spatial Link

Since the three kinematic chains are triangularly symmetric, after performing dynamic
analysis on any one of the kinematic chains, the other two kinematic chains can be obtained
through transformation relationships. The global coordinate system O-XYZ is set at the
geometric center of the fixed platform, the local coordinate system is set at the joint of each
component, and the angle between each component and its own rotation axis is θij, where
i = 1, 2, 3 refers to the kinematic chain, and j = 1, 2, and 3 correspond to the driving link,
intermediate link, and flexible spatial link, respectively. ϕi (i = 1, 2, 3) denotes the angle
between the global coordinate system and the local coordinate system in the Z direction.
The coordinate system P-xyz of the rigid moving platform is set at its geometric center. The
system analysis model is shown in Figure 2.



Electronics 2021, 10, 212 4 of 22

Electronics 2021, 10, x FOR PEER REVIEW 4 of 23 
 

 

direction. The coordinate system P-xyz of the rigid moving platform is set at its geometric 
center. The system analysis model is shown in Figure 2. 

 
Figure 2. The analysis model of the system. 

To consider the impact of high-frequency vibrations on the system, the flexible spa-
tial link can be divided into a series of discrete units by the finite element method, and 
then based on the boundary conditions, the deformation displacement of the flexible spa-
tial link in the local coordinate system can be obtained as: 

[ ]T
f f u v w= =u Nq  (1)

where N is the interpolation function matrix; fq  is the generalized elastic coordinate in 
the local coordinate system; and u, v, and w represent the deformation displacements of 
the generalized elastic coordinates for any point of the flexible spatial link relative to the 
X-, Y-, and Z-axes of the local coordinate system, respectively. 

The large-scale rigid motion of the system and the deformation motion of the flexible 
spatial links produce strong coupling effects, and the displacement field vector of any 
point w  on a flexible spatial link considering the coupling effects can be established by 
the floating frame of reference method as: 

0 0w fr = r + T(u + u )  (2)

where 0r  is the displacement vector of the origin of the floating frame of reference coor-
dinate system in the global coordinate system, T  is the transformation matrix, and 0u  
is the undeformed vector of the flexible spatial link in the floating frame of reference co-
ordinate system. 

The absolute rotation angle of the flexible spatial link in the global coordinate system 
can be written as: 

3 1 2

3 3

0 0
0

0
i O i i

i i f

θ θ
θ θ

−

−

  
  = + +   
   +   

θ T 
 

 (3)

where ijθ  is the rigid absolute angular velocity of the link, 3i fθ −
  is the elastic angle of the 

flexible spatial link, and 3i Oθ −
  is the absolute angular velocity of the flexible spatial link 

in the global coordinate system. The deformation diagram of the flexible spatial link is 
shown in Figure 3. 

Z

O X

zAi

xAi

Pi P

θi1

θi2

θi3

φi
Y

yCi

Ai

xCi
z y

x

Bi

Ci
xBi

zBi

Figure 2. The analysis model of the system.

To consider the impact of high-frequency vibrations on the system, the flexible spatial
link can be divided into a series of discrete units by the finite element method, and then
based on the boundary conditions, the deformation displacement of the flexible spatial link
in the local coordinate system can be obtained as:

u f = Nq f =
[

u v w
]T (1)

where N is the interpolation function matrix; q f is the generalized elastic coordinate in the
local coordinate system; and u, v, and w represent the deformation displacements of the
generalized elastic coordinates for any point of the flexible spatial link relative to the X-, Y-,
and Z-axes of the local coordinate system, respectively.

The large-scale rigid motion of the system and the deformation motion of the flexible
spatial links produce strong coupling effects, and the displacement field vector of any
point w on a flexible spatial link considering the coupling effects can be established by the
floating frame of reference method as:

rw=r0 + T(u0+uf) (2)

where r0 is the displacement vector of the origin of the floating frame of reference co-
ordinate system in the global coordinate system, T is the transformation matrix, and u0
is the undeformed vector of the flexible spatial link in the floating frame of reference
coordinate system.

