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Abstract: This paper addresses the taxi fleet dispatch problem, which is critical for many transport
service platforms such as Uber, Lyft, and Didi Chuxing. We focus on maximizing the revenue and
profit a taxi platform can generate through the dispatch approaches designed with various criteria.
We consider determining the proportion of taxi fleets to different destination zones given the expected
rewards from the future states following the distribution decisions learned through reinforcement
learning (RL) algorithms. We also take into account more straightforward greedy algorithms that
look ahead fewer decision time steps in the future. Our dispatch decision algorithms commonly
leverage contextual information and heuristics using a data structure called Contextual Matching
Matrix (CMM). The key contribution of our paper is the insight into the trade-off between different
design criteria. Primarily, through the evaluation with actual taxi operation data offered by Seoul
Metropolitan Government, we challenge the natural expectation that the RL-based approaches yield
the best result by showing that a lightweight greedy algorithm can have a competitive advantage.
Moreover, we break the norm of dissecting the service area into sub-zones and show that matching
passengers beyond arbitrary boundaries generates significantly higher operating income and profit.

Keywords: taxi dispatching; greedy algorithm; reinforcement learning; contextual matching

1. Introduction

Assigning taxis or drivers to passengers is a critical decision problem for many trans-
port service platforms such as Uber, Lyft, and Didi Chuxing that serve millions of users
daily. The effectiveness of these taxi platforms is evaluated in terms of the percentage of
the taxi-to-passenger match success rate and a passenger’s wait time, which eventually
determine the operating income and profit. This paper focuses on the maximization of
the revenue and profit a taxi platform can generate through a variety of taxi dispatch
approaches designed with the following criteria.

First, we can consider the probable information from the future states following
dispatch actions. We can employ reinforcement learning (RL) [1] techniques that learn to
update the value of an action at a particular state after computing the reward from the
distant future. An alternative is to craft a simpler greedy algorithm that looks ahead fewer
decision time steps.

Second, the service area can be divided into high-demand sub-area clusters, a grid
of square or hexagonal cells, or administrative divisions. We can opt to match a taxi with
passengers only within the same zone, which is a prevalent method in most of the recent
works [2–4] implemented. Alternatively, we can have a zone-agnostic approach that does
not limit the assignment of the taxis to the passenger calls within an arbitrary boundary.

Third, for the zone-sensitive assignment, we can consider the proportion of taxi fleets
allocated to destination zones before matching taxis with passengers individually. With a
global view of the demands, the platform can direct portions of its limited number of
taxis towards different destination zones. This approach attempts to prevent the taxis from
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potentially making sub-optimal decisions due to the lack of a view of global demands. We
apply RL techniques to determine the best fleet distribution among destination zones. For a
zone-agnostic approach, determining the fleet proportion is unnecessary.

The dispatch approaches we devise in this paper commonly leverage contextual in-
formation and heuristics using a data structure called the Contextual Matching Matrix
(CMM) [5]. Our approach utilizes CMM to match a taxi and a passenger given the dis-
tance between the two, the distance between the pickup location and final destination,
and the estimated demands at the drop-off area. The CMM usage differs from the previ-
ous approaches with plain decision criteria such as first-come-first-serve matching with a
queue of calls [6,7] and matching closest passenger first [8–10]. With CMM, our approaches
search for a dispatch action that reduces the passenger pickup cost and yields a high taxi
utilization rate by matching taxis to the passengers aiming to reach the high-demand area.

The critical contribution of this paper is the insight into the trade-off between the
various design criteria through the evaluation based on the actual taxi operation data
provided by the Seoul Metropolitan Government. Primarily, we challenge the natural
expectation that the RL-based approach of determining the fleet distribution is likely to
yield the highest revenue and profit. We examine whether a fast and more straightforward
greedy algorithm with CMM can be a more viable and practical solution for the taxi
platforms operating in the field. In addition, contrary to the conventional approach based
on the dissection of the service area, we show that not considering the zone information
generates a much better result.

The rest of our paper is structured as follows. In Section 2, we put our work in
the context of related works. Then, we present the problem definition in Section 3. Our
methodology is discussed in Section 4, and we report the evaluation results in Section 5.
Finally, we conclude in Section 6.

2. Related Works

In this section, we present relevant works on taxi dispatching systems.

