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Abstract

:

In the present paper, a novel meta-heuristic algorithm, namely quasi-oppositional search-based political optimizer (QOPO), is proposed to solve a non-convex single and bi-objective economic and emission load dispatch problem (EELDP). In the proposed QOPO technique, an opposite estimate candidate solution is performed simultaneously on each candidate solution of the political optimizer to find a better solution of EELDP. In the bi-objective EELDP, QOPSO is applied to simultaneously minimize fuel costs and emissions by considering various constraints such as the valve-point loading effect (VPLE) and generator limits for a generation. The effectiveness of the proposed QOPO technique has been applied on three units, six units, 10-units, 11-units, 13-units, and 40-unit systems by considering the VPLE, transmission line losses, and generator limits. The results obtained using the proposed QOPO are compared with those obtained by other techniques reported in the literature. The relative results divulge that the proposed QOPO technique has a good exploration and exploitation capability to determine the optimal global solution compared to the other methods provided in the literature without violation of any constraints and bounded limits.
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1. Introduction


With the growing demand for power day by day, the cost incurred in generating power, particularly in fossil fuel plants, is very high. Therefore, it is becoming mandatory to dispatch the power economically to decrease the fuel cost and maintain the stable operation of the power system [1,2]. Thus, the objective of the economic load dispatch problem (ELDP) is to schedule the committed power generating units output to meet the required load demand at minimum fuel cost and satisfy all the system and generating unit constraints. In literature, several conventional techniques such as Newton−Raphson, lambda iteration, dynamic programming, and gradient methods have been recommended to solve this problem. However, as mentioned in [3], the gradient technique has a sluggish convergence rate and has difficulties dealing with inequality restrictions.



Further, the convergence properties of Newton’s technique are sensitive to the initial estimate and may fail to produce an optimal solution owing to incorrect initialization. Inaccuracy and piece-wise linear cost approximation plague the linear programming approach. Furthermore, as mentioned in [3], quadratic programming is inefficient in dealing with the piece-wise quadratic cost approximation. Even though the interior point approach is said to be more efficient computationally, in the case of non-linear objective functions, it may offer an infeasible solution due to improper selection of the step size [4]. Moreover, these conventional techniques require incremental fuel cost curves, which are monotonously increasing/piece-wise linear in nature. However, the input−output characteristics of ELDP are non-convex, non-linear, and nonsmooth in nature [5]. To overcome the drawbacks of conventional techniques, various soft computing methods have been suggested in the literature.



In [5], a fuzzy particle swarm optimization (PSO) is discussed by providing a new mechanism that adjusts the inertia weights of PSO to avoid the premature convergence problem of conventional PSO. An improved firefly algorithm (FA) that prevents the premature convergence problem of standard FA and to enhance the exploration capability is suggested in [6]. A modified flower pollination technique has been suggested by improving the search direction utilizing the user-controlled mutation strategy in the local pollination phase and by carrying an exhaustive exploitation phase to solve ELDP by considering the valve-point effect [7]. In [8], a Q-learning-based PSO is suggested to overcome the drawback of conventional PSO by finding the best policy for exploiting the expected values. A multi-objective PSO is presented in [9] to solve the ELDP problem by minimizing the generation cost and transmission loss as two objective functions. A modified PSO technique has been suggested by making the best use of adaptive acceleration constant in [10]. Here, the acceleration constant best value is selected based on the optimum number of fitness evaluations. In [11], a hybrid bacteria foraging (BFA) and PSO is suggested to solve ELDP by considering the valve-point effect. In this hybrid technique, the best particle’s biased velocity vector is added by BFA random velocity to decrease the randomness during the search process and to increase the swarming. An invasive weed optimization technique is discussed to solve ELDP by considering prohibited operating zones and valve-point effects in [12]. A grey wolf optimizer (GWO)-based ELDP is discussed by application for small to large systems in [13].



Similarly, an ant lion optimization is suggested to solve ELDP by applying it to four small test systems and considering valve-point loading [14]. In [15], a new hybrid method that combines the PSO and pattern search (PS) method has been suggested to solve ELDP. The main objective of this paper is to overcome the disadvantage of the PS method that requires an initial starting point. The authors in [16] have hybridized Big Bang–Big Crunch (BB-BC) and PSO optimization techniques to solve ELDP to enhance the performance and robustness of the conventional BB-BC technique. In [17], an application of artificial bee colony (ABC) optimization to solve ELDP has been discussed by applying it to unit-3, unit-13, and unit-40 test systems with valve-point effect. An application of hybrid differential evolution (DE) and genetic algorithm (GA) with a dynamically coordinated PS algorithm is discussed to improve the solution of the ELDP by considering valve-point loading in [18]. Similar to [13] and [14], the authors in [19] combined the catfish effects on the PSO algorithm to solve ELDP by considering valve-point effects. In [20], the authors considered the traditional ELDP by solving it in a new approach by turning off the inefficient generators by making use of the DE technique. This approach has reduced the total fuel cost by 19.88% when compared to traditional methods. In [21], a relative study of five soft computing techniques, namely, DE, PSO, evolutionary programming (EP), GA, and simulated annealing (SA), is suggested to dynamic ELDP by taking into consideration the constraints such as generator ramp rate limits. In [22], the authors have improved the exploration and convergence capability of conventional teaching learner-based optimization technique by introducing the concept of quasi-oppositional-based learning to solve ELDP. A modified DE technique is suggested to solve ELDP by introducing a tournament-best vector in the mutation stage rather than selecting a random vector, and the random scaling factor is considered instead of a fixed scaling factor to enhance the exploration capability in [23]. In [24], the sequential quadratic programming (SQP) technique is hybridized with PSO to solve ELDP by considering large-scale systems. In a similar way, the authors in [25] have suggested solving ELDP by introducing the self-adaptive chaos and Kalman filtering technique with PSO to circumvent the premature convergence of conventional PSO. In [2], a new evolutionary technique, namely clustering cuckoo search algorithm, is discussed to solve the ELDP by applying it on five different test systems, namely, 6 unit, 10 unit, 11 unit, 13 unit, 15 unit, and 40 unit systems by considering the constraints such as transmission losses and valve-point loading.



It can be observed from the above literature that most of the algorithms [5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25] require tuning of a large number of control parameters. Thus, to obtain an optimum solution, the control parameters need to be tuned correctly, which is time-consuming and tedious task. Recently, a human-inspired algorithm, namely political optimizer (PO), has been proposed in [26]. The PO technique mimics the behavior of the politicians, which mathematically maps all the important stages of politics to accomplish the end goal of the optimization. It is observed in [26] that with the tuning of only one control parameter, this technique has shown good convergence speed and exploitation capabilities in solving various engineering design problems. However, in the traditional PO, during its final iterative state of optimization, approximately all the individuals are clustered in a compact region around the present optimal individual in the final stage of iterative optimization. As a result, when tackling complicated multimodal global optimization issues, the complete population may converge to the local optimum quickly. Hence, an improved version of PO that enhances the exploration capability is the main goal of global optimization. Therefore, to enhance the exploration and exploitation capability of the political optimizer, the concept of quasi-oppositional learning is incorporated and named the quasi-oppositional political optimizer (QOPO) method. In the present work, the QOPO method is proposed to solve EELDP. Thus, the main contribution of the work is as follows:




	
A novel quasi oppositional-based political optimizer is proposed to enhance the exploration capability of the conventional political optimizer.