The absolute rotation angle of the flexible spatial link in the global coordinate system
can be written as:

.
θi3−O =

 0
.
θi1 +

.
θi2

0

+ T

 0
0

.
θi3 +

.
θi3− f

 (3)

where
.
θij is the rigid absolute angular velocity of the link,

.
θi3− f is the elastic angle of the

flexible spatial link, and
.
θi3−O is the absolute angular velocity of the flexible spatial link in

the global coordinate system. The deformation diagram of the flexible spatial link is shown
in Figure 3.
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Using the kinetic energy formula, the translational and rotational kinetic energy of the
flexible spatial link can be calculated. At the same time, the elastic potential energy of the
flexible spatial link can be directly calculated according to the deformation energy formula.
The kinetic and potential energy formulas are as follows:

T3 = 1
2

∫
V

ρ
( .
rw
)T .

rwdV + 1
2

∫ l
0

.
θi3−OdJ f

V3 = 1
2 E
∫ l

0

[
a
(

∂u(x,t)
∂x

)2
+ Iz

(
∂2v(x,t)

∂x2

)2
+ Iy

(
∂2w(x,t)

∂x2

)2
]

dx + 1
2

∫ l
0 GIp

(
∂ϕ(x,t)

∂x

)2
dx

(4)

where lj and mj are the length and mass of the link, respectively; J3 is the moment of inertia
of the flexible spatial link; E is the elastic modulus; a is the cross-sectional area; Ip, Iy, and
Iz are the moments of inertia of the flexible spatial beam cross-section along the x-, y-,
and z-axes, respectively; u0, v0, and w0 are the elastic displacement of any point on the
flexible spatial link along the x-, y-, and z-axes, respectively; and ϕ0 is the elastic angular
displacement about the z-axis.

3.2. Dynamic Model of Rigid Links

Similarly, according to the kinetic energy formula, the kinetic and potential energy of
the rigid driving link and the rigid intermediate link can be calculated as:

T1 = 1
2 m1v2

1
T2 = 1

2 m2v2
2 +

1
2 J2w2

2
V1 = − 1

2 m1gl1
V2 = −m2gl1 sin(θi1)− 1

2 m2gl2 sin(θi1 + θi2)

(5)

where m1 and m2 are the masses of the driving link and the intermediate link, respectively;
l1 and l2 are the lengths of the driving link and intermediate link, respectively; v1 and v2
are the absolute angular velocities of the driving link and intermediate link, respectively;
and J f represents the area moment of inertia of the intermediate link.

3.3. Dynamic Model of Flexible Spatial Parallel Robot

The kinetic energy and potential energy of the kinematic chain can be written as{
Ti = T1 + T2 + T3
Vi = V1 + V2 + V3

(6)

where:
T1 = 1

6 m1l2
1

.
θ

2
i1,

T2 = 1
2 m2l2

1

.
θ

2
i1 +

1
6 m2l2

2

.
θ

2
i1 +

1
2 m2l1l2

.
θi1

.
θi2 cos(θi2),

T3 = 1
2

.
qTM

.
q

V1 = − 1
2 m1gl1 sin(θi1),

V2 = − 1
2 m2gl2 sin(θi1 + θi2).
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V3 =
1
2

qTKq

where q and
.
q represent the generalized position coordinates and the generalized velocity

coordinates, respectively; and M and K represent the mass matrix and the stiffness matrix,
respectively. The specific expression of M and K are shown in Appendix A.

Lagrange’s equations are typically used to derive the dynamics equations as follows:

d
dt

(
∂L
∂

.
q

)
− ∂L

∂q
= Q (7)

where L = T −V, T is the kinetic energy, V is the potential energy, and Q is the general-
ized force.

By substituting Equation (6) into Lagrange’s equation, the dynamic equation of the
kinematic chain can be derived.

Since the elastic deformation of the flexible link will cause a small displacement of the
rigid moving platform and affect the control performance of the system, it is necessary to
establish a dynamic equation of the moving platform considering the small displacement.
Based on the coordination matrix [24] and boundary conditions, the actual displacement of
the rigid moving platform in the global coordinate system can be written as:

P′ = P + JP∆P (8)

where JP =

 1 0 0 0 Pz −Py
0 1 0 −Pz 0 Px
0 0 1 Py −Px 0

 is the coordination matrix, P =
[

Px Py Pz
]

is the desired trajectory of the rigid moving platform, and ∆P is a small displacement. The
kinetic and potential energies of the rigid moving platform can be written as:{

TP = 1
2 (

.
P
′
)

T
mP

.
P
′
+ 1

2 JwT
P

VP = mPgZP′
(9)

where mP, J, and wT
P are the mass, moment of inertia, and absolute angular velocity vector

of the rigid moving platform, respectively, and ZP′ is the displacement of the moving
platform in the Z-direction in the global coordinate system. By substituting Equation (7)
into Lagrange’s equation, the dynamics equation of the moving platform can be derived.