2.1. Taxi Dispatching Systems

With accurate GPS receivers and fast wireless communication interfaces, traditional
taxi management systems are transforming to become more efficient and profitable [11].
Previous works recommend that drivers pass through the routes where potential passen-
gers might exist [12] or travel to high-demand spots [13]. Most recent ride-hailing platforms
either match a driver to the closest passenger call [8–10] or use queueing strategies for first-
come-first-served dispatching [6,7]. Zhou et al. proposed a model which dispatches taxis
in such a way that demands and supplies are balanced based on demand prediction [3].
Furthermore, Xu et al. used a recurrent neural network (RNN) and captured complex
spatio-temporal features to predict taxi demand [14]. Yang et al. studied the demand and
supply equilibrium of taxi services regulating the fare system and fleet size [15]. Conven-
tionally, automated taxi dispatching systems try to minimize passenger wait time and taxi
idle time or match the closest vacant taxi to a given order [9,10,16,17]. Zhang et al. used
the combinatorial optimization [18] technique to improve the probability of successful
matching [19]. Park et al. exploit the optimal price to match taxis with passengers and
simultaneously maximize cumulative revenue [5]. Similarly, Zheng et al. studied optimal
pricing [20], and Zhao et al. analyzed passengers’ preferences [21].

Recent approaches divide a region into a grid of cells and match vacant taxis with
the passenger calls that take place within the same cell to maximize the driver’s profit
and the match rate [2,3]. Liu et al. proposed a road-connectivity-aware zone that was
formed by clustering the road network graph as opposed to having a grid of rectangular
and hexagonal cells [4]. Based on the road connectivity and the travel cost, the optimal
dispatch method was computed. This paper does not restrict the matching to the passenger
calls only within a particular service zone; we study the approach of matching taxis to
passengers across the zone boundaries as well.
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2.2. Reinforcement Learning

The recent extraordinary advancement of machine learning algorithms has sparked
the interest of researchers studying the taxi dispatch problem. Noticeably, the investigation
of the application of reinforcement learning (RL) [1] has been active [22,23]. With RL using
artificial neural networks, the complex state transition patterns and the most rewarding
actions in a given state can be learned [24]. Considering the far-sighted future, using RL
can be helpful for the taxi dispatch problem since a short-sighted decision by the drivers
may not guarantee a high profit in the long term. For instance, a driver who chooses to
pick up the closest passenger may end up in a drop location that remains vacant for a long
time due to a lack of subsequent orders. The multi-agent methodology is used in several
traffic problems. For ride-sharing scenarios, Li et al. proposed a multi-agent reinforcement
learning solution addressing order dispatch problems in a large-scale city [25]. De et al. also
used multi-agent reinforcement learning for ride-sharing using QMIX [26]. Multi-agent RL
techniques were applied to the problem of taxi fleet dispatch as well [2,3,27]. In these works,
taxis within the same pre-defined zone take actions based on the shared state information.
In another multi-agent RL approach, every taxi learns to decide actions independently
without shared state information [28,29]. In this paper, we employ the Deep Q-Network [24]
particularly to determine the optimal proportion of taxis to be distributed among different
zones before matching the taxis with individual passenger calls. However, RL for the taxi
dispatch problem relies on a weak Markov decision process model where the dispatch
action may not be the direct cause of the succeeding state, such as the sudden rise of the
passenger demand at the drop-off location. Such RL can be prone to learn sub-optimal
decisions. Therefore, we devised a more uncomplicated, novel, greedy method with a slight
look-ahead to the future that runs faster and chooses more profitable actions.

3. Modeling the Taxi Dispatch Problem

In this section, we model the taxi dispatch process (Figure 1). First, we obtain informa-
tion on how the idle taxis and the customer demands are spatially distributed. Second, we
determine the optimal proportion of the taxi fleet dispatched to different zones in the case
that the service area is dissected. For each pool of taxis with a certain portion, we match
the taxis in the pool with individual passenger calls. After drop-off, taxis are added to the
pool of idle taxis waiting for the next dispatch decision. Every 30 s, the dispatch process
restarts for the currently available vacant taxis. Our objective is to retrieve the optimal
match between idle taxis and passengers to maximize revenue and profit.

Figure 1. Taxi dispatch decision process

When demand is higher than the supply in a departure zone, there will undoubtedly be
mismatched demand. Therefore, minimizing the mismatch rate between passenger orders
and taxis is critical to pursue high revenue and profit. For example, as shown in Figure 2,
a naïve division of the taxi in proportion to the passenger demands to different destination
zones may yield sub-optimal results. We can predict the situation in the drop-off zone
through simulation and assign more taxis to the destination zone that is expected to offer
more revenue and profit-generation opportunities. To determine the optimal proportions,
we divide the service area into multiple sub-areas.
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Figure 2. Consider an example where 100 passenger orders exceed the supply of 60 taxis in zone
B. We can assign more taxis to the zone with the highest expected revenue and profit-generation
opportunities (for example, zone C). Such an approach would generate a better result than the naïve
approach of dividing the fleets in proportion to the current demand for different zones without
predicting the situation at the drop-off zones.