	
After validating the efficacy of the proposed to solve conventional ELD, it is employed to solve the bi-objective optimization problem (economic emission dispatch).



	
To explicate the performance of the proposed QOPO, two practical effects of valve-point loading and transmission line losses are simulated.



	
The competence and effectiveness of the proposed QOPO in terms of robustness, quality of the solution, and computational efficiency are compared with various methods suggested in the literature.








Further, the algorithm is tested on different test systems to test the efficiency and robustness, namely, unit 3, unit 6, unit 10, unit 11, unit 13, and unit 40. The rest of the paper is structured in the following way. Section 2 provides the problem formulation of ELDP. The solution methodology is discussed in Section 3. Results and discussions are discussed in Section 4. Finally, conclusions are discussed in Section 4.




2. Formulation of Economic Emission Load Dispatch Problem


The EELDP is a constraint optimization problem that minimizes the total fuel cost and total emission cost that occurred during allocating total power to different generating units. In EELDP, some of the constraints include power balance considering with and without transmission line losses, generating capacity limit, and the effect of valve-point loading [22].



2.1. Objective Function


The objective function of EELDP is to minimize the total fuel cost and minimize the amount of emissions emitted by the generating stations. Thus, the objective function is expressed as the weighted summation of the fuel cost incurred by individual committed generating units and emissions caused by fossil-fuelled thermal units, which is shown below:


  min   F =   ∑  i = 1  N    C i  (  P i  )   + σ ×   ∑  i = 1  N    E i  (  P i  )    



(1)




where Ci(Pi) is the fuel cost obtained by the ith generating unit, Ei(Pi) is the emissions obtained by the ith generating unit, Pi indicates the active power generated by ith generating unit,  σ  indicates the ratio of   C (  P i  max    )      and   E (  P i  min   )  , and N represents the number of generating units.



2.1.1. Smooth Cost Function Characteristics


In standard ELDP, the smooth fuel cost characteristic function is expressed as a quadratic function, described below [22].


    ∑  i = 1  N    C i  (  P i  )   =   ∑  i = 1  N    a i  +  b i   P i  +  c i   P i 2     



(2)




where ai, bi, and ci signify the fuel cost coefficients of the ith unit.




2.1.2. Nonsmooth Cost Function Characteristics


In thermal-generating power plants, to control the generating unit’s output power, multiple valves are utilized. The main function of these valves is to control the flow of inlet steam. Thus, these steam valves are opened during the increase in power demand; during this process, a sudden increase in losses is observed, resulting in ripples in the cost curve characteristics. This occurrence is called a valve-point loading effect. This valve-point loading effect accounts for multiple non-differential points and nonsmooth cost curve characteristics [22]. The objective function of ELDP in the presence of valve-point effects makes the conventional objective function as non-convex quadratic, and a sinusoidal function manner as described below:


    ∑  i = 1  N    C i  (  P i  )   =   ∑  i = 1  N    a i  +  b i   P i  +  c i   P i 2    +  |   e i  sin (  f i  (  P i  min   −  P i  ) )  |   



(3)




where ei and fi represent cost coefficients that reflect the valve-point loading effects, and Pimin indicates the minimum active power generation limit of ith generator.




2.1.3. Nonsmooth Emission Function Characteristics


The emissions caused by fossil fuel generating units are mainly due to two main pollutants, SOx and NOx. The total pollutant emission function is expressed as follows:


    ∑  i = 1  N    E i  (  P i  )   =   ∑  i = 1  N    α i  +  β i   P i  +  γ i   P i 2    +  η i  exp (  δ i   P i  )  



(4)




where    α i  ,  β i  ,  γ i  ,  η i   ,   and     δ i    represent emission coefficients of ith generator.



From the above equation, it can be observed that the pollutant emission function is very non-linear due to the presence of both quadratic term and exponential function.





2.2. Constraint Functions


2.2.1. Power Balance Constraint


The summation of total power generated by committed generators should be equal to the load demand PD and the total transmission losses, which is given as follows [22]:


   (    ∑  i = 1  N    P i     )  −  P D  −  P L  = 0  



(5)




where PL signifies the total transmission loss.



The losses incurred in transmitting the power from the generation station to load are normally computed using load flow analysis or using Kron’s loss coefficients given below.


   P L  =   ∑  i = 1  N     ∑  j = 1  N    P i   B  i j    P j  +   ∑  i = 1  N    P i   B  0 i   +  B  00          



(6)




where Bij, B0i, and B00 signify the loss B coefficients and constants during normal operating conditions.




2.2.2. Generation Limit Constraints


The active power-generated output of each generating unit should satisfy the maximum Pmax and minimum Pmin limits which is expressed as [22]:


   P i     m i n   ≤  P i  ≤  P i     m a x   , f o r   i = 1 , 2 , 3 , … , N .  



(7)










3. Solution Methodology Using QOPO


The political optimizer is a new meta-heuristic optimization technique proposed in the year 2020 and is based on the multi-phase political process [26]. This PO technique mimics the behavior of the politicians to accomplish the end goal of the optimization. This PO technique is generalized by incorporating few harmonies such as the concept of parties and its participation in various constituencies, the connotation of politicians with the parties, cooperation between the politicians within the same party and competition between the other parties through the inter-party election, switching of politicians from one party to the other, confrontation before the election for votes, and cooperation between the members elected during the election in parliament [26]. Thus, PO performs five sequences of phases to optimize the given problem, which are (1) party creation and allocation of the constituency, (2) campaigning during election, (3) party switching, (4) election between the politicians of the inter-party, and (5) parliamentary affairs.



3.1. Party Creation and Allocation of Constituency


Like all other meta-heuristic techniques, the algorithm starts with initializing the population P of size NP. Here, each row in the population constitutes the political party and the number of constituencies [26]. The number of input variables of the problem is denoted as D.


  P = {  P  i , 1   ,  P  i , 2   , …  P  i , D   } ,   i = 1 , 2 , … N P    



(8)







Further, in addition, as a party member, a political solution acts as an election candidate. This is shown as follows:


    C = {  C 1  ,  C 2  , …  C n  )      C j  = {  P i j  ,  P 2 j  , …  P n j  }    



(9)







From the above, it can be considered as there are “n” numbers of constituencies in which “n” number of parties compete in each constituency C.



The best member of the party based on fitness is considered as the leader of the party. The selection of the leader of the party is exhibited as follows [26]:


    q = a r min f (  P i j  ) ,   ∀ i ∈ { 1 , 2 , 3 , … n }   a n d   1 ≤ j ≤ n      P i *  =  P i q     



(10)




where    P *  = {  P 1 *  ,  P 2 *  , … ,  P n *  }   represents the set of all the political party leaders.