Assembling the dynamics equations of the kinematic chains and the moving platform,
the dynamics equation of the flexible spatial parallel robot can be written as:

M
..
q + Kq + C

.
q + G = τ (10)

Since the inertia matrix of the flexible spatial link must be multiplied by the asymmetric
transformation matrix to be expressed in the global coordinate system, the inertia matrix in
the global coordinate system is also an asymmetric matrix. In the same way, the stiffness
matrix will become a time-varying matrix after being transformed to the global coordinate
system. C

.
q is the vector containing the centrifugal and Coriolis forces, G is the generalized

gravity vector of the system, and τ is the system-control torque.

4. Intelligent Control
4.1. Problem Statement

The vibrations caused by the elastic deformation of the flexible spatial link are sup-
pressed by active control, which improves the system’s ability to adapt to the external
environment and suppresses the various modal responses. However, because the flexible
spatial parallel robot is highly nonlinear, strongly coupled, and time varying, there will
be certain errors in the control strategy based only on the dynamic model obtained by
the nominal inertial parameters. In the actual work of the flexible spatial parallel robot,
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due to various external disturbances and its own model errors, it is difficult to obtain an
accurate dynamic model, and the accuracy of the dynamic model will directly affect the
design of the control strategy. The RBF (radical basis function) neural network is a type of
feedforward neural network with excellent performance that can approximate arbitrary
nonlinear functions with arbitrary precision, and has a global approximation capability.
Compared with the BP (Back Propagation) neural network, the learning process of the RBF
neural network converges faster, and there is no local minimum problem. In addition, the
RBF neural network has strong nonlinear fitting ability, robustness, memory ability, and
self-learning ability, which has a positive effect on the compensation of nonlinear systems.
To improve the response speed and calculation efficiency and achieve high positioning
accuracy, based on the precise dynamics model, the pre-calculated driving torque is sub-
jected to feedforward compensation to ensure that the system has a fast response speed. At
the same time, the sliding mode control algorithm is used to ensure that the system has
good robustness. Making use of the excellent characteristics of a radial basis function (RBF)
neural network, the unknown items of the system are nonlinearly approximated, and the
entire network is optimized using a gradient descent algorithm to solve the problem of
precise control and flexible suppression of flexible spatial parallel robots.

4.2. Feedforward Compensation

According to Equation (10), the control equation of the flexible spatial parallel robot
can be obtained as:

M
..
q + Kq + C

.
q + G = τ0 + τ f + τd (11)

where τ0 is the nominal model control torque, τ f is the model parameter error, and τd is
the uncertain external dynamic disturbance.

By substituting the ideal trajectory P into the dynamic equation (Equation (10)), the
nominal model of the flexible spatial parallel robot can be obtained. The feedforward
control compensates for the pre-calculated control torque. The feedforward compensation
can be written as:

τ0 = M0
..
q + K0q + C0

.
q + G0 (12)

where M0, K0, C0, and G0 represent the inertia matrix, stiffness matrix, centrifugal force
matrix, and gravity matrix of the nominal model, respectively.

4.3. Sliding Mode Variable Structure Control

Equation (8) is rewritten as:

..
q = M−1

∆ (τf − τd −K∆q− C∆
.
q−G∆) (13)

where M∆ = M−M0, K∆ = K−K0, C∆ = C− C0, and G∆ = G−G0 represent the inertia,
stiffness, centrifugal force, and gravity matrices of the differences between the actual and
nominal models, respectively.

Equation (10) is written as an equation of state, as follows:{ .
x1 = x2.
x2 = f (x) + bu

(14)

where x1 = q, x2 =
.
q, b = M−1

∆ , and f (x) = b(−K∆x1 − C∆x2 −G∆).
The trajectory error can be written as:

e = x1 − xd.
e =

.
x1 −

.
xd..

e =
..
x1 −

..
xd =

.
x2 −

..
xd

(15)
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where
.
xd and

..
xd are the desired angular velocity and angular acceleration of the drive link

of the system, respectively. According to Equation (15), the system sliding mode function
can be defined as {

s =
.
e + ce

c > 0
(16)

The sliding mode reading law can be defined as:

.
s = −K1

s
‖s‖ −K2s (17)

where K1 = diag
(

k11, k12, , . . . , k1m
)

and K2 = diag
(

k21, k22, , . . . , k2m
)

are
positive definite diagonal matrices, the reaching law can ensure the system state to reach
the sliding surface quickly in finite time; therefore:

.
s =

..
e + c

.
e =

.
x2 −

..
xd = f (x) + bu− ..

xd + c
.
e (18)

When s→ 0 , e and
.
e also tend to zero. However, because the system vibration

disturbance term is unknown and is affected by inertial parameters, the value of the f (x)
is difficult to determine.