Existing works divide the service region into a grid of rectangular or hexagonal
cells [2,3,30] or cluster high passenger demand spots [4,5] using algorithms such as K-
means clustering [31] or the density-based spatial clustering of applications with noise
(DBSCAN) algorithms [32,33]. No meaningful cluster can be identified if spots are scattered
uniformly all across the region, as shown in the distribution of passenger calls during
30 s, 10 min, 24 h in Seoul, South Korea (Figure 3). No more than two clusters are detected
around the Han River in the middle of the area. In this work, we chose to divide the service
region into 2 to 25 administrative divisions (zones) as shown in Figure 4, which is similar
to the grid-based approaches implemented in [2,3,30]. We model the fleet management
method that ignores the divisions and matches passenger calls with vacant taxis on a
point-to-point basis.

It is infeasible for a single decision-making agent to determine the optimal proportion
of fleets distributed among all different zones due to the explosive number of cases to
explore. For example, the number of possible proportions of taxis for each destination zone
is Np. A single decision-making agent has to choose the optimal proportion among NNz

p
proportions where Nz is the number of zones. If Nz is 25 and Np is 26, a single decision-
making agent has to search for the optimal proportions among 2625 proportions. When
we handle this situation using a multi-agent approach, the agent of each zone chooses a
proportion distribution from Np distributions. The action space that multi-agents explore
concurrently is significantly lower than the action space explored by the system with a
single global agent. Hence, we opt to have a separate dispatch decision process run by an
independent agent within each zone.
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(a) During 30 s (b) During 6 h (c) During 24 h

Figure 3. Illustration of demand during (a) 30 s (12:00:00 to 12:00:30 a.m.), (b) 10 min (12:00 to 12:10 a.m.), and (c) during
24 h (12:00 a.m. to 12:00 a.m. the next day).

(a) (b)

(c) (d)

Figure 4. Seoul is divided into (a) 2, (b) 4, (c) 8, and (d) 25 zones. The matching process occurs
independently within each zone.

The revenue and the profit of the taxi fleet management system are computed ac-
cording to Equations (1) and (2), respectively. ODmatched is the total distance in kilometers
driven by the taxis to take the passengers from their origins to the desired destinations.
Taxis charge 100 Korean Won for every 132 m. PDmatched is the total distance in kilometers
driven by taxis to pick up the passengers. Picking up a passenger also costs 100 Korean
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Won for every 132 m. A taxi can move 400 m each 30 s in this setting. Since idle taxis miss
the opportunity cost of moving 400 m every 30 s with passengers on board, the last term of
the profit in Equation (2) is the opportunity cost of idle taxis. We set the smallest wait time
unit to 30 s. Any unmatched taxis have to wait 30 s until the next decision-making step
recurs. A naïve real-time system would implement the first-come-first-served approach
for each taxi agent. However, such an approach is likely to yield sub-optimal values due
to selfish agents that lack global information. The 30 s wait time allows the coordination
platform to make a globally optimal dispatch decision. Taxis and passengers more than 8
kilometers apart are not matched to avoid the passenger wait time becoming longer than
10 min. Definitions of notations used in this paper are listed in Table 1.

Rev =
ODmatched (km)

0.132 (km)
× 100 (₩) (1)

Pro =
ODmatched − PDmatched (km)

0.132 (km)
× 100− 0.4 (km)

0.132 (km)
× 100× Nidle

taxi (₩) (2)

A taxi matched with a passenger becomes idle in the drop-off (destination) zone
(Zd) after moving 400 m every 30 s. The travel time to the destination zone is shown
in Equation (3), where ODi

matched is the distance between the origin of the ith matching
passenger to the destination, and 0 to 5 min of extra time δ is randomly added. In addition,
PDi

matched is the time to pick up the ith matched passenger.

Travel time to Zd =
PDi

matched
0.4

+
ODi

matched
0.4

+ δ (3)

At every periodic iteration of the dispatch process, a taxi falls into one of the following
states: (1) matched with a passenger and on the way to the passenger; (2) matched with a
passenger and driving the passenger to Zd; and (3) remaining idle if unmatched.

Table 1. Definition of the key notations used in this paper.

