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Abstract: This paper proposes a novel Piecewise Parabolic Approximate Computation method
for hardware function evaluation, which mainly incorporates an error-flattened segmenter and
an implementation quantizer. Under a required software maximum absolute error (MAE), the
segmenter adaptively selects a minimum number of parabolas to approximate the objective function.
By completely imitating the circuit’s behavior before actual implementation, the quantizer calculates
the minimum quantization bit width to ensure a non-redundant fixed-point hardware architecture
with an MAE of 1 unit of least precision (ulp), eliminating the iterative design time for the circuits.
The method causes the number of segments to reach the theoretical limit, and has great advantages
in the number of segments and the size of the look-up table (LUT). To prove the superiority of the
proposed method, six common functions were implemented by the proposed method under TSMC-90
nm technology. Compared to the state-of-the-art piecewise quadratic approximation methods, the
proposed method has advantages in the area with roughly the same delay. Furthermore, a unified
function-evaluation unit was also implemented under TSMC-90 nm technology.

Keywords: error-flattened; segmenter; quantizer; multifunctional unit

1. Introduction

High speed hardware function evaluation has been widely deployed in computer
graphics. Graphical processing units (GPU) use special function units (SFU) to compute
elementary functions, which are essential operations in graphical processing [1]. As the con-
straints on performance become much more stringent, more and more hardware-oriented
methods for high-speed elementary functions have been proposed. Generally, implementa-
tion methods of unary functions can be separated into two categories: iterative methods
and non-iterative methods. From the perspective of VLSI implementation, iterative meth-
ods need to repeat the same or similar calculations multiple times on the time axis, while
non-iterative methods use the calculation resource only once.

The mainstream iterative methods of complex computing units are the Newton–
Raphson (NR) method [2] and Goldschmidt algorithms [3], which are multiplicative-based.
Although these methods converge quickly, each iteration requires several multipliers,
which lead to a long execution time and large area. Coordinate Rotation Digital Com-
puter (CORDIC) is also popular [4,5], but its latency is too high due to its multicycle
execution delays.

Non-iterative methods are usually based on look-up tables (LUTs). According to
the size of LUTs and computation complexity, table-based methods are further divided
into three categories: computer-bound methods, table-bound methods, and in-between
methods. Computer-bound methods use small-sized LUTs to store significant parameters
which are used in cubic or higher-degree polynomial calculation. Therefore, a lot of
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multiplications and additions are necessary, which leads to a high hardware overhead.
The polynomial is usually implemented with fused multiply-add units using Horner’s
rule. Table-bound methods use large LUTs and simple calculation units, usually a few
additions. Bipartite table methods (BTM) [6] and multipartite table methods [7] are typical
examples of table-bound methods, which use a few tables and some additions. In general,
table-bound methods are suitable for low-precision applications, because as the accuracy
increases, the size of the LUTs increases exponentially. In high-precision applications, the
hardware overhead of large LUTs is unaffordable.

In middle-to-high-precision applications, in-between methods are more popular, be-
cause they obtain a better trade-off between the size of LUTs and arithmetic complexity.
This method can be further subdivided into linear approximation and quadratic approxi-
mation depending on the polynomial approximation degree. Linear approximation has
advantages when the accuracy is low, because of its high speed and low computation
complexity [8,9]. It is usually used in low-precision applications or to provide an initial
value for other methods. Ref. [10] proposed two levels of approximation for medium-to-
high-precision applications. In the first level of initial approximation, piecewise degree-one
polynomials are used to approximate the target function, and approximations to the cor-
responding difference functions are generated. Afterward, in the second level of refined
approximation, the shared normalized difference function is computed using either direct
LUTs or another piecewise interpolation. This method reduces the total area at the cost of a
long delay. In general, quadratic approximation offers a better compromise between LUT
size and computation complexity in medium-to-high-precision applications [11,12].

The uniform segmentation method is a common method in quadratic approximation.
The input X is split into two parts, the most significant part X1 and the least significant
part X2. The target function is evenly divided into 2X1 subintervals and approximated by a
quadratic polynomial aX2

2 + bX2 + c for each subinterval. The optimal quadratic polynomial
for a special subinterval can be obtained by interpolation at Chebyshev points [13] or
minimax approximation [14], which needs Maple toolbox. In hardware implementation, X1
can be used to index the coefficients a, b, c directly. Many works have adopted this method
and focus on reducing the coefficients bit width and optimizing the multiplier. Ref. [15]
used an enhanced minimax approximation to reduce the LUT size, which takes into account
the effect of rounding the coefficients to a finite size through an iterative process. Ref. [16]
proposed a novel technique to minimize polynomial coefficients bit width, which uses
integer linear programming (ILP) to optimize the polynomial coefficients, considering all
error components simultaneously. The multiplier in [17] is optimized in detail based on [16].
Uniform segmentation method has two obvious advantages. Firstly, the index logic is
simple because X1 contains the information of each subinterval. Secondly, the multiplier bit
width is small. On the one hand, X2 has less bit width than X. On the other, the coefficients
can be reduced by novel methods. However, the accuracy of such methods is limited by the
largest error among all segments. In high-precision applications, the number of segments
is too large, leading to an LUT size that is too large and just unnecessary. When evaluating
functions with high nonlinearity, uniform segmentation methods are not efficient. As for
SFU in GPU, multiple functions need to be implemented, the shortcomings caused by large
LUTs are much more apparent.