4.4. Adaptive Sliding Mode Neural Network Control

Considering that neural networks have universal approximation characteristics, an
RBF neural network is used to approximate the system’s nonlinear uncertainty f (x). The
RBF neural network approximation model is shown in Figure 4.
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ˆ
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ˆ ( )rs x=W h  (22)
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2

E t f x f x= −  (24)

The weights are adjusted according to the gradient descent method, and: 

[ ]

( ) ˆ( ) ( ( ) ( ))

( ) ( 1) ( ) ( 1) ( 2)

k k
k

k k k k k

E tw t f x f x h
w

w t w t w t w t w t

η η

α

∂Δ = − = − − ∂
 = − + Δ + − − −

, (25)

where ( )0  1η ∈ ，  represents the learning rate, and ( )0,1α ∈  represents the momentum 

factor. As long as the values of nc  and nb  are designed within the effective mapping 

+

x

RBF Neural 
Network controller

Flexible spatial 
parallel robot

-

ˆ ( )f x

( )f x

Figure 4. The block diagram for the radial basis function (RBF) neural network approximation.

As shown in Figure 4, the network input is x =
[

x1 x2 x3
]T , and the ideal

output of the RBF neural network can be written as:

hk = exp

(
‖x− cnk‖2

b2
nk

)
(19)

f (x) = WTh(x) + ε (20)

where hk =
[

h1 . . . hk
]

is the Gaussian function, k is the number of nodes in the hidden
layer of the network, n is the number of inputs to the network, cn is the center vector, bn
is the base width, and W and ε are the ideal neural network weights and approximation
errors, respectively.

The actual output of the RBF neural network can be written as:

f̂ (x) = ŴTh(x) (21)

where Ŵ =
[

w1 . . . wk
]

is the estimate of the ideal neural network weight.
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The adaptive law can be defined as:

.
Ŵ = rsh(x) (22)

For an arbitrarily small ε, the RBF neural network has optimal weights W∗ that satisfy
the following equation:

‖ε‖ = ‖ f (x)−W∗Th(x)‖ (23)

Equation (17) shows that the RBF neural network has the characteristics of approxi-
mating a nonlinear function with arbitrary precision.

The error index of the network approximation can be written as:

E(t) =
1
2
( f̂ (x)− f (x))

2
(24)

The weights are adjusted according to the gradient descent method, and:{
∆wk(t) = −η

∂E(t)
∂wk

= −η( f̂ (x)− f (x))hk

wk(t) = wk(t− 1) + ∆wk(t) + α[wk(t− 1)− wk(t− 2)]
, (25)

where η ∈ (0, 1) represents the learning rate, and α ∈ (0, 1) represents the momentum fac-
tor. As long as the values of cn and bn are designed within the effective mapping range of the
network input, the Gaussian function can be guaranteed to achieve an effective mapping.

4.5. Stability Analysis

The Lyapunov function is used to analyze the stability of the proposed control law in
the flexible spatial parallel robot.

Taking the sliding mode function as Equation (16), the reaching law as Equation (17),
and the model uncertainty τd 6= 0 and neural network adaptive law as Equation (22), the
adaptive sliding mode neural network controller design of flexible spatial parallel robot
can be written as: 

τ = τ0 + τf + τd
τ0 = M0

..
q + K0q + C0

.
q + G0

τf = M∆

(
K1

s
‖s‖ + K2s

)
τd = ŴTh

(26)

Therefore, the flexible spatial parallel robot system will be asymptotically stable to the
desired trajectory.

The Lyapunov function is defined as:

V =
1
2

sTs +
1
2

tr
(

W̃
T

r−1W̃
)

(27)

where W̃ is the actual neural network weight.
Taking the derivative of both sides of Equation (27) yields the following:

.
V = sT .

s + tr
(

W̃
T

r−1
.

W̃
)

(28)

where W̃ = Ŵ−W. Hence,
.

W̃ =
.