Notation Definition

e Episode time
Emax Maximum episode time

t Simulation time step
Tmax Maximum simulation time steps
Nz The number of zones in Seoul

Nidle
taxi The number of idle taxis
d The number of time steps simulated
D The number of time steps to simulate
k Top-k cases to be chosen in a single simulation time
St Fleet state at time step t

S
′
t,n Fleet state at t in nth best simulation case

Zi Zone identified with i
OD Vector of the orders’ distance from origin zone to destination zone

ODmatched The sum of OD distance of matched orders
PD Matrix of the distance from orders to idle taxis

PDNormalized Normalized PD
PDmatched Sum of PD distance of matched orders

Outi Out degree of the Zi
Oi Ratio of orders in Zi to the total orders
Ψi Ratio of supplies in Zi to the total supplies
pj

i A distribution with jth highest profit chosen by agent of Zi
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Table 1. Cont.

Notation Definition

∆ Sum of differences ratio of orders and ratio of supplies in each zone
Pro Calculated profit in a time step
Rev Calculated revenue in a time step
Re Calculated reward in a time step

4. Methodology

This paper offers five distinctive methods that can be distinguished by the combination
of five critical criteria as shown in Table 2. First, a method can opt to match taxis only with
the passengers that are located within the same zone. Second, a method may determine the
proportion of taxis to be dispatched to different zones. Third, suppose a method takes into
account the future states; in that case, it is either far-sighted by looking ahead unlimited
future states or is myopic by forecasting the state after D future decision process iterations
at most. A method can be completely greedy by not foreseeing the future states at all.
Fourth, a method may favor a dispatch decision that leads to the spatial distribution of the
taxis at the drop-off location matching closely to the spatial distribution of new passenger
calls. Devising each method and unraveling the trade-offs through empirical evaluation as
discussed in Section 5 is one of the novel contributions of this paper.

Table 2. Five methods for taxi dispatch decision making.

Methods Zone-Based Matching Ratio of Taxis between Myopic Far Sighted Taxi–Passenger
Destination Zones Spatial Distribution

CMM O X X X X
M-Greedy O O O X X

IQL O O X O X
DDR O O X O O

Z-CMM X X X X X

In the methods used to determine proportions, as mentioned in Section 3, it is necessary
to constrain the task of determining the ratios between the number of taxis that are to be
sent to different zones, as the possible ratios to be considered is unlimited. Unlike previous
works [2,3,27] that allow individual taxis to make their own decision, we assign a decision-
making agent for each zone. The agent for each zone determines the proportion of the taxis
to be dispatched to other zones. The agent employs a 10% surplus to the proportion for
every zone. The agent also considers taxi fleets to be distributed strictly in proportion to the
demand of destination zones. Hence, the number of distributions that can be determined
by the agents is Nz + 1.

4.1. CMM (Contextual Matching Matrix)

The first method to present adapts the work by Park et al., which uses a contextual
matching matrix (CMM) to decide the optimal taxi fare dynamically [5]. (CMM)i,∗ denotes
a row of the ith passenger call. As mentioned earlier, idle taxis with a passenger-to-driver
distance (PD)i,j of over 8 km are excluded from computing the match likelihood. Hence,
each element of the PD matrix is defined in Equation (4). Each element of (CMM)i,∗ is a
normalized distance from the passenger to an idle taxi, (PDNormalized)i,∗ where PDNormalized
is defined in Equation (5).

(PD)i,j =

{
0, if (PD)i,j ≥ 8
(PD)i,j, if (PD)i,j < 8

(4)
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PDNormalized = 1− PD
PDmax

(5)

Every term (PDNormalized)i,∗ in (CMM)i,∗ is multiplied by ODi and Outi to compute
the match likelihood MLi,∗, as shown in Equation (6).

MLi,∗ = (PDNormalized)i,∗ ×ODi ×Outi (6)

Once the computation according to Equation (6) is completed for all rows, we execute
Algorithm 1 to retrieve matched pairs of passengers and taxis. We find the highest MLi,j in
CMM, and we mark the ith passenger and the jth taxi as matched. Then, we cross them
out by setting every term of both (CMM)i,∗ and (CMM)∗,j to zero as shown in Figure 5.
In the next iteration, the jth taxi is not redundantly considered to match other passengers,
even though the initial ML computation result shows that the jth taxi matches with another
passenger with the highest ML value of all other taxis. We repeat this iteration until CMM
becomes free of non-zero ML values. Removing the taxi from consideration immediately
upon matching helps with the expedition of the algorithm as well. Matching based on
CMM is the basis for other dispatch decision methods, as presented below.

Figure 5. Illustration of CMM after a single taxi-order pair is matched.