Therefore, several non-uniform segmentation methods have been proposed [18–23].
Refs. [18,19] proposed multilevel hierarchical segmentation methods, in which the segment
size at each level can be the same or different by increasing or decreasing the order of
power-of-two. Ref. [20] presented another similar segmentation method targeting for
floating-point arithmetic which places the boundary of segments so that every segment
contains consecutive numbers, and thus the segment index encoder can be realized by
simple combinational logic. These methods are not flexible enough to dynamically fit
target functions with high nonlinearity, although the hardware design of the segment
index encoder is simple. In [21], the segmentation boundary could be at any position
of the interval depending on the adopted segmentation schemes. However, the design
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of the segment index encoder is complicated. Refs. [22,23] presented new non-uniform
segmentation approaches that merge a fixed number of uniform base segments into a larger
non-uniform segment and design an innovative method to remap addresses. However,
this method does not cause the number of segments to reach the theoretically minimum
value, and there is still room for improvement.

The SFU of GPU usually needs the implementation of multiple functions, so the size
of LUTs is significant to the whole area. This paper proposes a new method, which cuts
down the LUTs’ size by reducing the number of segments to the theoretical minimum
value for any given precision.

An error-flattened segmenter and a novel quantizer are components of the piecewise
parabolic approximate computation method. The segmenter uses piecewise parabolas to
approximate the objective function under the required software maximum absolute error
(MAE), and ensures that the required accuracy is achieved with the minimum number of
segments. In detail, we discretize the data and set a target value as the unified software
MAE for each segment. In each segment, we guarantee the real MAE to be at the minimum.
Then, the segmenter will select the maximum range for each segment and derive the
corresponding coefficients until the whole input range has been covered. Because the range
of each region has been maximized, the number of segments is minimized. So far, we
have used piecewise parabolas with the lowest number of segments to approximate the
target function in the input region. Based on the segmenter, we design a general hardware
architecture. The quantizer is designed for this hardware architecture. It can completely
imitate the input and output behavior of the circuits and ensure that the hardware overhead
is minimized with an MAE of 1 unit of least precision (ulp). Therefore, the designer does
not have to adjust the hardware bit width iteratively.

The main contributions of this paper are summarized as follows:

• The proposed method reduces the number of segments to the theoretical minimum
value in any given precision to reduce the size of the LUTs, which has obvious
advantages in reducing the area of applications that implement multiple functions
simultaneously, such as SFU.

• The proposed arithmetic circuits can be implemented without a waste of hardware
resources. With the help of an innovative quantizer, we quantize the coefficients to the
minimum bit width, which can guarantee the precision up to 1 ulp.

• It is a calculation method with an absolutely controllable error. The exact bits of the
result in hardware can be set in advance.

• The proposed method is applicable to all unary functions with finite codomain.

The remainder of this paper is organized as follows. Section 2 depicts the basic
principles of the proposed method. The error-flattened segmenter is introduced and
verified in Section 3. In Section 4, the hardware architecture and the quantizer are described.
The details of hardware implementation and comparison with the existing methods are
demonstrated in Section 5. Finally, Section 6 summarizes our work.

2. Basic Principles
2.1. Basis of Piecewise Parabola Approximation

Let the objective function be expressed as f(x), x ∈ [M, N]. Piecewise parabola ap-
proximation uses a special parabola segmenter to split the input range x ∈ [M, N] into
several segments. Each segment is approximated by a parabola hi(x) = aix2 + bix + ci.
The coefficients ai, bi, ci are stored in the LUT in advance. Over the entire input range, the
function can be approximated as

f(x) ≈ h(x) = {hi(x)}i=1,2,3,... =
{

aix2 + bix + ci

}
i=1,2,3,...

. (1)

Four sets of data need to be determined when using the proposed method. The
first is the segment start point value in the input range {xi}i=1,2,3,.... The others are the
quadratic term coefficients {ai}i=1,2,3,..., linear term coefficients {bi}i=1,2,3,..., and constant
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term coefficients {ci}i=1,2,3,.... Supposing the objective function has n segments in the input
range, n − 1 start point values, n quadratic term coefficients, n linear term coefficients, and
n constant term coefficients need to be stored in the LUT.

2.2. Discretization

The data are discrete in fixed-point calculations in VLSI. Let the objective function
be f(x), x ∈ [M, N]. Assume that the number of fractional bits of x in hardware is Q. We
sample the input range [M,N] with an equal interval of 2−Q. According to Equation (2), the
input becomes a one-dimensional vector with the size of NUM:

xq = xq(1 : NUM) =

{
M, M +

1
2Q , M +

2
2Q , . . . , N− 1

2Q , N
}

. (2)

At this time, the output fq(x) also becomes a one-dimensional vector with the size
of NUM:

fq = fq(1 : NUM) = {f(xq(1)), f(xq(2)), . . . , f(xq (NUM))}. (3)

The design of parabola segmenter is based on the discrete point set {xq(i),fq(i)}.

2.3. Metric for Error Evaluation

The maximum absolute error (MAE) is a common metric to evaluate the approximate
error. Considering the fixed-point implementation with Q fractional bits in hardware, the
continuous input range [M,N] is sampled into NUM points:

NUM = (N−M)× 2Q + 1. (4)

In hardware implementation, xq, fq(x), and h(x) are one-dimensional vectors with
the size of NUM. MAE is the absolute value of the worst-case approximate error. It is
defined as

MAE = max|fq(xq)− h(xq)|. (5)

3. Error-Flattened Segmenter
3.1. Minimization of MAE

In this subsection, we explore ways to minimize MAE for a given segment. Suppose
the input of the segment is xq(j : k), 1 ≤ j < k ≤ NUM. Ref. [14] pointed out that
interpolation at cleverly chosen points could be a sensible solution: interpolating a function
at Chebyshev points gives a polynomial almost as good as the minimax polynomial. The
parabola generated by Chebyshev interpolation can be directly calculated by MATLAB,
while the minimax method needs a Maple toolbox. Thus, with the aim of minimizing MAE,
we choose three Chebyshev points of the target function and fine-tune it to generate the
optimal parabola [24]. As for n-order interpolation, the Chebyshev nodes on [−1, 1] are:

ui = cos
(
(2i + 1)π

2N

)
, i = 0, 1, 2, . . . , N− 1. (6)