If    C i *    represents the candidate won from constituency i, then the set of winning candidates form the parliamentarians C*, which is given as follows:


   C *  = {  C 1 *  ,  C 2 *  , … ,  C n *  }  



(11)








3.2. Election Campaigning


In this phase, each candidate improves its majority by considering aspects, namely, (1) candidates learning from their previous election, (2) influencing the voters with reference to the leader of the party and by himself, and (3) by performing the comparative analysis with the constituency winner. The campaigning of the candidate follows these three stages and updates his position either using (12) or (13) based on its relation with the previous position, i.e., if the fitness of the candidate is improved, then the position is updated using (12); otherwise, it is updated using (13) [26]. These are explained using the following two equations:


   p  i , k  j  ( t + 1 ) =  {     m *  + r a n d · ( m * −  p  i , k  j  ( t ) ) ,   i f    p  i , k  j  ( t − 1 ) ≤  p  i , k  j  ( t ) ≤  m *     or     p  i , k  j  ( t − 1 ) ≥  p  i , k  j  ( t ) ≥  m *       m *  + ( 2 × r a n d − 1 ) ·  |  m * −  p  i , k  j  ( t )  |  ,   i f    p  i , k  j  ( t − 1 ) ≤  m *  ≤  p  i , k  j  ( t )    or     p  i , k  j  ( t − 1 ) ≥  m *  ≥  p  i , k  j  ( t )      m *  + ( 2 × r a n d − 1 ) ·  |  m * −  p  i , k  j  ( t − 1 )  |  ,   i f    m *  ≤  p  i , k  j  ( t − 1 ) ≤  p  i , k  j  ( t )    or     m *  ≥  p  i , k  j  ( t − 1 ) ≥  p  i , k  j  ( t )      



(12)






   p  i , k  j  ( t + 1 ) =  {     m *  + ( 2 × r a n d − 1 ) ·  |  m * −  p  i , k  j  ( t )  |  ,   i f    p  i , k  j  ( t − 1 ) ≤  p  i , k  j  ( t ) ≤  m *     or     p  i , k  j  ( t − 1 ) ≥  p  i , k  j  ( t ) ≥  m *       p  i , k  j  ( t − 1 ) + r a n d (  p  i , k  j  ( t ) −  p  i , k  j  ( t − 1 ) ) ,   i f    p  i , k  j  ( t − 1 ) ≤  m *  ≤  p  i , k  j  ( t )    or     p  i , k  j  ( t − 1 ) ≥  m *  ≥  p  i , k  j  ( t )      m *  + ( 2 × r a n d − 1 ) ·  |  m * −  p  i , k  j  ( t − 1 )  |  ,   i f    m *  ≤  p  i , k  j  ( t − 1 ) ≤  p  i , k  j  ( t )    or     m *  ≥  p  i , k  j  ( t − 1 ) ≥  p  i , k  j  ( t )      



(13)








3.3. Party Switching


In this phase, a member of the party    P i j    is selected based on the adaptive parameter  λ  and switched to the other party    P r    having the least fit member    P r q    randomly [26]. The index q is computed using (14).


  q = arg max f (  p r j  ) , 1 ≤ j ≤ n  



(14)








3.4. Election Phase


In this phase, a candidate is said to win the election based on fitness and is represented by (17).


    q = arg min f (  p r j  ) , 1 ≤ j ≤ n      c j *  =  p q j     



(15)







Here, after the candidate is declared as the winner of a constituency, the party leaders are updated using (10).




3.5. Parliamentary Affairs


In this stage, the government is formed after the election. The leaders of the party and parliamentarians are categorical by using (10) and (15), respectively. Now, each parliamentarian updates his position by selecting another parliamentarian randomly if there is an improvement in fitness [26]. A detailed explanation of the conventional PO can be found in [26].




3.6. Quasi-Opposition-Based Learning


After performing the parliamentary operation, the fitness of each parliamentarian is examined by quasi-opposition position, i.e., here, the concept of quasi-opposition-based learning (QOBL) is applied to each parliamentarian. Then, after obtaining the fitness of the quasi-opposition position of each parliamentarian, the best NP parliamentarians are selected for the next iteration. To perform the QOBL, the opposite position of the parliamentarian to the present position of the parliamentarian, along with the mean of the search region, is calculated. Here, the opposite position of the parliamentarian to the given position of the parliamentarian and the mean of the search region is calculated in the following way [22].



If    z i   (   z  i , 1   ,  z  i , 2   , … ,  z  i , d    )    is a vector comprised of d-real numbers whose upper and lower limits are    z j  = [  z j  m i n   ,  z j  m a   x   ]   ∀   j ∈ { 1 , 2 , … , d }  , then its opposite vector   o  z i   (  o  z  i , 1   , o  z  i , 2   , … , o  z  i , d    )    is obtained using (16).


  o  z j  =  z j  m i n   +  z j  m a x   −  z j   



(16)







The mean (mz) of the search space limit is calculated as:


  m z =    (   z j  m i n   +  z j  m a x    )   2   



(17)







Mathematically, the QOBL is obtained using (18):


  Q O  Z j  = r a n d  (     z j  m i n   +  z j  m a x    2  ,  z j  m i n   +  z j  m a x   −  z j   )   



(18)







Now, each position of the parliamentarian obtained after the parliamentarian phase is compared with the QOZ position of the parliamentarian obtained above to select the best individual for next-generation or iteration.



The step-by-step implementation of the proposed QOPO to EELD problem is shown in Figure 1.





4. Results and Discussion


To illustrate the efficiency of the proposed QOPO algorithm to solve EELDP, it is initially tested by pertaining it to solve conventional ELDP, i.e., minimizing fuel cost by considering three real-world benchmark test systems. This is as follows: case study 1 deals with the small test system that consists of three generating units with 850 MW load demand. Case study 2 deals with the medium test system that consists of 13 generating units with 1080 MW and 2520 MW load demands. Case study 3 deals with the large-scale test system that consists of 40 generating units with 10,500 MW load demand. After verifying the ability to solve conventional ELDP, the proposed method is applied to solve bi-objective functions, i.e., minimizing the total fuel cost and the total emission by considering valve-point loading effect, generator limits, and transmission line losses on unit 6, unit 10, unit 11, and unit 40 systems. For all the experiments, the proposed QOPO technique has been executed with a population size of 64 (the number of parties (8) multiplied by the number of constituencies (8)) and a lambda value of 0.2. These control parameters have been selected by varying the population size, i.e., {25, 36, 49, 64, 81, 100} and lambda value from 0.05 to 0.4 with variation of 0.05. Further, the maximum number of iterations taken for unit 3, unit 6, unit 10, unit 11, unit 13, and unit 40 are 500, 1500, 5000, 5000, 5000, and 10,000, respectively.



4.1. Single Objective Function (Minimizing the Total Fuel Costs)


4.1.1. Case Study 1: Three Generating Units with 850 MW Load Demand


In this case study, the three-unit generating system is utilized to evaluate the performance of the proposed QOPO with a load demand of 850 MW by considering the valve-point loading effect. The fuel cost coefficients and generator maximum and minimum limits have been taken from [8,27]. The results obtained using QOPO are provided in Table 1, along with the results obtained in the literature. Table 1 represents the power allocation between different generators for a given load demand of 850 MW. It is seen that the proposed QOPO gives better results (with a total cost of 8234.07 USD/h) when compared to GA, EP, EP-SQP, PSO, PSO-SQP, PS, GA-PS-SQP, gravitational search algorithm (GSA) techniques. Further, the results are summarized in Table 2 and compared with other comparative techniques suggested in the literature. The proposed method being tested on a small test system, the results obtained using proposed method is similar to few techniques (island bat algorithm (iBA), Hybrid Chaotic PSO (HCPSO), HCPSO-SQP). However, still being a small sized test system, the proposed method has been able to provide better results than other techniques such as GAB, mean fast EP (MFEP), GA-PS-SQP, GWO, GSA, novel direct search method (NDS), novel stochastic search method (NSS), SA, EP, and GA. When compared with these techniques, there is a minimum saving of 0.01 USD/h and maximum saving of 19.04 USD/h when compared to GAB and GWO techniques, respectively.