Algorithm 1: Making match with Contextual Matching Matrix (CMM)

Initialize every cell in CMM to (PDNormal)i,∗
i, j: ith passenger and jth idle taxi
for CMMi,j do

Compute MLi,j
end
while MLmax > 0 do

Search CMMi,j whose MLi,j equals MLmax ;
Mark i and j MATCHED;
Set every element of (CMM)i,∗ and (CMM)∗,j to 0;

end
Update every cell in CMM to (PDNormal)i,∗ for the next decision cycle;

4.2. M-Greedy

The CMM approach presented in Section 4.1 does not take the future further than
the next immediate state into account. Thus, we devised M-Greedy, which extends CMM
to look ahead D future states. We adapted CMM to look ahead myopically as follows.
At the beginning of every decision process, we chose the top-k fleet distributions out of
all possible Nz + 1 cases. M-Greedy repeats this top-k selection process at each follow-up
state. As shown in Figure 6, M-Greedy is myopic as we set D to 3 and k to 3.
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Figure 6. In every look-ahead state, M-Greedy chooses the top-k distributions that yield the highest
revenue and profit. In this figure, each block represents a top-k case after simulating all cases in the
preceding state. Then, the platform looks ahead D time steps in the future. As a result, M-Greedy
chooses the best case among kD cases once the computation is finished on the last look-ahead state.
In this paper, we set k to 3 and D to 3.

We simulate the cumulative revenue and profit as shown in Algorithm 2. In each zone,
a decision agent computes the k best fleet distributions. Given the current state, each agent
simulates Nz + 1 cases. The agents record the profit and the matching results of each case.
After the simulation is performed across all zones, the proportion combination consisting of
the best reports in each zone is set as the best case. For the overall top-k case, the zone with
the (k− 1)th least difference between the best proportion and the second-best proportion
is selected, and the zone’s best proportion is replaced with the (k− 1)th best proportion.
For instance, by replacing the best proportion of the selected zone in the best case with the
second-best proportion, the overall proportion distribution becomes the second-best case.

With the algorithm looking ahead D future states, the algorithm results in a time
complexity of O(kD). After completing all the simulations, the algorithm returns to the
current state and divides the idle taxis into the best distribution sequence. We present the
dispatch process after the simulation is completed in Algorithm 3.

In this methodology, the supply of look-ahead states 2 and 3 is based on the matching
results determined in the previous state. Each zone records the past 10 min of demands,
which are used to predict the demand in the look-ahead states using linear regression.
With the estimated demand in the future states, the platform randomly samples the location
of the passenger calls in the previous simulation step so that we can keep a consistent spatial
distribution of the demands during the simulation. M-Greedy re-iterates the simulation
process with the newly sampled demand information.
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In the following, the two methodologies using reinforcement learning tend to predict
further into the distant future than the aforementioned greedy approaches.

Algorithm 2: Simulation in M-Greedy

Initialization of Sim_Results, Temp_Results, k for Top-k fleet distributions;
Function Simulation(S

′
t+d, d, cumulative_pro f it):

for each departure zone z do
Predict passenger demand in z at S

′
t+d;

for i = 0 : Nz do // Nz: the number of zones
if i < Nz then

Increase the proportion of taxi fleet to destination zone Zi by 10
percent;

end
Construct a Contextual Matching Matrix (CMM);
Project the profit and the match result by a simulated assignment of idle
taxis to passenger orders using CMM according to the given fleet
proportion;

Match the remaining taxis using CMM until the elements of CMM
converge to 0;

Sim_Results[z][i]← [profit, proportion, match result] ;
end
Sort Sim_Results[z][:] in descending order based on the profit;

end
if d equals D then // D: Maximum look-head states

return [cumulative_pro f it + the highest profit, the best proportion
distribution] // all based on Sim_Results;

end
else

for j = 1 : k do
Update the simulation fleet state S

′
t+d+1,j based on match result in

Sim_Results ;
Temp_Results← Simulation(S

′
t+d+1,j, d + 1, cumulative_pro f it + jth

best profit based on Sim_Results);
end
return [The highest profit, the best proportion distribution]// all based
on Temp_Results;

end
End Function

4.3. IQL (Independent Q-Learning)

The previous two methods are fundamentally greedy algorithms. We devise an alter-
native approach based on reinforcement learning to determine the best fleet distribution at
each time step. We define our problem as a 5-tuple <S, A, R, γ, T> Markov decision process
(MDP) with each element defined as follows.

• State S: S is composed of < O, Ψ, ODi, Outi >. The state is further divided into a
global state and a partially observable state. A global state is composed of <O, Ψ>,
where O is the proportion of fleets to be assigned to every destination zone and Ψ is
the distribution of supplies of all zones. The partially observable state is composed of
< ODi, Oi >, where ODi is the average OD distance from Zi to every zone and Outi
is the order proportion of Zi.