Therefore, the third-order Chebyshev nodes on [−1, 1] are:
u0 = cos

(
π
6
)
=
√

3
2

u1 = cos
( 3π

6
)
= 0

u2 = cos
( 5π

6
)
= −

√
3

2 .
(7)

The Chebyshev nodes are then transformed from [−1,1] to [a, b] by the following formula:

vi = ui·
b− a

2
+

a + b
2

. (8)
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The three Chebyshev nodes in the i-th subinterval xq(j : k) become:
xis = −

√
3

2 ·
xq(k)−xq(j)

2 +
xq(k)+xq(j)

2
xim =

xq(k)+xq(j)
2

xie =
√

3
2 ·

xq(k)−xq(j)
2 +

xq(k)+xq(j)
2 .

(9)

In order to show more clearly the relationship between the Chebyshev nodes and
xq(j), xq(k), Equation (9) can be rewritten as

xis = c1·(xq(k)− xq(j)) + xq(j)
xim = c1·(xq(k)− xq(j)) + xq(j)
xie = c3·(xq(k)− xq(j)) + xq(j).

(10)

where c1 is (−
√

3/2 + 1/2), c2 is 1/2, c3 is (
√

3/2 + 1/2).
The target function values of xis xim and xie are expressed as yis, yim, and yie. The

coefficients of the parabola in the i-th subinterval are determined by these three points:
bi =

(x2
im − x2

ie)(yis − yim) − (x2
is − x2

im)(yim − yie)
(x2

im − x2
ie)(xis − xim) − (x2

is − x2
im)(xim − xie)

ai =
(yis − yim − bi(xis − xim))

(x2
is − x2

im)
ci = yis − ai·x2

is − bixis.

(11)

We plot the error distribution diagram of the first segment for function ln(1 + x) in
Figure 1. As can be seen from Figure 1a, there are four error peaks, and the absolute
values of four peaks are almost equal. However, there is still a small gap between the four
peaks. Ref. [14] pointed out that p* is the minimax degree-2 approximation to function
f on [a,b] if and only if there exist at least four values x0, x1, x2, x3 ∈ [a, b], such that
|p∗(xi)− f(xi)| = ‖f − p∗‖∞. Therefore, we need to make the four peaks equal. The
first error peak and the last error peak are taken as the benchmark. Through the error
distribution diagram, we can see that the second peak is slightly larger and the third peak is
slightly smaller. Therefore, we only need to move xim to the right—that is, to increase c2. As
shown in Figure 1b, when c2 becomes 0.501, the four peaks are equal. For other functions,
we can perform the same operation to make the four error peaks in the subinterval equal,
as shown in Figure 2. The fine-tuned c2 can be expressed as c2′ = c2 + δ. The δ for a few
common functions are shown in Table 1.
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Table 1. The δ for common functions.

Function δ Function δ

2x 0.01 sin(1 + x) 0√
1 + x −0.02 cos(1 + x) 0

1
1+x −0.02 log2(1 + x) −0.01

1√
1+x

−0.02 e1+x 0

ln(1 + x) −0.02 2−x −0.01

3.2. Minimization of the Segments Number with a Given Precision

Here, we propose an innovative segmentation method, which can adaptively generate
the minimum number of segments under a given precision and a certain input range.

First of all, the input range of a segment needs to be maximized with a given MAE. The
process is easy to understand. From the previous section, we can calculate the minimum
MAE of a certain segment. If the MAE is greater than the predefined error, it means that
the segment width is too large and should be reduced; if the MAE is no greater than the
predetermined error, it means that the segment width may be too small, and there may be
room for enlargement.

Assume that the required MAE of the software segmenter is MAE_sw and the objective
function is {xq(i), fq(i)}i=1:NUM. Then, suppose that the function in xq(1 : j− 1) has been
successfully approximated and the function in xq(j : NUM) remains to be addressed. Now,
we need to determine the input range of the next segment in xq(j : NUM). The start point is
xq(j) and the end point xq(ep) needs to be found. In theory, there are (NUM-j) possibilities
for the selection of the end point xq(ep), and the exhaustion method can be used to select
it. According to Equation (6), the $MAE$ for every choice of xq(ep) can be calculated
and expressed as MAE(j + 1 : NUM). Among those MAEs which are no greater than the
MAE_sw, we can choose the largest corresponding segment. However, the calculation
of the exhaustion method is time consuming, resulting in the segmenter running on the
software for hours or even days. Therefore, we optimize the calculation process of the
segmenter based on the method proposed in [9].
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We design the calculation process of segment width maximization based on dichotomy,
as depicted in Figure 3. At initialization time, we assign the start index number j of
the unsegmented input xq(j : NUM) to the segment start pointer sp and left pointer of
the dichotomy window lp. Similarly, we assign the end index number NUM of the
unsegmented input xq(j : NUM) to the segment end pointer ep and right pointer of the
dichotomy window rp.
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Then, the minimum MAE as well as the coefficients of the approximate parabola in
the input range xq(sp : ep) are calculated by the method introduced previously. If the
MAE satisfies the required precision MAE_sw and one of the maximum width judgment
conditions ep = rp is true, then the corresponding coefficients, segment start pointer
sp, and segment end pointer ep at this time are outputs. If the first calculated MAE does
not meet the accuracy requirements, then update the right window pointer rp to the
current end pointer ep, and move the end pointer ep to the left by half of xq (lp : ep) and
recalculate MAE.