4.1.2. Case Study 2: 13 Generating Units System with 1080 MW and 2520 MW Load Demands


In this case study, the 13 generating unit system is utilized to evaluate the performance of the proposed QOPO with load demands of 1080 MW and 2520 MW by considering the valve-point loading effect. The fuel cost coefficients and generator maximum and minimum limits have been taken from [8,27]. The results obtained using QOPO are provided in Table 3 and Table 4 for 1080 MW and 2520 MW load demands, along with the results obtained in the literature. Table 3 and Table 5 represent the power allocation between different generators for given load demands of 1080 MW and 2520 MW, respectively. It is seen that the proposed QOPO gives better results (with a total cost of 17,988.99 USD/h and 24,328.14 USD/h, respectively) when compared to neural network (NN)-efficient PSO (NN-EPSO), GWO, SA, and GA techniques. Further, the results are summarized in Table 5 and Table 6 for 1080 MW and 2520 MW load demands, respectively. These summarized results are compared with other comparative techniques suggested in the literature. It is observed from Table 3, Table 4, Table 5 and Table 6 that the proposed method is able to provide better results than other techniques such as classical EP (CEP), Fast EP (FEP), MFEP, improved FEP (IFEP), PSO, EP-SQP, SA, and GA. As the size of the system has been increased to 13 units, the proposed method has been able to save a minimum of 2.04 USD/h and a maximum of 453.6 USD/h when compared to EP-SQP and NN-EPSO methods, respectively, for load demand of 1800 MW. It has also been observed that with increase in demand to 2520 MW from 1800 MW, there is further saving with a minimum of 70.09 USD/h and maximum of 642.77 USD/h in comparison with GA and SA, respectively. This shows the efficiency of the proposed QOPO technique.




4.1.3. Case Study 3: 40 Generating Units System with 10,500 MW Load Demand


In this case study, the 40 generating unit system is utilized to evaluate the performance of the proposed QOPO with a load demand of 10,500 MW by considering the valve-point loading effect. The fuel cost coefficients and generator maximum and minimum limits have been taken from [8,27]. The results obtained using QOPO are provided in Table 7 for 10,500 MW load demand, along with the results obtained in the literature. Table 7 represents the power allocation between different generators for a given load demand of 10,500 MW. It is seen that the proposed QOPO gives better results (with a total cost of 121,789.6 USD/h) when compared to modified PSO (MPSO), PSO, mean personal best base-oriented particle PSO (MPPSO), adaptive personal best base-oriented PSO (APPSO), and decisive personal base-oriented PSO (DPSO) techniques. Further, the results are summarized in Table 8 for 10,500 MW load demands. These summarized results are compared with 19 other comparative techniques suggested in the literature. The best results obtained for the given test system are represented with bold letters. It has been observed from Table 8 that the proposed method is able to provide a minimum saving of 21.77 USD/h and a maximum saving of 2140.85 USD/h when compared to ACO and PSO techniques, respectively. This shows the robustness of the proposed QOPO technique to provide efficient results. Further, the minimum saving of fuel cost with increase in number of generating units has been depicted in Figure 2.





4.2. Bi-Objective Function (Minimizing the Total Fuel Cost and the Total Emission)


4.2.1. Case Study 1: Six Generating Units with 2.834 (p.u.) Load Demand


In this case study for bi-objective optimization, a small test system with six generating unit system is initially considered to evaluate the execution of the proposed QOPO with load demand 2.834 p.u. by considering the transmission line losses. The fuel cost coefficients, emission coefficients, and generator maximum and minimum limits have been taken from [41,42]. The results obtained using QOPO are provided in Table 9 for 2.834 p.u. load demand, along with the results obtained in the literature [41]. Table 9 represents the power allocation between different generators for a given load. It can be seen that the proposed QOPO gives better results (with a total cost of 605.9984 USD/h and 0.2044 (ton/h)) when compared to other techniques. It is to be noted here that even though the proposed method provides a slightly high emission of 0.008 (ton/h) compared to MOEA/D, the total fuel cost is a lot less at 19.6916 (USD/h). The best results obtained for the given test system are represented with bold letters. Hence, it can be said from Table 9 that the proposed method can provide a better compromised solution of total fuel cost and emission compared to other techniques.




4.2.2. Case Study 2: Six Generating Units with 1200 MW Load Demand


In continuation to case study 1, in this case, again, a small test system has been considered to verify its effectiveness to provide a better and accurate solution for high load demand. The fuel cost coefficients, emission coefficients, and generator maximum and minimum limits have been taken from [41,42]. The results obtained using QOPO for minimizing the objectives are tabulated in Table 10 for load demand of 1200 MW. The obtained results are compared with nine different techniques proposed in the literature and have been taken from [41]. Like case study 1 for six generating units with load demand of 2.3834 p.u., the proposed method provides better fuel cost when compared to other techniques with slightly high emission of (9.5 ton/h) compared to NGPSO. This slightly high emission is obtained due to the high minimization of fuel cost of 61,197.87551 USD/h, which is less by an amount of 5340.46479 USD/h compared to NGPSO. Further, when compared to other techniques, it has been observed that the proposed QOPO provides not only minimum fuel cost but also the minimum emission cost. Therefore, it can be said that the proposed QOPO provides a better compromised solution.




4.2.3. Case Study 3: Ten Generating Units with 2000 MW Load Demand


In this case study, the efficacy of the proposed method in providing a better solution is tested on ten generating units system by considering nonsmooth fuel test function, i.e., the valve-point loading effect along with transmission line losses. The fuel cost coefficients, emission coefficients, and generator maximum and minimum limits have been taken from [41,42]. The results obtained using QOPO have been provided in Table 11 for load demand of 2000 MW. The results have been compared with different techniques provided in [41]. From this table, it can be observed that with the increase in the number of generating units along with the complex objective function, i.e., by considering VPLE, the proposed QOPO method provided better fuel cost compared to other techniques and the emission cost also. For instance, the proposed method has been able to save the fuel cost a minimum of 914.9639 USD/h and a maximum of 4287.239 USD/h in comparison with BSA and NGPSO, respectively. Similarly, emission cost has been reduced by a minimum of 285.8845 ton/h and a maximum of 534.7493 ton/h when compared to NGPSO and BSA techniques, respectively. This shows the robustness of the proposed QOPO method in providing better solutions compared to other techniques.




4.2.4. Case Study 4: Eleven Generating Units with 2500 MW Load Demand


In this case study, the proposed QOPO method is applied to the 11 generating unit system by considering transmission line losses without the VPLE effect. The data for this generating unit has been taken from [41,42] and the results thus obtained are tabulated in Table 12. The comparative results have been taken from [41]. From the table, it is identified that as the fuel cost is minimized, the emission has been increased, for instance, in the case of GSA technique, i.e., the GSA technique provides a reduced fuel cost of 69.018 USD/h. However, the reduced fuel cost provided by GSA is due to an increased emission cost of 105.088 ton/h in comparison with the proposed QOPO. On the other hand, if the emission is decreased, the total fuel cost has been increased; for example, in the case of NGPSO technique, i.e., NGPSO provides a minimum emission cost of 236.149 ton/h with an increased fuel cost of 534.23143 USD/h when compared to proposed QOPO technique. In this situation, the proposed QOPO technique has provided a better compromised solution of the two objectives with 12,491.67857 USD/h and 1897.861924 ton/h.