Ŵ = −rhST .
Therefore:

.
V = sT[( ..

xd −
..
x
)
+ c

.
e
]
+ tr

(
W̃

T
r−1

.
W̃
)

= sT
[ ..
xd + c

.
e + M−1Kq + M−1C

.
q + M−1G−M−1

(
τ0 + τd + τf

)]
+ tr

(
W̃

T
r−1

.
W̃
) (29)
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The uncertainty term τd of the model can be approximated by a neural network, so it
can be expressed as follows:

τd = WTh + ε (30)

where ε is the neural network approximation error, and ‖ε‖ < εN , the estimated value of
the model uncertainty can be written as:

τ̂d = ŴTh (31)

and therefore:

.
V = sT

[
−K1

s
‖s‖ −K2s + M−1(WTh + ε

)
−M−1ŴTh

]
+ tr

(
W̃

T
r−1

.
W̃
)

= sT
[
−K1

s
‖s‖ −K2s + M−1ε

]
+ STW̃

T
h + tr

(
W̃

T
r−1

.
W̃
)

≤ −cminK1‖s‖ − cminK2s2 + ‖s‖‖M−1ε‖+ STW̃
T

h + tr
(

W̃
T

r−1
.

W̃
)

≤ −s
[
cminK1 − ‖M−1ε‖

]
− cminK2s2

(32)

The external interference and the approximation error of the neural network are
bounded, and satisfy the following convergence conditions:

cminK1 > ε‖M−1‖ (33)

Let η = cminK1 − ε‖M−1‖+ cminK2‖s‖, then η > 0 can be obtained. Thus, the first
derivative of Lyapunov function can be written as:

.
V ≤ η‖s‖ (34)

Based on these equations,
.
V ≤ 0, and, according to the principle of LaSalle invariance,

the state of the system can reach the sliding surface in finite time, and the system is
progressively stable.

The control diagram is shown in Figure 5. P is the actual trajectory of the flexible
parallel robot, and Pd is the ideal input of the system. The ideal input can be solved
using the inverse dynamics to obtain the generalized position, generalized velocity, and
generalized acceleration coordinates in the ideal state. Substituting them into the dynamic
equation (Equation (10)) yields the driving torque τ0 for the feedforward compensation,
which allows the system to achieve a fast response speed. Because the system has modeling
errors, vibrations are caused by flexible spatial link deformation and external interference,
that is, unknown nonlinear items. The approximation characteristics of the RBF neural
network were used in this study to approximate the unknown nonlinear items, and the
sliding mode control algorithm ensures that the system has better robustness characteristics
and high trajectory tracking accuracy.
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5. Simulation Results

To verify the correctness of the dynamic simulation model, the dynamic simulation
model of the flexible spatial parallel robot was first compared with the results of a MATLAB
numerical model, and the dynamic model was combined with a MATLAB/Simulink model
to analyze the effectiveness of the control model. The inertial parameters of the flexible
spatial parallel robot shown in Figure 1 are summarized in Table 2.

Table 2. The inertial parameters of the system.

Component Driving Link Intermediate Link Driven Link

Mass (kg) 1.8 0.3 1.5
Length (m) 0.4 0.1 0.8

Density (kg/m3) 7801 7801 2740
Poisson’s ratio 0.29 0.29 0.33

Elastic Modulus (N/m2) 2.07 × 1011 2.07 × 1011 2.07 × 1011

The comparison of the dynamic simulation model of the flexible spatial parallel robot
and the MATLAB/Simulink numerical model is shown in Figure 6.

Electronics 2021, 10, x FOR PEER REVIEW 12 of 23 
 

 

MATLAB numerical model, and the dynamic model was combined with a MATLAB/Sim-
ulink model to analyze the effectiveness of the control model. The inertial parameters of 
the flexible spatial parallel robot shown in Figure 1 are summarized in Table 2. 

Table 2. The inertial parameters of the system. 

Component Driving Link Intermediate Link Driven Link 
Mass (kg) 1.8 0.3 1.5 

Length (m) 0.4 0.1 0.8 
Density (kg/m3) 7801 7801 2740 
Poisson’s ratio 0.29 0.29 0.33 

Elastic Modulus (N/m2) 2.07 × 1011 2.07 × 1011 2.07 × 1011 

The comparison of the dynamic simulation model of the flexible spatial parallel robot 
and the MATLAB/Simulink numerical model is shown in Figure 6. 