It can be seen that, after the right window is shifted to the left, the updated indexes
from rp to NUM cannot be used as the end pointer ep. Then, the judgment condition of
the maximum segmentation end point that satisfies the calculation precision requirements
should be ep = rp − 1—that is, the previous point of rp cannot meet the requirements.
Therefore, even if MAE meets the precision requirement, it still necessary to judge whether
the segment width xq(sp : ep) at this time is the largest according to whether ep = rp − 1
is true. If it does not satisfy the judgment, the left window lp needs to be updated to the
current end pointer ep, then the end point ep moves to the right by half of xq(ep : rp)
and MAE is recalculated. After repeated iterations of the above calculation process, the
judgment condition ep = rp − 1 will finally hold and the corresponding coefficients,
segment start pointer sp, and segment end pointer ep will be the outputs.

The segmentation in the whole input range can be carried out as in the flowchart in
Figure 4. First of all, the calculation process of segment width maximization is adopted to
select the first segment xq(1 : ep). The start pointer, the end pointer, and the corresponding
coefficients are stored. Then, the segment start pointer sp is updated to ep + 1, and the
segment end pointer ep is updated to NUM. The calculation of the segment width maxi-
mization is continuously performed until the sp points to NUM + 1. Now, segmentation
over the whole input range has been completely discussed. Assuming the number of the
segments is n, we put the start pointer sp of every segment together to get a vector of
start pointers:

S = {sp} = {S1, S2, S3, . . . , Sn}. (12)

Similarly, we can obtain the vectors of quadratic coefficients, linear coefficients, and
constant coefficients: 

a = {a1, a2, a3, . . . , an}
b = {b1, b2, b3, . . . , bn}
c = {c1, c2, c3, . . . , cn}.

(13)
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Up until now, the objective function fq(1 : NUM) can be approximated by piecewise
parabolas:

fq ≈


a1x2

1 + b1x1 + c1, x1 ∈ [xq(1), xq(S2))
a2x2

2 + b2x2 + c2, x2 ∈ [xq(S2), xq(S3))
a3x2

3 + b3x3 + c3, x3 ∈ [xq(S3), xq(S4))
. . .

anx2
n + bnxn + cn, xn ∈ [xq(Sn), xq(NUM)].

(14)
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3.3. Test of Segmenter Performance

We test whether the segmenter meets the preset performance in MATLAB. The dis-
cretization interval in Equation (2) is set as 2−20. The error distribution curve of square
root

√
x with 12 segments is shown in Figure 5. The preset MAE of software segmenter

MAE_sw is 4.502× 10−7. As can be seen, the maximum absolute error of each segment is
equal. There are four peaks per segment in the error distribution diagram, whose absolute
values are all equal to MAE_sw. Thus, the MAE in each segment is minimized and error
flattening in the whole input range is realized. In conclusion, the number of segments
reaches the theoretical minimum. In addition, the MAE_sw is set in advance; this reflects
that the error is absolutely controllable. Experiments show that the designed segmenter
achieves basic functionality.
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√

x with 12 segments in [0,1).

Furtherly, we set the discretization interval in Equation (2) as 2−23. For different
target functions, such as 2x, log1+x

2 , sin(x), 1/(1 + x), we set different MAE_sw and plot
the approximate function and error distribution in Figure 6. As is shown in Figure 6, for
each segment of each function, there are four peaks whose absolute values equal MAE_sw.
According to [14], the MAE in each segment is minimized and error flattening in the whole
input range is realized.
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4. Hardware Architecture and Quantizer
4.1. Hardware Architecture

The principle of the indexing of parabola coefficients is similar to that of the indexing
of PWL coefficients. The conventional indexing method comprises judging segment by
segment. For each judgment, a subtractor and a 2-1 MUX (multiplexer) are used in the
hardware implementation. By this method, (n − 1) subtractors and (n − 1) 2-1 MUXes are
cascaded to determine which segment the input x is located in. The delay increases linearly
with the augment of the number of segments.

In order to solve the problem of too high a delay in the above indexing method, this
paper proposes a new indexing method based on [8,9], as shown in the left side of Figure 7.
For a function with n segments, the input is simultaneously compared with the starting
points S2, S3, . . . , Sn−1 through (n − 1) parallel subtractors. (n − 1) subtractors calculate
and output sign bits signi at the same time; then, (n − 1) symbol bits are concatenated into
the MUX selection signals sign, and coefficients of corresponding segments are directly
indexed. It is worth mentioning that the (n − 1) subtractors only have carry chains, which
occupy much less area than ordinary subtractors. In addition, the proposed method has
no encoder. The delay of this method is only one subtractor and an n − 1 MUX, which is
lower than the existing method.

Naive implementation ax2 + bx + c requires three multipliers and a carry save adder
(CSA) [25]. By horner’s rule: (ax + b)x + c two cascaded fused multiply-add (FMA) units
are required. The FMA inserts the addend of the addition into the partial product array of
the multiplication and then processes them together to reduce delay and save hardware
overhead [26]. Compared to the conventional method, one multiplier is saved.