• Action A: A set of possible fleet distributions chosen by an agent.
• Reward R: R is based on the estimated profit after every decision time step.
• Discount factor γ: The reward of the predicted future is discounted with a factor set

to 0.99.
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Algorithm 3: Dispatch process in M-Greedy

Initialization of the fleet state S0 and a set of z agents;
for t = 0 : Tmax − 1 do // Tmax: Maximum simulation time steps

Stage1 : simulation
Get the best fleet distributions from Simulation(current state, 0, 0)[1];
Stage2 : match using CMM based on the distribution chosen in stage1
for each departure zone do

Construct a Contextual Matching Matrix (CMM);
Assign idle taxi to a passenger using CMM based on the best fleet

distribution ;
Match the remaining taxis using CMM until the elements of CMM
converge to 0;

end
Update the fleet state St+1;

end

• State transition probability function T: A taxi matched with a passenger becomes idle
after the estimated time to travel to the destination zone. Assuming that a taxi drives
400 m at each time step (as defined in Equation (3), we uniformly randomly choose a
future time step (from 0 to 5) when the taxi is added back to the supply pool after the
idle period. Passenger demands are generated randomly for the succeeding states.

Given the observed reward, an agent computes and updates the quality of a state–
action combination at each time step using the Bellman equation [34], which uses the
weighted average of the previous value and the newly obtained information. The Bellman
equation is given in Equation (7), where t is the time step, a is an action in A, a′ is an action
chosen in the next time step, and q∗ is the Q function which is learned by the agent.

q∗(s, a) = E[Rt+1 + γmaxa′q
∗(St+1, a′)|St = s, At = a] (7)

With Q-learning, the state–action combinations are stored in a table [35]. However,
the Q-learning table cannot store the increasing number of continuous state variable values
generated by our problem. Instead, we use the Deep Q-Learning method (DQN) with
a deep neural network to approximate the Q function [24,29]. To resolve the issue of
instability when a neural network attempts to approximate a non-linear function, DQN
uses experience replay to randomly sample past actions instead of the most recent actions
to proceed. DQN with the experience replay prevents the reinforcement learning from
becoming excessively divergent due to a small update to Q. The DQN architecture is
illustrated in Figure 7.

Figure 7. Illustration of DQN architecture.

The number of distributions to choose for each zone is Nz + 1. The total number
of possible fleet distributions is 2625 when z is set to 25, which is too many for a single



Electronics 2021, 10, 2653 12 of 19

decision agent to handle. Therefore, we run an independent agent for each zone that follows
DQN-based policy learning separately with no cooperation, as discussed in the multi-agent
reinforcement learning method [28]. With this approach, each agent in each zone considers
only Nz + 1 actions. For Nz actions, agents choose a destination zone to be assigned with a
10% greater fleet proportion. The agent leaves one action without proportion augmentation.
As a result, the IQL methodology proceeds as shown in Algorithm 4.

Algorithm 4: Dispatch in IQL

Initialize fleet state S0, agents;
for e = 0 : Emax − 1 do

for t = 0 : Tmax − 1 do
for each departure zone do

Agent chooses the best distributions of idle taxis to destination zones
using DQN;

Construct a Contextual Matching Matrix (CMM);
Assign idle taxi to a passenger using CMM based on proportion;
Match the remaining taxis using CMM until the elements of CMM
converge to 0;

end
Update the fleet state St+1;

end
end

4.4. DDR (Distribution Difference Reward)

We extend IQL by reflecting the distribution of the future order placements across all
zones to the DQN’s reward function, which was the method used for a single taxi dispatch
problem discussed by Zhou et al. [3]. This method, namely DDR, attempts to bring the
taxi distribution in the following state close to the distribution of the passenger orders. We
measure the spatial distribution of the available taxis in the subsequent state and that of the
passenger distributions. We compute the difference between the two spatial distributions
as shown in Equation (8). Then, we apply the difference to the reward function, as shown
in Equation (9), where Oi is the ratio of orders in Zi to the total orders, Ψ is the ratio of
supplies in Zi to the total supplies, and ∆ is sum of differences between the ratio of orders
and ratio of supplies in each zone. Note that, in IQL, the reward was based solely on
estimated profit and revenue. With DDR, we expect the taxis to stay busy as taxis are
assigned to the destinations with high follow-up demands.