Moving 
platform 
expected 
trajectory

Moving 
platform 
expected 
trajectory

Inverse 
kinematics 

model

Inverse 
dynamics 

model Torque com
parison

Simulation model

Numerical model

Px, Py,  Pz

Px,  Py,  Pz

q, qʹ τ n

τs 

 
Figure 6. Comparison chart of the dynamics models. 

5.1. Dynamic Simulation Model 
The dynamic simulation model was established using the ADAMS software. The spe-

cific modeling process was as follows. 
(1) Based on the SOLIDWORKS software, a three-dimensional model of the spatial 

parallel robot was constructed, and it was saved in (‘x_t’) format. 
(2) The three-dimensional model was imported into ADAMS, the constraint rela-

tionship between the components was set as shown in Table 1, and the material 
properties were defined as shown in Table 2. Since the flexible link was a simple 
homogeneous component, it was softened directly through the ADAMS/FLEX 
module, and the original rigid link was deleted. The constraints between the 
flexible link and its connected components were then reset. 

(3) An inverse dynamics analysis was performed on the dynamic simulation model 
by setting the moving platform drive. 

5.2. Numerical Model 
According to the deduced dynamics equation (Equation (7)), the inverse kinematics 

model result of the numerical model was obtained by implementing it in MATLAB. The 

Figure 6. Comparison chart of the dynamics models.

5.1. Dynamic Simulation Model

The dynamic simulation model was established using the ADAMS software. The
specific modeling process was as follows.

(1) Based on the SOLIDWORKS software, a three-dimensional model of the spatial
parallel robot was constructed, and it was saved in (‘x_t’) format.

(2) The three-dimensional model was imported into ADAMS, the constraint relationship
between the components was set as shown in Table 1, and the material properties
were defined as shown in Table 2. Since the flexible link was a simple homogeneous
component, it was softened directly through the ADAMS/FLEX module, and the
original rigid link was deleted. The constraints between the flexible link and its
connected components were then reset.

(3) An inverse dynamics analysis was performed on the dynamic simulation model by
setting the moving platform drive.
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5.2. Numerical Model

According to the deduced dynamics equation (Equation (7)), the inverse kinemat-
ics model result of the numerical model was obtained by implementing it in MATLAB.
The expected trajectory of the moving platform of the flexible spatial parallel robot is
expressed as: 

Px = 0.1 cos(ωt)
Py = 0.1 sin(ωt)
Pz = −0.7

(35)

where the angular velocity ω = 2 rad/s. The flexible spatial parallel robot was then
simulated based on the dynamics model. The inverse dynamics results could be obtained
through simulation analysis, as shown in Figures 7 and 8.
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Based on the comparison of the dynamics results in Figures 6 and 7, the motion
trends of the kinematic chains of the flexible spatial parallel robot were consistent, but the
dynamic simulation model was affected by assembly errors in the modeling process and
the number of flexible links meshes, so the torque values were greater than those of the
numerical model. This was consistent with the actual working conditions, and it proved
the correctness of the established dynamic model. Furthermore, it provided a parameter
reference for further control strategy research.

5.3. Control Simulation Results

Based on the established dynamic simulation model, the specific steps to establish a
system control model through the combination of ADAMS and MATLAB/Simulink were
as follows:
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(1) The output variable of the ADAMS model was the input variable of the MATLAB/
Simulink control model. According to the control algorithm we proposed, the three
driving torques of the kinematic chain were set as control input signals, and the actual
trajectory of the rigid moving platform was the control output signal. The dynamic
model and the control model were connected through the ADAMS/Control module.

(2) MATLAB/Simulink were used to build the control system of the flexible spatial
parallel robot. The information exchange diagram of the co-simulation control model
is shown in Figure 9.
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Based on the control algorithm we proposed, the control parameters can be written
as input signal x =

[
e

.
e Pd

.
Pd

..
Pd

]
; base width bn = 2; the network structure is

taken as 5-n-1, where n is the number of hidden layer nodes. To analyze the influence of
different network structures on the network approximation, n is set to 3, 5, 7, and 9, and
the influence of the number of hidden layer nodes on the error accuracy and convergence
speed is shown in Table 3.

Table 3. The analysis of the hidden layer nodes (mm).

Number of Hidden Layer Nodes Steps to Reach the Target
Number of Training Error (mm)

3 4376 5.215
5 2947 2.016
7 3542 3.962
9 4608 4.372

It can be seen in Table 3 that as the number of hidden layer nodes increased, the error
value first decreased, and then increased. When the number of hidden layer nodes was set
to 5, the number of training steps was the smallest, the error convergence speed was the
fastest, and the error value was the smallest. Therefore, the number of hidden layer nodes
was set to 5.