The hardware architecture is shown in Figure 7. The hardware resources include:
(n − 1) subtractors (carry chains), an n − 1 MUX, and two FMA units. This architecture
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does not have a pipeline, in order to compare with related papers. Because the hardware
architecture is a forward circuit, we can easily add registers as needed. As for the indexing
of coefficients, the proposed method occupies (n − 1) subtractors (carry chains) and an
n − 1 MUX, while Ref. [16] only uses an n − 1 MUX. In the calculation unit, the proposed
method contains two FMAs, while Ref. [16] has one more multiplier.
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4.2. A Novel Quantizer

A novel quantizer is proposed to imitate input and output behavior in hardware and
quantize the related data in order to make the MAE in hardware equal to 1 ulp with a
non-redundant hardware overhead. Figure 8 is a detailed description of the arithmetic
circuits regarding the proposed quantizer.
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The input is discretized by the step of 2−ow (ow is the width of fractional bit) in the
segmenter, so the input value has been quantized in accordance with the circuits. To ensure
consistency, the output fractional bit width is set equal to that of the input. Assume the
approximate output in the circuits is R. Then, the maximum absolute error in circuits
MAE_C is defined as

MAE_C = max|f− R|. (15)

The quantizer aims to make MAE_C no greater than 1 ulp, which is 2−ow. Firstly, the
fractional bit width of coefficients a, b, and c need to be determined. In order to be accurate,
they are quantized by rounding:

a_q = round(a× 2qw)× 2−qw

b_q = round(b× 2qw)× 2−qw

c_q = round(c× 2qw)× 2−qw.
(16)

It should be noted that, although the coefficients are all quantized to qw bits, not every
bit is saved in the LUT. We only keep the required significant bits in the LUT.

The quantization of intermediate results is discussed below. The FMA combines the
multiplier and adder, so we do not have to quantize the result of multiplication. For the
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first FMA, we only need to keep the high qw bit of the result and discard the lower bit.
This operation does not require any additional hardware overhead. The quantizer can use
floor(·) operation to completely imitate the truncation operation when the hardware is
implemented. Assuming that the result of the first FMA is R1, the quantized R1 is referred
to as R1_q:

R1_q = floor((a_q·xq + b_q)× 2qw)× 2−qw. (17)

The quantization of the final result remains to be discussed. If we still choose the
truncation operation, this step causes an error of 1 ulp, and we cannot make the total
error within 1 ulp. Thus, we round the final result to ow bits. The final output R can be
expressed as:

R = round((R1_q·xq + c_q)× 2ow)× 2−ow. (18)

During hardware implementation, the round operation can be implemented by a
one-bit adder. If the output is required to round to ow bits, we just need a one-bit adder to
add the value in (ow + 1) bit to ow bit and discard the lower bits.

Algorithm 1 depicts the quantizer in detail. The input of the quantizer includes dis-
cretized input xq, benchmark f, fractional bit width of input and output ow, a set of segment
start pointers S = S1, S2, S3, . . . , Sn, a set of segment end pointers E = E1, E2, E3, . . . , En,
the number of segments n, and the number of sample points for the objective function
NUM (refer to Equation (2)). It should be noted that the end pointers set E does not appear
in the hardware implementation, because the location of the segment can be determined
only by the start pointers. This concept is introduced here to simplify the description of
the algorithm.

The output of the quantizer includes the fractional width of coefficients and interme-
diate results qw, and the MAE in circuits MAE_C. The main target of the quantizer is to
find the smallest qw to ensure that the MAE_C is less than or equal to 1 ulp. Due to error
propagation, setting qw equal to ow may not meet the circuit’s error requirements, and
additional guard bits gw is required. Therefore, qw can be expressed as qw = ow + gw.
The main purpose of the quantizer is to continuously increase guard bits gw and calculate
MAE_C until it is less than or equal to 1 ulp.

In order to explore the relationship between the error requirements in software and
hardware, we introduce a trade-off factor called TF, which is defined as

TF =
MAE_sw

1 ulp
. (19)

The MAE_sw in the segmenter can be determined by adjusting TF:

MAE_sw = TF× 1 ulp, TF < 1. (20)

The error of the circuit consists of three aspects: the algorithm error, the coefficient
and intermediate result quantization error, and the rounding error. The algorithm error
is caused by the gap between the approximate quadratic function and the objective func-
tion. The MAE of the algorithm error is expressed as MAE_sw, which is analyzed in
the segmenter. The coefficient and intermediate result quantization error is written as
MAE_quantized. The rounding error is caused by the rounding operation of the output,
and its MAE is recorded as MAE_round. In order not to lose generality, we consider the
most pessimistic case—that is, the total error is the algebraic sum of the above three errors.
The total error is less than or equal to 1 ulp. Thus:

MAE_sw + MAE_quantized + MAE_round ≤ 1 ulp. (21)

Because of MAE_round is 0.5 ulp, we can get the following relationship:

MAE_sw < 0.5 ulp. (22)
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Algorithm 1: A novel quantizer

Input Discretized input xq,
benchmark f,
fractional bit width of input and output ow,
set of segment start pointers S = {S1, S2, S3, . . . , Sn},
set of segment end pointers E = {E1, E2, E3, . . . , En},
number of segments n,
number of sample points for the objective function NUM;

output Fractional bit width of coefficients and intermediate results qw,
MAE in circuits MAE_C;

Initialization
1: MAE_C = 2 ulp; % initial MAE_C
2: gw = −1; % initial guard bit width
Begin
5: while (MAE_C > 1 ulp) % fail to search guard bit
6: gw = gw +1; % update gw
7: qw = ow + gw; % update qw
8: a_q = round (a × 2qw) × 2−qw; % quantize a
9: b_q = round (b × 2qw) × 2−qw; % quantize b
10: c_q = round (c × 2qw) × 2−qw; % quantize c
11: for i = 1:n do
12: R1_q(Si:Ei) = floor((a_q(i) × xq(Si:Ei) + b_q(i)) × 2qw) × 2−qw;
13: R(Si:Ei) = round((R1_q(Si:Ei) × xq(Si:Ei) + c_q(i)) × 2ow) × 2−ow

% calculate result in circuits
17: end for
18: MAE_C = max(|f – R|); % MAE in circuits
19: end while
end

Therefore, TF is less than 0.5. We can change TF between 0 and 0.5. With the ulp
unchanged, the smaller TF is, the smaller the segmenter’s error requirement MAE_sw
is, which may lead to too many unnecessary segments. The larger TF is, the bigger
the MAE_sw is. Although the quantizer can obtain the desired effect by increasing the
guard bit width, an excessive bit width will lead to an unnecessary increase in area.
Therefore, designers have the flexibility to choose TF for better trade-offs.