∆ = ΣNz
i=1|Oi −Ψi| (8)

Re = Pro× ∆ (9)

4.5. Z-CMM (Zone-Agnostic CMM)

The final approach (Z-CMM) is not bound by the factitious zones that dissect the
serviced area. Therefore, Z-CMM does not compute the proportion of taxis to be dispatched
for destination zones. Z-CMM bypasses the proportion determination phase and proceeds
straight to matching every taxi with the passengers based on CMM, as discussed in
Section 4.1. Among the four approaches we have devised so far, Z-CMM is the most
straightforward approach. It breaks the norm of all the previous works discussed in
Section 2 that depends on dividing the service area into arbitrary zones. Z-CMM estimates
the demand of the drop-off location and does not look further into future states. Thus, it is
expected to make more prompt decisions than M-Greedy. The effectiveness of Z-CMM in
generating revenue and profit is presented in the following section.

The key features of the approaches devised in this paper are summarized in Table 2.
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5. Evaluation

We ran our taxi dispatch decision algorithms on an NVIDIA DGX-1 with an 80-Core
(160 threads) CPU, 8 Tesla V100 GPUs with 32 GB of exclusive memory, and 512 GB of
RAM. NVIDIA DGX-1 was operated with the Ubuntu 16.04.5 LTS server, and the machine
learning tasks were executed through Docker containers. The machine learning algorithms
were implemented with Python (v3.6.9), Tensorflow (v1.15.0), and Keras (v2.3.1) libraries.
For IQL and DDR, we used ReLU and linear kinds of activation function [36,37] and
the Adam optimization function [38,39]. The learning rate was empirically set to 0.001,
the discount factor was 0.99, and epsilon decay was 0.9999. Furthermore, each agent had
one hidden layer with 256 perceptrons and a softmax layer for the output layer. In addition,
we used the Mean Square Error (MSE) for the loss function. We published our source code
on GitHub (https://github.com/YoungRaeKimm/Taxi-Dispatch accessed on 2 October
2021).

Our experiments are based on actual Seoul taxi operation data made publicly avail-
able by Seoul Metropolitan Government Big Data Campus (https://bigdata.seoul.go.kr/
accessed on 2 October 2021). The preprocessed datas are presented in query. The road
network consists of 150-m links, and pick-up and drop-off coordinates and OD information
are given. We used the data set collected over 24 h. We broke down the data into 30-s time
steps, thus having 2880 time steps in total. In the case of models that require an episode for
learning, such as IQL and DDR, one episode is 24 h. In addition, IQL and DDR learned
while conducting a total of 50 episodes. There are 383,264 passenger calls in total, and the
number of taxis to start with is fixed to 13,038. Demand and supply fluctuated over time in
reality. The samples of the pre-processed taxi operation data are shown in Tables 3 and 4.

We divided the service area into 2, 4, 8, and 25 administrative divisions for the zone-
sensitive approaches.

Table 3. Overview of order data.

Pick Up Pick Up Zone Destination Zone Pick Up Pick Up Drop Off Drop Off
Timestep Number Number Latitude Longitude Latitude Longitude

0 Zone 1 Zone 1 37.616380 127.12491 37.4931945 127.029665
0 Zone 1 Zone 3 37.612991 126.92186 37.463410 126.527850
... ... ... ... ... ... ...

2879 Zone 25 Zone 25 37.493194 126.90832 37.6083009 127.034780

Table 4. Overview of taxi data.

Zone Number Latitude Longitude

Zone 1 37.40802 127.1442006
Zone 1 37.795449 126.19642

... ... ...
Zone 25 37.119776 126.048993

We measured the performance of our approaches in terms of cumulative revenue and
profit and the time taken to make a decision at every simulation episode.

Figure 8 and 9 show the cumulative profit during the reinforcement learning (RL)
through IQL and DDR. Despite multiple iterations of reinforcement learning, we can see
that the profit is highly divergent. In other words, no apparent profitable policy could
be learned. Even accounting for the future states, approaches based on reinforcement
learning could not outperform greedy approaches in terms of revenue and profit as shown
in Figures 10 and 11. Most interestingly, Z-CMM, which is not restricted by the service area
divisions, yielded the highest revenue and profit compared to other approaches. Z-CMM
generated 4.647 % and 4.982 % higher revenue and profit on average (equivalent to 0.3 bil-

https://github.com/YoungRaeKimm/Taxi-Dispatch
https://bigdata.seoul.go.kr/
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lion Korean won and 0.28 billion Korean won more in revenue and profit), respectively,
than the best zone-sensitive approach in the two-zone setting.

(a) IQL, 2 zones (b) IQL, 4 zones

(c) IQL, 8 zones (d) IQL, 25 zones

Figure 8. Illustrations of recorded cumulative profits by IQL under different zone settings.