4.2.5. Case Study 5: Forty Generating Units with 10,500 MW Load Demand


In this case study, the effectiveness of the proposed method in providing a better solution is tested on a large test system consisting of forty generating units by considering nonsmooth fuel test function, i.e., the valve-point loading effect. The complete details of fuel cost coefficients, emission coefficients, and generator maximum and minimum limits have been taken from [41,42]. The results obtained using QOPO and the comparative results acquired using other techniques that are taken from [41] have been provided in Table 13 for a load demand of 10,500 MW. Table 13 depicts the optimal generator scheduling obtained using 12 evolutionary techniques: SMPSO, PDE, SPEA-2, MODE, QOTLBO, NSGA, FPA, TLBO, NGPSO, MoGA GSA, and proposed QOPO. Like the other case studies, from the comparative results, it can be intuitively identified that the proposed QOPO technique provides a better compromised solution than other techniques. For instance, FPA provides a minimum fuel cost of about 6374.567 USD/h in comparison with the proposed QOPO. However, this minimum fuel cost is obtained by compromising with the emission cost, i.e., FPA provides an increased emission cost of 31,573.3 ton/h when compared to the proposed QOPO. This shows the proposed technique provides a better compromised solution when compared to other methods.





4.3. Computational Efficiency


In this section, the computational efficiency of the proposed QOPO method has been evaluated by comparing it with ISMA, SMA, HHO, JS, TSA, and PSO techniques suggested in the literature [42]. The computational time taken by these methods for unit 6 with a load of 2.834, unit 10, unit 11, and unit 40 are tabulated in Table 14, Table 15, Table 16 and Table 17, respectively. From Table 14, Table 15, Table 16 and Table 17, it can be seen that there is a minimum saving of 90.25%, 81.61%, 94.18%, and 32.88% computational time using proposed QOPO by minimizing only the fuel cost for unit 6, unit 10, unit 11, and unit 40 systems, respectively. Similarly, a minimum saving of 89.14%, 76.48%, 96.32%, and 76.15% computational time using proposed QOPO is attained by minimizing only the emission cost for unit 6, unit 10, unit 11, and unit 40 systems, respectively. Therefore, it can be said that the proposed QOPO method provides better solutions for various test systems with less computation time.





5. Conclusions


In the present work, a novel quasi-oppositional learning-based political optimizer is proposed to solve the non-convex, non-linear, and nonsmooth economic emission load dispatch problem. The applicability of the proposed QOPO method in providing reliable and competitive solutions in solving ELD is initially demonstrated by applying it to various generating units ranging from three to forty units. It has been found that the cost of saving fuel cost has been increased from 0.01 USD/h to 21.77 USD/h as system size increases from three units to forty units, respectively. Then, effectiveness and performance of the proposed QOPO method are tested on small (unit 6), medium (unit 10 and unit 11), and large (40 unit) generating units by not only considering fuel cost but also the emission cost with different load demands and constraints. The comparative results by considering both of the objective functions show the ability of the proposed method to solve EELDP by providing minimum cost and minimum emission in generating power by different generating units. Further, it has been observed that the proposed method requires less computation time and possesses better convergence characteristics to obtain the best-compromised solutions compared to other strategies. For instance, the proposed QOPO saves a minimum of 112.286 s when compared to other techniques. The main limitation of the proposed QOPO technique is that it requires a higher number of iterations to obtain a better solution with increase in number of units. Indeed, using the quasi-oppositional-based learning concept in PO encourages research in implementing the proposed QOPO for various optimization problems, including EELDP, by considering multiple constraints such as ramp rate limits and prohibited operating zones.
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Figure 1. Flow chart of proposed QOPO technique. 
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Figure 2. Minimum saving of fuel cost using QOPO when compared to other techniques with an increase in generating units. 
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Table 1. Comparison of power distribution among three units for the load demand of 850 MW.
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	Method
	P1 (MW)
	P2 (MW)
	P3 (MW)
	PG (MW)
	Cost (USD/h)





	GA [28]
	398.7
	399.6
	50.1
	848.4
	8222.1



	EP [28]
	300.3
	400
	149.7
	850
	8234.1



	EP-SQP [28]
	300.3
	400
	149.7
	850
	8234.1



	PSO [28]
	300.3
	400
	149.7
	850
	8234.1



	PSO-SQP [28]
	300.3
	400
	149.7
	850
	8234.1



	PS [28]
	300.3
	399.9
	149.7
	850
	8234.1



	GA-PS-SQP [28]
	300.3
	400
	149.7
	850
	8234.1



	GSA [29]
	300.2102
	149.7953
	399.9958
	850.0013
	8234.1



	Proposed QOPSO
	300.25
	400
	149.75
	850
	8234.07
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Table 2. Comparison of results of 3-unit system for the load demand of 850 MW.
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	Method
	Minimum Cost (USD/h)





	GAB [27]
	8234.08



	MFEP [27]
	8234.08



	GA-PS-SQP [28]
	8234.10



	GWO [13]
	8253.11



	GSA [29]
	8234.1



	HCPSO [30]
	8234.07



	HCPSO-SQP [30]
	8234.07



	iBA [31]
	8234.07



	NDS [32]
	8234.07



	NSS [33]
	8234.08



	SA [33]
	8234.1355



	GA [33]
	8234.4190



	EP [33]
	8234.1357



	Proposed QOPO
	8234.07
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Table 3. Comparison of power distribution among 13 units for the load demand of 1800 MW.
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	Unit
	NN-EPSO [13]
	GWO [13]
	Proposed QOPO





	P1
	490
	807.1247
	628.3183



	P2
	189
	144.869
	298.1864



	P3
	214
	297.9434
	223.7622



	P4
	160
	60
	60.00008



	P5
	90
	60
	60



	P6
	120
	60
	60



	P7
	103
	60
	159.7331



	P8
	88
	60
	60



	P9
	104
	60.0362
	60



	P10
	13
	40
	40



	P11
	58
	40.0267
	40



	P12
	66
	55
	55



	P13
	55
	55
	55.00001



	TG (MW)
	1750
	1800
	1800



	Total Cost (USD/h)
	18,442.59
	18,051.11
	17,988.99
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Table 4. Comparison of results of 13-unit system for the load demand of 1800 MW.
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	Method
	Minimum Cost (USD/h)





	CEP [27]
	18,048.21



	FEP [27]
	18,018.00



	MFEP [27]
	18,028.09



	IFEP [27]
	17,994.07



	PSO [34]
	18,030.72



	EP-SQP [34]
	17,991.03



	Proposed QOPO
	17,988.99
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Table 5. Comparison of power distribution among 13 units for the load demand of 2520 MW.






Table 5. Comparison of power distribution among 13 units for the load demand of 2520 MW.