In general, TF is chosen by two steps. Firstly, candidates are chosen by observing the
error distribution of the last segment. If the maximum absolute error of the last segment
is not equal to MAE_sw, as shown in Figure 9a, the minor reduction in TF will only
cause the error to increase but will not increase the number of segments. Smaller TF
will strive for more space for quantization error, which is a pure optimization. Therefore,
TF is not the candidate. When the maximum absolute error in the last segment is equal
to MAE_sw, as shown in Figure 9b, the reduction in TF will cause an increase in the
number of segments, which is undesirable. Thus, TF is the candidate. For the sinusoidal
function sin(x), x ∈ [0, 1) with the ow of 23, the candidate TF and related parameters are
shown in Table 2. Secondly, the optimal solution with the minimum LUT size, which is
calculated through the number of segments and bit width, is chosen from the candidates.

Table 2. Impact of TF.

Function TF Number of Segments q LUT(bit)

y = sin(x)
x ∈ [0, 1)

0.493 42 31 3096
0.459 43 28 3612
0.428 44 28 3696
0.401 45 28 3780
0.375 46 27 3726



Electronics 2021, 10, 2704 13 of 19

Electronics 2021, 10, x FOR PEER REVIEW 13 of 19 
 

 

MAE_sw + MAE_quantized + MAE_round ≤ 1 ulp. (21)

Because of MAE_round is 0.5 ulp, we can get the following relationship: MAE_sw < 0.5 ulp. (22)

Therefore, TF is less than 0.5. We can change TF between 0 and 0.5. With the ulp 
unchanged, the smaller TF is, the smaller the segmenter’s error requirement MAE_sw is, 
which may lead to too many unnecessary segments. The larger TF is, the bigger 
the MAE_sw is. Although the quantizer can obtain the desired effect by increasing the 
guard bit width, an excessive bit width will lead to an unnecessary increase in area. There-
fore, designers have the flexibility to choose TF for better trade-offs. 

In general, TF is chosen by two steps. Firstly, candidates are chosen by observing the 
error distribution of the last segment. If the maximum absolute error of the last segment 
is not equal to MAE_sw, as shown in Figure 9a, the minor reduction in TF will only cause 
the error to increase but will not increase the number of segments. Smaller TF will strive 
for more space for quantization error, which is a pure optimization. Therefore, TF is not 
the candidate. When the maximum absolute error in the last segment is equal to MAE_sw, 
as shown in Figure 9b, the reduction in TF will cause an increase in the number of seg-
ments, which is undesirable. Thus, TF is the candidate. For the sinusoidal function sin(x), x ∈ [0,1) with the ow of 23, the candidate TF and related parameters are shown in 
Table 2. Secondly, the optimal solution with the minimum LUT size, which is calculated 
through the number of segments and bit width, is chosen from the candidates. 

  
(a) (b) 

Figure 9. The impact of TF on the error distribution of the last segment. (a) The maximum absolute error of the last segment 
is not equal to MAE_sw; (b) the maximum absolute error in the last segment is equal to MAE_sw. 

Table 2. Impact of TF. 

Function 𝐓𝐅 Number of Segments q LUT(bit) 

y = sin(x) x ∈ [0,1) 

0.493 42 31 3096 
0.459 43 28 3612 
0.428 44 28 3696 
0.401 45 28 3780 
0.375 46 27 3726 

  

Figure 9. The impact of TF on the error distribution of the last segment. (a) The maximum absolute error of the last segment
is not equal to MAE_sw; (b) the maximum absolute error in the last segment is equal to MAE_sw.

5. Hardware Implementation and Comparison
5.1. Simulation on CPU

We perform the proposed algorithm of the segmenter and quantizer in MATLAB and
test the computing time under different functions and different accuracies. Table 3 reports
the CPU time running on an AMD Ryzen 5 Six-Core Processor with 16 GB RAM. The
CPU time of different functions with the same precision is slightly different because of the
different properties of the functions. The CPU time with different precision varies greatly,
from tens of milliseconds to hundreds of seconds, but they are all acceptable. In the worst
case of the test, for the cosine function with the accuracy of 2−27, the total required CPU
time is only about six minutes.

Table 3. Simulation time on CPU.

Function Accuracy Segmenter
CPU Time(s)

Quantizer
CPU Times(s)

y = cos
(

π
2 × x

) 2−16 0.02 0.03
2−23 8.28 3.64
2−25 52.41 18.97
2−27 318.58 92.00

y =
(

1√
1+x

) 2−16 0.02 0.03
2−23 8.44 6.68
2−25 48.85 31.68
2−27 275.01 126.20

y = In(1 + ex)

2−16 0.02 0.03
2−23 4.50 5.01
2−25 23.47 19.75
2−27 127.18 66.56

5.2. Comparison of LUT Size

To highlight the advantages of our method with regard to the size of LUT, we compare
it with many existing methods, including the most widely accepted uniform segmentation
method [15], the non-uniform segmentation method [22], the most advanced method using
ILP [16], and other classic methods [11,12,27].
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Table 4 shows in detail the number of segments, coefficient bit width, and LUT size of
various methods under different functions when the accuracy is 2−16 and 2−24, respectively.
The size of LUTs compared to [11,12,16,27] for various functions and various accuracies
is reported in Table 5. It can be seen that the proposed method has the smallest LUT size
and number of segments for all functions and all precisions tested. As for the bit width of
coefficients, in many cases, our method is slightly inferior, which makes the arithmetic unit
larger. The LUT size is a trade-off with the bit width of the arithmetic unit. The proposed
method is excellent in the number of segments and LUT size, leaving little space for bit
width optimization. The proposed method is suitable for applications where the size of
LUTs has a great impact on performance.