To improve the control performance of the system, the RBF neural network was used
to model multiple input and multiple output data through offline training. According to the
derivation of the control strategy, the entire training sample error index was set according
to Equation (22), and the gradient descent method was used to adjust the network weight,
then the number of training samples was set to NS = 5000, and the error index change
process was obtained after offline training as shown in Figure 10.
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Using the trained network weights and Gaussian function parameters to test the data,
the results are shown in Table 4.

Table 4. Test samples and results.

Input Output

1 0 0 0 1 0.967 0.022 −0.089
0.97 0.1 0 0 0 1.011 0.002 −0.007

1 1 0.1 0 1 0.977 0.033 −0.140

It can be seen in Table 4 that the use of RBF neural network can well achieve recogni-
tion performance.

To verify that the proposed controller had finite time convergence, based on the
control algorithm proposed in Equation (28), the convergence of the state trajectory of the
numerical model and the simulation model were obtained through the state equation, and
the results are shown in Figures 11–13.
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It can be seen in Figures 11–13 that the trajectory trend of the simulation model
and the numerical model was basically the same, and the trajectory error converged to 0
after a period of time. However, because the dynamic equation of the simulation model
was solved directly by ADAMS, the solution accuracy of the model was affected by the
modeling error, joint clearance, and mesh density, so that the convergence speed of the
simulation model was faster than that of the numerical model, and the numerical floating
range was larger than that of the numerical model. Among them, the error of the elastic
displacement of the flexible spatial link of the simulation in the X direction was attenuated
to 0 at 0.11 s from 5.2 mm at the initial 0.07 s; the error of the elastic displacement of the
flexible spatial link of the simulation model in the Y direction was attenuated to 0 at 0.12 s
from 0.8 mm at the initial 0.03 s; the error of the elastic displacement of the flexible spatial
link of the simulation model in the Z direction was attenuated to 0 at 0.09 s from 2.3 mm at
the initial 0.04 s. Therefore, the simulation model effectively realized the control simulation
of flexible spatial parallel robot.

The comparison of the tracking accuracy of the moving platform in the X-, Y-, and
Z-directions in a free state (zero load) and with loads of three and five times the total mass
of the components are shown in Figures 14–16.



Electronics 2021, 10, 212 16 of 22
Electronics 2021, 10, x FOR PEER REVIEW 17 of 23 
 

 

 
Figure 14. Tracking accuracy of the moving platform in X-direction. 

 
Figure 15. Tracking accuracy of the moving platform in Y-direction. 

 
Figure 16. Tracking accuracy of the moving platform in Z-direction. 

As the load of the moving platform increased, the system vibration effect became 
more significant. The vibration was then suppressed under the action of the control algo-
rithm and finally tended toward a stable value. Therefore, as long as the system control 
parameters were set reasonably, the moving platform could reach equilibrium, and the 
stability of the system movement was guaranteed. 

0.1 0.2 0.3 0.4 0.50
-0.4

-0.2

0.2

0.4

0
X-

er
ro

rs
 (m

m
)

Time (s)

 No load
 3 times the weigh of the kinematic chain
 5 times the weigh of the kinematic chain

0.1 0.2 0.3 0.4 0.50
-1.2

-0.9

-0.6

-0.3

0.3

0

Y-
er

ro
rs

 (m
m

)

Time (s)

 No load
 3 times the weigh of the kinematic chain
 5 times the weigh of the kinematic chain

0.1 0.2 0.3 0.4 0.50
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Z-
er

ro
rs

 (m
m

)

Time (s)

 No load
 3 times the weigh of the kinematic chain
 5 times the weigh of the kinematic chain

Figure 14. Tracking accuracy of the moving platform in X-direction.
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Figure 16. Tracking accuracy of the moving platform in Z-direction.

As the load of the moving platform increased, the system vibration effect became
more significant. The vibration was then suppressed under the action of the control
algorithm and finally tended toward a stable value. Therefore, as long as the system control
parameters were set reasonably, the moving platform could reach equilibrium, and the
stability of the system movement was guaranteed.
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The elastic deformation of the flexible spatial link was the main factor causing the
system vibration. It is necessary to verify the effectiveness of the proposed control algorithm
on the deformation of the flexible spatial link. Based on the simulation of the control
algorithm, the trajectories of the flexible spatial link with or without the controller are
shown in Figures 17–19.
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According to the trajectory comparison chart of the flexible spatial link, the trajectory
vibrations of the system without control was greater than the trajectory vibration with
control, which verified that the controller could effectively suppress the vibrations caused
by the flexible deformation of the system.