	Unit
	GA [34]
	SA [34]
	Proposed QOPO





	P1
	628.32
	668.4
	628.3147



	P2
	356.49
	359.78
	359.9905



	P3
	359.43
	358.2
	359.3237



	P4
	159.73
	104.28
	109.8603



	P5
	109.86
	60.36
	159.7333



	P6
	159.73
	110.64
	159.7275



	P7
	159.63
	162.12
	159.6924



	P8
	159.73
	163.03
	159.7204



	P9
	159.73
	161.52
	159.6847



	P10
	77.31
	117.09
	40.00002



	P11
	75
	75
	113.952



	P12
	60
	60
	55.00017



	P13
	55
	119.58
	55.00017



	TG (MW)
	2519.96
	2520
	2520



	Total Cost (USD/h)
	24,398.23
	24,970.91
	24,328.14
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Table 6. Comparison of results of 13-unit system for the load demand of 2520 MW.
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	Method
	Minimum Cost (USD/h)





	SA [34]
	24,970.91



	GA [34]
	24,398.23



	Proposed QOPO
	24,328.14
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Table 7. Comparison of power distribution among 40 units for the load demand of 10,500 MW.
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	Unit
	MPSO [35]
	PSO [36]
	MPPSO [36]
	APPSO [36]
	DPSO [36]
	Proposed QOPO





	P1
	114
	113.116
	112.903
	112.579
	111.917
	113.7611



	P2
	114
	113.01
	112.802
	111.553
	112.338
	113.9886



	P3
	120
	119.702
	117.515
	98.751
	118.922
	119.9993



	P4
	182.222
	81.647
	181.442
	180.384
	179.928
	189.8949



	P5
	97
	95.062
	95.876
	94.389
	48.998
	97



	P6
	140
	139.209
	139.856
	139.943
	139.931
	139.9986



	P7
	300
	299.127
	299.452
	298.937
	299.61
	300



	P8
	299.021
	287.491
	298.277
	285.827
	298.206
	299.9992



	P9
	300
	292.316
	299.043
	298.381
	285.372
	299.997



	P10
	130
	279.273
	130.886
	130.212
	130.701
	130



	P11
	94
	169.766
	243.53
	94.385
	94.849
	94.00011



	P12
	94
	94.344
	94.768
	169.583
	244.086
	94.35996



	P13
	125
	214.871
	215.033
	214.617
	214.739
	125.1963



	P14
	304.485
	304.79
	304.739
	304.886
	304.504
	304.5059



	P15
	394.607
	304.563
	304.694
	304.547
	304.744
	394.4782



	P16
	305.323
	304.302
	215.146
	304.584
	304.501
	394.2599



	P17
	490.272
	489.173
	497.407
	489.452
	489.515
	489.331



	P18
	500
	491.336
	489.459
	497.472
	489.534
	489.4125



	P19
	511.404
	510.88
	511.867
	512.816
	511.567
	511.2939



	P20
	512.174
	511.474
	548.4
	548.992
	511.374
	511.4796



	P21
	550
	524.814
	523.396
	524.652
	525.246
	525.461



	P22
	523.655
	524.775
	525.206
	523.399
	523.979
	523.6933



	P23
	534.661
	525.563
	524.971
	548.895
	548.599
	526.5896



	P24
	550
	522.712
	523.66
	525.871
	523.314
	524.3047



	P25
	525.057
	503.211
	523.624
	523.814
	523.259
	524.7312



	P26
	549.155
	524.199
	527.932
	523.565
	524.36
	523.5606



	P27
	10
	10.082
	10.474
	10.575
	10.388
	10



	P28
	10
	10.663
	11.074
	11.177
	10.552
	10.22341



	P29
	10
	10.418
	10.582
	11.21
	10.082
	10.08921



	P30
	97
	94.244
	96.403
	96.178
	96.422
	97



	P31
	190
	189.377
	189.338
	189.999
	189.692
	190



	P32
	190
	189.796
	189.849
	189.924
	189.82
	189.9998



	P33
	190
	189.813
	189.739
	189.714
	189.954
	190



	P34
	200
	199.797
	199.808
	199.284
	199.427
	200



	P35
	200
	199.284
	199.994
	199.599
	199.905
	200



	P36
	200
	198.165
	199.749
	199.751
	199.229
	199.9999



	P37
	110
	109.291
	109.917
	109.973
	109.565
	109.9804



	P38
	110
	109.087
	109.41
	109.506
	109.741
	110



	P39
	110
	109.909
	109.728
	109.363
	109.575
	110



	P40
	512.964
	512.348
	512.053
	511.261
	511.554
	511.4108



	TG (MW)
	10,500
	10,473
	10,500
	10,500
	10,500
	10,500



	Total Cost (USD/h)
	122,252.265
	1,223,243.97
	122,225.73
	122,044.63
	122,159.99
	121,789.6
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Table 8. Comparison of results of 40-unit system for the load demand of 10,500 MW.
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	Method
	Minimum Cost (USD/h)





	CEP [27]
	123,488.29



	FEP [27]
	122,679.71



	MFEP [27]
	122,647.57



	IFEP [27]
	122,624.35



	GA [37]
	121,996.40



	EP-SQP [34]
	122,323.97



	PSO [34]
	123,930.45



	PSO-SQP [34]
	122,094.67



	MPSO [35]
	122,252.27



	ESO [38]
	122,122.16



	TM [39]
	122,477.78



	TS [40]
	122,288.38



	ACO [40]
	121,811.37



	EGA [18]
	122,022.96



	FIA [18]
	121,823.80



	PSO [36]
	122,323.97



	MPPSO [36]
	122,225.73



	APPSO [36]
	122,044.63



	DPSO [36]
	122,159.99



	Proposed QOPO
	121,789.6







Notes: Evolutionary structural optimization (ESO), Taguchi method (TM), Tabu search (TS), Ant colony optimization (ACO), Fuzzy self-adaptive immune algorithm (FIA).
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Table 9. Comparison of results of six-unit system for the load demand of 2.834 p.u.






Table 9. Comparison of results of six-unit system for the load demand of 2.834 p.u.





	Unit
	1
	2
	3
	4
	5
	6
	C (USD/h)
	E (ton/h)





	SMODE
	0.314
	0.4169
	0.5424
	0.5856
	0.549
	0.4552
	624.44
	0.1968



	NSGA
	0.3234
	0.3514
	0.6307
	0.5877
	0.46
	0.5084
	624.97
	0.198



	MOEA/D
	0.3185
	0.4101
	0.5623
	0.5635
	0.545
	0.4631
	625.69
	0.1964



	NSGA
	0.2712
	0.367
	0.8099
	0.755
	0.1357
	0.5239
	625.71
	0.2163



	NPGA
	0.2998
	0.4325
	0.7342
	0.6852
	0.156
	0.5561
	630.06
	0.2079



	SPEA
	0.2752
	0.3752
	0.5796
	0.677
	0.5283
	0.4282
	617.57
	0.2001



	MOPSO
	0.2882
	0.3965
	0.732
	0.752
	0.1489
	0.5463
	626.1
	0.2106



	MBFA
	0.2595
	0.3769
	0.5636
	0.6759
	0.5499
	0.4344
	616.496
	0.2002



	FSBF
	0.261602
	0.378998
	0.573339
	0.687019
	0.530804
	0.430789
	616.1627
	0.2005



	NSBF
	0.279071
	0.406301
	0.567423
	0.683964
	0.49532
	0.430657
	617.9531
	0.2



	NGPSO
	0.3062
	0.4042
	0.5577
	0.5836
	0.5495
	0.4610
	623.8705
	0.1970



	Proposed QOPO
	0.1211
	0.2864
	0.5835
	0.9924
	0.5240
	0.3520
	605.9984
	0.2044







Note: C: Fuel Cost and E: Emission.
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Table 10. Comparison of results of six-unit system for the load demand of 1200 MW.
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	Unit
	1
	2
	3
	4
	5
	6
	C
	E