Table 4. Comparison in segments, LUT size, and coefficient width.

Function Accuracy Method Number of
Segments c bit b bit a bit LUT

Size(bit)
Normal of
LUT Size

y = 1
x

2−16
Uniform [15] 16 22 20 18 960 1.56

Non-uniform [22] 13 22 20 18 780 1.27
This paper 11 17 19 20 616 1

2−24
Uniform [15] 128 30 25 20 9600 1.75

Non-uniform [22] 91 30 25 20 6825 1.25
This paper 66 26 28 29 5478 1

y = log2(x)

2−16

Uniform [15] 16 22 21 18 976 1.84
ILP [16] 16 19 9 10 608 1.15

Non-uniform [22] 13 22 21 18 739 1.39
This paper 9 18 20 21 531 1

2−24

Uniform [15] 128 30 26 20 9728 2.06
ILP [16] 128 26 15 10 6556 1.39

Non-uniform [22] 80 30 26 20 6080 1.29
This paper 57 26 28 29 4731 1

y = 2x

2−16
Uniform [15] 16 24 18 17 944 2.27

Non-uniform [22] 15 24 18 17 885 2.13
This paper 8 16 19 17 416 1

2−24
Uniform [15] 64 32 23 15 4480 1.17

Non-uniform [22] 64 32 23 15 4480 1.17
This paper 46 26 29 28 3818 1

y = 2−x

2−16
Uniform [15] 8 20 17 13 400 1.33

Non-uniform [22] 8 20 17 13 400 1.33
This paper 6 15 18 17 300 1

2−24
Uniform [15] 64 31 23 18 4608 1.60

Non-uniform [22] 64 31 23 18 4608 1.60
This paper 38 24 26 26 2888 1

Table 5. Comparison in LUT size.

Function Accuracy Method LUT Size (bit) Normal of LUT Size

y = ln(1 + x)

2−18
[12] 1664 1.60
[16] 1312 1.26

This paper 1040 1

2−24
[12] 7808 1.85
[16] 6912 1.64

This paper 4212 1
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Table 5. Cont.

Function Accuracy Method LUT Size (bit) Normal of LUT Size

y = 1/(1 + x)

2−15

[11] 528 1.18
[16] 560 1.25
[27] 672 1.50

This paper 448 1

2−19

[11] 2432 1.64
[16] 1696 1.15
[27] 2880 1.95

This paper 1480 1

2−23

[11] 6144 1.48
[16] 6656 1.60
[27] 7040 1.69

This paper 4160 1

5.3. Implementations and Comparisons in 90 nm CMOS

The proposed hardware architecture is coded in Verilog HDL and implemented in
90 nm technology. We synthesize the circuits by Synopsys Design Compiler and present
the implementation results in Table 6.

Refs. [10,16] reported several implementation results in 90 nm technology of 23-bit
rounded interpolators using: the classic Chebyshev quadratic interpolation method [13],
minimax degree-two polynomial approximation [15], the two-level function evaluation
approach proposed in [10], and the ILP method targeted at minimizing coefficients’ bit
width in [16]. For the fairness of comparison, we implemented the same set of functions,
with the same accuracy and the same technology, using our technique. These functions
cover the common function types in hardware implementation, which are representative.
In addition, the proposed method has obvious advantages in middle-to-high-precision
applications. These functions usually require medium to high precision when implemented
in hardware. We also designed a multi-function unit that can compute several arithmetic
functions in the same hardware as in [10].

We test the LUT and address generation area of the proposed method for several single
functions and compare it to the LUT area (without address generation area) in [10,13,15].
Obviously, the proposed method is better. This is consistent with the previous analysis.
Ref. [16] did not provide the result of the LUT area. Moreover, the method proposed in this
paper lacks details, and so we cannot reproduce it. However, the number of segments of
uniform segmentation method is almost the same, and so the proportion of LUT area in
the total area is almost the same. We take the average value of the proportion of LUT area
in [13,15] as the proportion of LUT area in [16]. We can obtain the estimated value of LUT
area in [16]. As shown in Table 6, the proposed method has a smaller LUT and address
generation area than [16] for all cases in the table.

For the implementation of single functions, the synthesis results show that the pro-
posed method is superior to the classical method in area and delay [10,13,15]. For the
functions y = 1√

x and y =
√

x, the proposed method has advantages over ILP [16], which
is the state-of-the-art. Compared with ILP, the proposed method has a smaller area and
a higher delay for the functions y = log2(x), y = 2x and y = (1/x). Meanwhile, for the
function y = sin(x), the area of the proposed method has weak disadvantage over ILP
in area and delay. To provide a fair comparison, we use area× delay as a new metric of
cost. As shown in Table 6, the proposed method has a lower cost than [10,13,15]. For the
function, y = log2(x), y = 1√

x , y = 1
x , and y =

√
x, the proposed method costs less than

in [16].
For the multi-function unit, each function needs an individual LUT, but the calculation

unit can be reused. The hardware architecture of the proposed multi-function unit is
shown in Figure 10. For the methods in this paper and references, the index units of all
functions are accumulated, while the calculation units are reused, although the index units



Electronics 2021, 10, 2704 16 of 19

and calculation units in this paper and references are different. The method proposed
has apparent advantages because the LUT is very small. The synthesis results support
this view. Compared with the methods in [13,15,16], the proposed method saves 58.67%,
42.86%, 35.06% of the area and 35.48%, 66.23%, and 50.75% of the delay, respectively.
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Table 6. Comparison of synthesized results.