To better highlight the superiority of the tracking performance of the control algorithm
in this paper, under the same conditions, the position PID control algorithm was compared
with the adaptive sliding mode neural network control algorithm. The control block
diagram of the position PID and the adaptive sliding mode neural network are shown in
Figures 20 and 21.
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Figure 21. Control block diagram of the adaptive sliding mode neural network controller.

The gain parameters of the position PID were KP = diag
(

100 150 100
)
,

KI = diag
(

0.2 0.1 0.1
)
, and KD = diag

(
50 50 48

)
.

According to the control strategy shown in Figures 20 and 21, the flexible spatial
parallel robot was simulated based on the co-simulation control model, and the position
tracking results of the geometric center of the rigid moving platform in the global coordinate
system were obtained, as shown in Figures 22–24.
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Figure 22. Tracking diagram of the displacement trajectory in X-direction of the rigid end effector.
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Figure 23. Tracking diagram of the displacement trajectory in Y-direction of the rigid end effector.
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Figure 24. Tracking diagram of the displacement trajectory in Z-direction of the rigid end effector.

Based on the same system parameters, the trajectory accuracy of the moving platform
using the adaptive sliding mode neural network control algorithm was better than that
under the position PID control algorithm, and the vibration phenomenon caused by elastic
deformation was better suppressed. The flexible spatial parallel robot could effectively
track the desired trajectory under the action of the controller, and realize synchronous
movement. The tracking error gradually converged to 0, and no major fluctuations occurred
when the system reached a stable state.

To observe the control effect of the different controllers more intuitively, the maximum
deviations of tracking trajectories under different control methods were compared, and the
results are shown in Table 5.

Table 5. Analysis of the deviation (mm).

Deviation Control Algorithm X Y Z

Maximum
deviation

RBF 2.936 1.268 2.96
PID 3.372 2.072 5.961

Note: RBF = radial basis function; PID = proportional–integral–derivative.

For the position PID control algorithm, the deviations of the rigid moving platform
in the X-, Y-, and Z-directions were 3.372 mm, 2.072 mm, and 5.961 mm, respectively;
while for the adaptive sliding mode neural network control algorithm, the deviations of
the rigid moving platform in the X-, Y-, and Z-directions were 2.936 mm, 1.268 mm, and
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2.96 mm, respectively. Compared with the PID control algorithm, the neural network
control algorithm considered the dynamic performance of the system, approximated
the system’s unknown nonlinear items, and suppressed the vibrations generated by the
deformation of the flexible spatial link. The trajectory errors of the moving platform
in the X-, Y-, and Z-directions were reduced by 12.1%, 38.8%, and 50.34%, respectively.
Therefore, the adaptive sliding mode neural network control algorithm proposed in this
paper not only had higher tracking accuracy, but also restrained the vibrations caused by
the flexible deformation.

6. Conclusions

(1) In this paper, through a co-simulation of ADAMS and MATLAB/Simulink, a dy-
namic model and a control model of a flexible spatial parallel robot were numerically
simulated. The correctness of the derived dynamic equations and the effectiveness of the
control strategy were verified. The simulation results were basically consistent with the
actual working conditions.

(2) Since the control algorithm proposed in this paper was designed based on an
accurate dynamic model, it avoided the complicated parameter adjustment process and
improved the accuracy of the control model.

(3) An adaptive sliding mode neural network control model was established for the
system vibration phenomenon caused by the elastic deformation of the flexible spatial link
in the flexible spatial parallel robot, and compared with the trajectory tracking accuracy
of the position PID control algorithm. The control ability of the adaptive sliding mode
neural network was superior, and the system stability and accuracy under its control were
improved.
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Appendix A

K =



EA
L 0 0 0 0 0 − EA

L 0 0 0 0 0
12EIzz
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;

M =
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0 qT
m(
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dt )
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m(
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dt )
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. . . qT
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dBθn
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m



1 0
1 0
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0 (
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dt )qm (
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dt )qm . . . (
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dt )qm B


,

where B and m represent the transform matrix and mass matrix, respectively.
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