	QOTLBO
	107.3101
	121.497
	206.501
	206.5826
	304.9838
	304.6036
	64,912
	1281



	TLBO
	107.8651
	121.5676
	206.1771
	205.1879
	306.5555
	304.1423
	64,922
	1281



	MODE
	108.6284
	115.9456
	206.7969
	210
	301.8884
	308.4127
	64,843
	1286



	PDE
	107.3965
	122.1418
	206.7536
	203.7047
	308.1045
	303.3797
	64,920
	1281



	NSGA
	113.1259
	116.4488
	217.4191
	207.9492
	304.6641
	291.5969
	64,962
	1281



	SPEA
	104.1573
	122.9807
	214.9553
	203.1387
	316.0302
	289.9396
	64,884
	1285



	MOGA
	108.9318
	123.1808
	205.1513
	206.67
	304.8553
	302.6093
	64,838.57
	1285.49



	OGHS
	105.7331
	119.0825
	205.2976
	204.7772
	305.8042
	308.9128
	64,722.74
	1281.349



	NGPSO
	144.0425
	150
	190.507
	192.9285
	284.9083
	288.0456
	66,538.34
	1228.365



	Proposed QOPO
	82.83027
	82.61994
	197.7722
	202.2269
	317.4203
	317.6234
	61,197.88
	1238.819







Note: C: Fuel Cost and E: Emission.
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Table 11. Comparison of results of 10-unit system for the load demand of 2000 MW.
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	Unit
	BSA
	MODE
	PDE
	NSGA
	SPEA 2
	GSA
	MOGA
	QOTLBO
	TLBO
	FPA
	OGHS
	NGPSO
	Proposed QOPO





	1
	55
	54.9487
	54.9853
	51.9515
	52.9761
	54.9992
	54.1807
	55
	55
	53.188
	55
	55
	54.99873825



	2
	80
	74.5821
	79.3803
	67.2584
	72.813
	79.9586
	78.4981
	80
	80
	79.975
	79.9998
	80
	77.55912431



	3
	86.5308
	79.4294
	83.9842
	73.6879
	78.1128
	79.4341
	84.7653
	84.8457
	83.9202
	78.105
	85.2236
	81.2398233
	77.09181067



	4
	86.9844
	80.6875
	86.5942
	91.3554
	83.6088
	85
	81.3502
	83.4993
	82.8342
	97.119
	84.3022
	80.8334296
	77.25725491



	5
	129.1542
	136.855
	144.439
	134.052
	137.243
	142.106
	138.0526
	142.921
	132.013
	152.74
	137.124
	160
	160



	6
	146.9258
	172.639
	165.776
	174.95
	172.919
	166.567
	166.2667
	163.2711
	173.988
	163.08
	155.894
	235.008791
	240



	7
	300
	283.823
	283.212
	289.435
	287.202
	292.875
	295.466
	299.8066
	299.71
	258.61
	299.998
	289.350745
	274.301907



	8
	323.9002
	316.341
	312.771
	314.056
	326.402
	313.239
	326.7642
	315.4388
	317.968
	302.22
	315.726
	297.45423
	276.8507856



	9
	435.9938
	448.592
	440.114
	455.698
	448.881
	441.178
	428.9338
	428.5084
	427.017
	433.21
	434.941
	401.507284
	380.9511212



	10
	440.0149
	436.429
	432.678
	431.805
	423.903
	428.631
	429.6309
	430.5524
	431.396
	466.07
	436.007
	401.427524
	381.7419224



	C
	112,807.373
	113,480
	113,510
	113,540
	113,520
	113,490
	113,422.34
	113,460
	113,471
	113,370
	113,140
	116,179.649
	111,892.4096



	E
	4188.0926
	4124.9
	4111.4
	4130.2
	4109.1
	4111.4
	4120.5204
	4110.2
	4113.5
	3997.7
	4144.41
	3939.2278
	3653.343267







Note: C: Fuel Cost and E: Emission.
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Table 12. Comparison of results of the 11-unit system for the load demand of 2500 MW.






Table 12. Comparison of results of the 11-unit system for the load demand of 2500 MW.





	Unit
	NGPSO
	SRA
	GSA
	GA-SC
	Proposed QOPO





	1
	243.335
	139.672
	138.9382
	138.8618
	149.064269



	2
	210
	112.781
	110.2728
	112.1312
	128.5976932



	3
	250
	145.802
	147.9728
	146.7169
	172.8199607



	4
	169.0338
	221.527
	221.1072
	222.1041
	200.2368173



	5
	142.6156
	136.774
	137.7986
	137.1962
	162.8987867



	6
	168.8431
	218.578
	217.9015
	217.3208
	197.7004668



	7
	142.5922
	140.261
	141.3801
	140.4711
	161.9169099



	8
	317.2895
	345.046
	349.6497
	348.9008
	356.8327481



	9
	276.5437
	329.484
	327.3178
	326.5188
	312.2170295



	10
	303.2289
	363.645
	363.4766
	363.5275
	344.3533839



	11
	276.5181
	346.43
	344.1847
	346.2508
	313.3619348



	C
	13,025.91
	12,424.94
	12,422.66
	12,423.77
	12,491.67857



	E
	1661.712
	2003.3
	2002.95
	2003.03
	1897.861924







Note: C: Fuel Cost and E: Emission.
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Table 13. Comparison of results of 40-unit system for the load demand of 10,500 MW.
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	Unit
	SMPSO
	PDE
	SPEA 2
	MODE
	QOTLBO
	NSGA
	FPA
	TLBO
	NGPSO
	MoGA
	GSA
	Proposed QOPO





	1
	114
	112.1549
	113.9694
	113.5295
	114
	113.8685
	43.405
	114
	113.9988
	113.476
	113.9989
	113.9998896



	2
	114
	113.9431
	114
	114
	114
	113.6381
	113.95
	114
	114.0000
	114
	113.9896
	113.9993622



	3
	120
	120
	119.8719
	120
	120
	120
	105.86
	91.9893
	119.9999
	120
	119.9995
	119.9999631



	4
	179.7335
	180.2647
	179.9284
	179.8015
	179.7593
	180.7887
	169.65
	177.4467
	174.2365
	179.618
	179.7857
	172.6450978



	5
	97
	97
	97
	96.7716
	97
	97
	96.659
	97
	96.9994
	96.776
	97
	96.99999276



	6
	140
	140
	139.2721
	139.276
	140
	140
	139.02
	140
	127.4300
	139.35
	139.0128
	125.7668413



	7
	300
	299.8829
	300
	300
	300
	300
	273.28
	300
	300.0000
	300
	299.9885
	299.997095



	8
	300
	300
	298.2706
	298.9193
	298.9093
	299.0084
	285.17
	283.7368
	299.5539
	298.898
	300
	298.3122176



	9
	289.1440
	289.8915
	290.5228
	290.7737
	300
	288.889
	241.96
	300
	298.0215
	290.693
	296.2025
	297.7050874



	10
	130.0114
	130.5725
	131.4832
	130.9025
	130.0996
	131.6132
	131.26
	130
	130.0314
	130.796
	130.385
	130.0000409



	11
	243.6004
	244.1003
	244.6704
	244.7349
	243.7055
	246.5128
	312.13
	318.1965
	304.6847
	243.823
	245.4775
	301.5550053



	12
	243.6164
	318.284
	317.2003
	317.8218
	318.4741
	318.8748
	362.58
	241.5727
	303.1886
	317.351
	318.2101
	300.9720619