Function Method LUT & Address
Generation Area [µm2]

Total Area
[µm2]

Normal
Area

Delay
[ns]

Normal
Delay

Area × Delay
[µm2×ns]

y = 1
x

Cheyshev [10,13] 7228 28,886 1.53 9.28 1.39 268,062
Minimax [10,15] 6945 28,428 1.50 9.71 1.46 276,036
Two-level [10] 5595 24,023 1.27 12.69 1.91 304,852

ILP [16] 5325 1 21,560 1.14 6.36 0.95 137,122
This paper 2804 18,908 1 6.66 1 125,927

y = 2x

Cheyshev [10,13] 4270 29,063 1.62 9.79 1.48 284,527
Minimax [10,15] 3880 26,635 1.49 9.8 1.48 261,023
Two-level [10] 5452 18,913 1.06 12.16 1.84 229,982

ILP [16] 2273 1 18,963 1.06 5.79 0.88 109,796
This paper 2159 17,905 1 6.60 1 118,173

y = 1
x

Cheyshev [10,13] 6859 28,177 1.46 9.75 1.46 274,726
Minimax [10,15] 6712 27,855 1.44 9.71 1.45 270,472
Two-level [10] 5564 24,137 1.25 12.63 1.89 304,850

ILP [16] 5377 1 22,243 1.15 6.92 1.03 153,922
This paper 3063 19,310 1 6.69 1 129,184

y =
√

x

Cheyshev [10,13] 10,230 31,700 2.00 9.36 1.38 296,712
Minimax [10,15] 3627 26,036 1.64 9.8 1.45 255,153
Two-level [10] 4437 16,043 1.01 12.03 1.77 192,997

ILP [16] 4072 1 17,618 1.11 6.35 0.94 111,874
This paper 1456 15,888 1 6.78 1 107,721

y = 1√
x

Cheyshev [10,13] 18,453 39,737 2.29 9.45 1.50 375,515
Minimax [10,15] 6535 29,678 1.71 9.71 1.54 288,173
Two-level [10] 5388 22,317 1.29 12.83 2.03 286,327

ILP [16] 63151 18,460 1.07 6.89 1.09 127,189
This paper 2254 17,332 1 6.31 1 109,365

y = sin(x)

Cheyshev [10,13] 4015 28,144 1.48 9.52 1.42 267,931
Minimax [10,15] 3795 26,400 1.39 9.67 1.44 255,288
Two-level [10] 5496 22,890 1.21 13.08 1.95 299,401

ILP [16] 2684 1 18,743 0.99 6.28 0.94 117,706
This paper 2566 18,993 1 6.71 1 127,443
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Table 6. Cont.

Function Method LUT & Address
Generation Area [µm2]

Total Area
[µm2]

Normal
Area

Delay
[ns]

Normal
Delay

Area × Delay
[µm2×ns]

Multi-
function

Cheyshev [10,13] 51,052 77,864 2.42 11.50 1.55 895,436
Minimax [10,15] 31,496 56,224 1.75 11.22 1.51 630,833
Two-level [10] 16,211 49,548 1.54 15.07 2.03 746,688

ILP [16] 26,546 1 43,668 1 1.36 1 8.03 1 1.08 1 350,654 1

This paper 13,757 32,182 1 7.41 1 238,469
1 Estimated result.

Ref [16] did not provide the result of the multi-function unit. As mentioned above,
the method proposed in this paper lacks the details necessary for us to reproduce it, so
we make a reasonable estimate for it. As for uniform segmentation, the LUT area for
the multi-function unit equals the sum of the LUT area of each function, which can be
confirmed by the data in [13,15]. Therefore, we can obtain the estimated LUT area of
multi-function unit for [16]. According to the previous analysis, we take the average value
of the proportion of LUT area in [13,15] as the proportion of LUT area in [16] and calculate
the total area of multi-function unit for [15]. The delay of the multi-function unit is related
to the maximum delay of all functions. We calculate that of the multi-function unit as being
1.14 times and 1.17 times the maximum delay of all functions in [13,15], respectively. We
estimate that the delay of the multi-function unit is 1.155 times the maximum delay of all
functions in [16], and obtain the estimated results. Our method saves 48.18% of the area
and 7.72% of the delay when compared with [16]. Thus, for the multi-function unit, our
method has better performance than the state of the art.

6. Conclusions

This paper presents an area-efficient piecewise parabolic approximate computation
method for all unary functions with finite codomain, in which the segmenter is first
responsible for performing an error-flattened segmentation process, and the quantizer is
then accountable for quantizing the data width to guarantee a non-redundant fixed-point
hardware architecture with the MAE of 1 ulp.

For six common functions, the proposed method reduces the area with similar delay.
A multi-function unit is implemented by the proposed method for 90 nm technology.
Compared to the method in [13], the proposed method reduces the area by 58.67% and the
delay by 35.48%. In addition, our method saves 42.86% of the area and 66.23% of the delay
when compared with [15]. In addition, the proposed method cuts 35.06% of the area and
50.75% of the delay compared with [10]. The proposed method saves 48.18% of the area
and 7.72% of the delay compared with [16].
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