(a) DDR, 2 zones (b) DDR, 4 zones

(c) DDR, 8 zones (d) DDR, 25 zones

Figure 9. Illustrations of recorded cumulative profits by DDR for different zone settings.
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Figure 10. Comparison of the cumulative profit by each methodology during 24 h. The Z-CMM
methodology recorded the highest profit.

Figure 11. Comparison of the cumulative revenue by each methodology during 24 h. The Z-CMM
methodology recorded the highest revenue among the methodologies.

As we reduce the number of zones, revenue and profit increase for all zone-sensitive
approaches. All zone-sensitive approaches restrict the taxis to be matched with a passenger
within their predefined zone, even though matching the taxi to the much closer passenger
call across the zone border can be more profitable, as illustrated in Figure 12. From this
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observation, we can safely conclude that the arbitrary division of the service area can be
considered harmful. With Z-CMM being the top performer, a complicated computation to
determine the fleet proportion among different zones is futile. A simplistic taxi passenger
matching with CMM suffices.

Figure 12. Zone-sensitive approaches did not allow the taxis to pick up a passenger in another service
zone even though they are nearer than any other passengers within its zone. This is because the
zone-sensitive approaches must determine the fleet proportions to different destination zones prior
to matching taxis and passengers individually.

The relatively poor performance of IQL and DDR resonates with the critical flaw
many previous RL-based methods also have for the taxi dispatch decision problem. Note
that assigning the taxi to a particular passenger is not at all the cause of a new demand
for the drop-off zone in the subsequent time steps. In other words, a new demand after a
drop-off occurs independently of the taxi assignment decided in the previous time step.
However, given the deterministic MDP, RL is forced to learn the correlation between the
two unrelated values—the demand in the future state and the taxi deployment decision in
the previous state. The incorrect correlation attempt explains the high divergence seen in
Figures 8 and 9. Greedy algorithms avoid such false correlations. We attempted to address
the stochastic nature by guiding DDR to yield a policy that moves the fleet to the zones
with a probable high follow-up demand. However, this did not lead to any improvement,
and DDR was on par with the basic CMM, which also accounts for the out-degree of the
destination zones (Outi in Table 1). We were able to discover this problem as we used real
demand distribution data, unlike the previous RL-based works that assume predetermined
and fixed demands at every time step.

In terms of the time taken to determine the dispatch actions(Figure 13), CMM per-
formed the best. On the other hand, M-Greedy consumed the most time—as much as
275,040 s per episode—when the number of zones was set to 25. M-Greedy mimics the
farsightedness of the RL-based approaches by looking ahead to D future states. M-Greedy
significantly outperforms the RL-based approaches. Compared to a basic zone-sensitive
CMM algorithm, calculating the value of an action with the future states also considered
was beneficial. Nevertheless, Z-CMM, with the simple removal of service area divisions,
outperformed M-Greedy even without the future state considerations. The look-ahead
mechanism can be introduced to Z-CMM as well. However, M-Greedy failed to finish the
process of computing the top-k actions over D future states within the 30 s decision cycle.
Hence, applying the excessively time-consuming look-ahead process to Z-CMM is not a
viable option, as the number of cases to consider before computing the top-k cases is much
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higher. Even though CMM took the least time, Z-CMM remains our final recommendation
as it makes full decisions safely within the time-bound and generates much higher revenue
and profit.

Figure 13. Illustrations of time consumption by each methodology.

6. Conclusions

One of the keys to the competitive edge of our approach is being agnostic of geograph-
ical zones when matching taxis and passenger calls. Contrary to the conventional methods
in the past, we do not force the taxis to be matched only with the passengers within the
same predefined zone when closer passengers are present in the neighboring zones. Our
greedy algorithm based on passenger-to-driver and origin-to-destination distances and a
straightforward estimation of the demand at the drop-off location ran quickly without the
considerable training overhead that can be incurred by machine learning methods such
as reinforcement learning (RL). Our evaluation using the actual taxi operation data from
the Seoul metropolitan area reveals that our approach was 16.914% more profitable and
generated 16.893% higher revenue on average than the state-of-the-art RL-based methods
under any service dissection settings. Furthermore, the dissection of the service area into
multiple zones and the determination of the fleet distribution among destination zones
turned out to be less effective. Based on these findings, we can naturally conclude that our
zone-agnostic greedy algorithm is suitable for taxi fleet management companies operat-
ing in large-scale cities, which require prompt and profitable dispatch decision-making.
However, our study does not assess or take into account the satisfaction of passengers,
which could be a critical factor to consider in future work. In addition, we plan to apply
our methods to other metropolitan cities and evaluate the effect with the same empirical
evaluation approach.
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