	13
	394.2810
	394.7833
	394.7357
	395.3846
	394.4004
	395.7224
	346.24
	391.9916
	429.2040
	394.431
	394.6257
	433.3831706



	14
	394.2808
	394.2187
	394.6223
	394.4692
	394.3418
	394.1369
	306.06
	394.4501
	415.0447
	394.769
	395.2016
	419.2396883



	15
	394.2856
	305.9616
	304.7271
	305.8104
	394.2703
	305.5781
	358.78
	394.3549
	418.8330
	304.514
	306.0014
	420.5591571



	16
	394.2831
	394.1321
	394.7289
	394.8229
	394.4013
	394.6968
	260.68
	394.0597
	417.7762
	394.044
	395.1005
	420.5783426



	17
	489.2791
	489.304
	487.9857
	487.9872
	489.3143
	489.4234
	415.19
	490.5281
	443.8465
	488.45
	489.2569
	442.8324736



	18
	489.2813
	489.6419
	488.5321
	489.1751
	489.3548
	488.2701
	423.94
	484.2049
	444.0000
	489.3199
	488.7598
	442.648713



	19
	511.2787
	499.9835
	501.1683
	500.5265
	511.1648
	500.8
	549.12
	423.9535
	439.9901
	500.755
	499.232
	438.7733041



	20
	511.2785
	455.416
	456.4324
	457.0072
	421.8134
	455.2006
	496.7
	507.3859
	443.5751
	457.338
	455.2821
	438.8157449



	21
	433.5915
	435.2845
	434.7887
	434.6068
	434.5654
	434.6639
	539.17
	438.5029
	438.0925
	433.473
	433.452
	438.8857223



	22
	433.6826
	433.7311
	434.3937
	434.531
	434.5536
	434.15
	546.46
	433.6163
	437.8524
	435.909
	433.8125
	438.857211



	23
	433.5534
	446.2496
	445.0772
	444.6732
	433.9734
	445.8385
	540.06
	434.1238
	438.6194
	444.338
	445.5136
	439.2212251



	24
	433.5386
	451.8828
	451.897
	452.0332
	433.7659
	450.7509
	514.5
	446.0748
	440.6808
	452.208
	452.0547
	439.1732084



	25
	433.8545
	493.2259
	492.3946
	492.7831
	434.9881
	491.2745
	453.46
	437.2666
	437.5264
	493.736
	492.8864
	439.357291



	26
	433.7381
	434.7492
	436.9926
	436.3347
	434.178
	436.3418
	517.31
	433.3886
	439.1111
	437.621
	433.3695
	439.4199922



	27
	10.0843
	11.8064
	10.7784
	10
	10.0574
	11.2457
	14.881
	10.2118
	23.5704
	10
	10.0026
	24.93662821



	28
	10.0006
	10.7536
	10.2955
	10.3901
	10.3295
	10
	18.79
	11.1608
	23.4720
	10.314
	10.0246
	24.92768919



	29
	10.0258
	10.3053
	13.7018
	12.3149
	10.0147
	12.0714
	26.611
	10.2531
	21.7880
	12.2031
	10.0125
	24.85613324



	30
	97
	97
	96.2431
	96.905
	97
	97
	59.581
	97
	96.9812
	96.957
	96.9125
	96.99991037



	31
	190
	190
	190
	189.7727
	190
	189.4826
	183.48
	190
	176.1282
	189.813
	189.9689
	173.3123503



	32
	190
	175.3065
	174.2163
	174.2324
	190
	174.7971
	183.39
	190
	174.9233
	174.409
	175
	173.4295283



	33
	190
	190
	190
	190
	190
	189.2845
	189.02
	190
	172.9757
	190
	189.0181
	173.4064447



	34
	200
	200
	200
	199.6506
	200
	200
	198.73
	200
	200
	199.641
	200
	199.9997954



	35
	200
	200
	200
	199.8662
	200
	199.9138
	198.77
	200
	199.9993
	199.89
	200
	199.999834



	36
	200
	200
	200
	200
	200
	199.5066
	182.23
	200
	199.8885
	200
	199.9978
	200



	37
	110
	109.9412
	110
	110
	110
	108.3061
	39.673
	110
	102.6956
	110
	109.9969
	101.8867516



	38
	110
	109.8823
	109.6912
	109.9454
	110
	110
	81.596
	110
	102.6982
	110
	109.0126
	101.8289422



	39
	110
	108.9686
	108.556
	108.1786
	110
	109.7899
	42.96
	110
	102.3489
	108.325
	109.456
	101.9079486



	40
	421.576416
	421.3778
	421.8521
	422.0628
	421.5651
	421.5609
	537.17
	459.5306
	436.2338
	422.706
	421.9987
	438.8101451



	C
	124,660.0345
	125,730
	125,810
	125,790
	125,161
	125,830
	123,170
	125,602
	129,277.63
	125,750.251
	125,780
	129,544.5674



	E
	217,256.6982
	211,770
	211,100
	211,190
	206,490.4
	210,950
	208,460
	206,648.3
	177,325.4405
	211,744.46
	210,930
	176,886.7208







Note: C: Fuel Cost and E: Emission.
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Table 14. Comparison of computational time for a six-unit system for the load demand of 2.834 MW.
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	Method
	ISMA
	SMA
	HHO
	JS
	TSA
	PSO
	Proposed QOPO





	Time (s) (Only minimizing Fuel Cost)
	63.26
	78.96
	178.76
	67.72
	66.67
	114.32
	6.1632



	Time (s) (Only minimizing Emission Cost)
	63.51
	80.45
	133.29
	60.63
	57.36
	115.98
	6.2258



	Time (s) (Minimizing Both)
	-
	-
	-
	-
	-
	-
	6.5811
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Table 15. Comparison of computational time for 10-unit system.
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	Method
	ISMA
	SMA
	HHO
	JS
	TSA
	PSO
	Proposed QOPO





	Time (s) (Only minimizing Fuel Cost)
	75.35
	109.3
	181.75
	72.6
	65.32
	123
	13.3459



	Time (s) (Only minimizing Emission Cost)
	81.49
	108.11
	163.05
	64.45
	60.6
	115.02
	14.2514



	Time (s) (Minimizing Both)
	-
	-
	-
	-
	-
	-
	12.2953
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Table 16. Comparison of computational time for 11-unit system.
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	Method
	ISMA
	SMA
	HHO
	JS
	TSA
	PSO
	Proposed QOPO





	Time (s) (Only minimizing Fuel Cost)
	155.88
	212.08
	313.06
	105.41
	97.12
	234.06
	5.6484



	Time (s) (Only minimizing Emission Cost)
	151.37
	209.14
	327.66
	117.9
	118.34
	209.17
	4.329



	Time (s) (Minimizing Both)
	-
	-
	-
	-
	-
	-
	4.1288
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Table 17. Comparison of computational time for 40-unit system.






Table 17. Comparison of computational time for 40-unit system.





	Method
	ISMA
	SMA
	HHO
	JS
	TSA
	PSO
	Proposed QOPO





	Time (s) (Only minimizing Fuel Cost)
	377.78
	418.57
	222.22
	53.54
	252.66
	143.51
	35.9347



	Time (s) (Only minimizing Emission Cost)
	379.8
	631.04
	774.33
	299.99
	147.44
	427.92
	35.154



	Time (s) (Minimizing Both)
	-
	-
	-
	-
	-
	-
	28.5309
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