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Abstract: Code generation, as a very hot application area of deep learning models for text, consists
of two different fields: code-to-code and text-to-code. A recent approach, GraphCodeBERT uses
code graph, which is called data flow, and showed good performance improvement. The base model
architecture of it is bidirectional encoder representations from transformers (BERT), which uses
the encoder part of a transformer. On the other hand, generative pre-trained transformer (GPT)—
another multiple transformer architecture—uses the decoder part and shows great performance in
the multilayer perceptron model. In this study, we investigate the improvement of code graphs
with several variances on GPT-2 to refer to the abstract semantic tree used to collect the features of
variables in the code. Here, we mainly focus on GPT-2 with additional features of code graphs that
allow the model to learn the effect of the data stream. The experimental phase is divided into two
parts: fine-tuning of the existing GPT-2 model, and pre-training from scratch using code data. When
we pre-train a new model from scratch, the model produces an outperformed result compared with
using the code graph with enough data.

Keywords: code generation; data flow; BERT; AST; GPT-2

1. Introduction

Deep learning has advanced the performance of models for code generation signifi-
cantly. The full automatic code generation contributes to solving problems in the shortage
of resources for application development in various business domains. There have been
many approaches to improve text-to-code generation performance such as the sequence-to-
tree model with attention [1], dual task of code summarization [2], and pre-training code
representations with data flow (GraphCodeBERT) [3]. The current state-of-the-art approach,
GraphCodeBERT, trained CodeXGLUE data on bidirectional encoder representations from
transformers (BERT) together with a code graph of which semantic data flow was extracted
from the data set. The GraphCodeBERT uses the inherent structure of the code instead
of using the AST code structure in the pre-training phase. The semantic code structure
is used to let the code understand the relationship between variables and variable types.
Because the code is executed from top to bottom, it is dependent on the context. However,
the convenience of BERT regeneration is not particularly good. If BERT is used for code
generation, it needs to be matched with the seq2seq architecture. In the experimental phase,
we discuss BERT code generation in detail.

BERT uses the encoder part of the transformer. On the other hand, generative pre-
trained transformer (GPT)—another multiple transformer architecture—uses the decoder
part and has shown great achievement as a language model with generative pre-training
of a language model on a diverse corpus of unlabeled text, followed by discriminative
fine-tuning.

In this study, we investigate the improvement of efficiency by code graphs with several
variances on GPT-2. We refer to the Abstract Syntax Tree (AST) used by GraphCodeBERT

Electronics 2021, 10, 2706. https://doi.org/10.3390/electronics10212706 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics10212706
https://doi.org/10.3390/electronics10212706
https://doi.org/10.3390/electronics10212706
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10212706
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10212706?type=check_update&version=2


Electronics 2021, 10, 2706 2 of 14

to collect the features (variables and variable type status) in the code. The purpose of this
study is to use the collected variables and variable types to make different arrangements
while GrapthCodeBERT uses data flow with a unique variable concept. Based on the
different arrangements to use the basic ontological concept of data flow, we expect that
GPT-2 produces different effects and we will observe them from experiments.

GPT [4–6] uses the decoder part of the transformer, and longer and larger data sets can
be used. The demonstration of the GPT uses a large number of corpora and shows a brilliant
result on general function Q&A, writing articles and translation, and code generation. The
GPT-2 has good context capturing ability and semantic information possessed by data
flow. We believe that the effect of these two methods on code generation can improve the
performance. We carry out this experiment in two phases.

• First, we use the model that did not use a code graph in the pre-training phase. Next,
the code graph is used to view the effect on the model during fine-tuning.

• A model is pre-trained from scratch and uses the code graph for training based on
stage one. Using this model, we investigate the performance of the pre-training and
fine-tuned models.

In summary, the contributions of this paper are: (1) We propose a pre-trained and fine-
tuned model of text and code with several features of variables, and a pre-trained model
from scratch based on GPT-2. (2) The detailed variable features with basic ontological
concept of data flow are trained and their effect is observed. (3) Effects of the several
variable conditions are evaluated.

2. Related Work

Code generation is a relatively new topic in the deep learning area that has gained
some attention over the last few years. Long short-term memory (LSTM), transformer, and
BERT have achieved good results. The recently published GPT-3 has made a breakthrough
in code generation. However, most of them are code predictions. Code prediction assists
programmers in programming and gives tips on writing programs at appropriate times.
Our study allows the model to generate a whole string of codes at one time, such as
function or class.

2.1. Code Generation by LSTM

In this section, we present seven studies that used LSTM to complete the code gen-
eration and showed good performance. The first study [7] allowed the LSTM model to
learn the structure of the code. The code splits small nodes according to the brackets.
If a forward parenthesis is encountered, the node is split into another small node. The
system stops after encountering the last code or anti-brackets. The second study [2] used
the relationship between code-to-text and text-to-code. In that study, both comment code
and code comment generation were trained. At the same time, the system calculated the
attention value of these two models and the probability value of the last hidden layer, and
used the language model to obtain the probability value of the original comment and code.
The six values obtained by the two models were used as the final double constraint and,
finally, brought back to the original model to obtain the result. Another study [8] used the
LSTM model to generate the shell code for the text description. Continuously, this method
works for another language, [9,10] used Python code-based code generation and LSTM’s
encoder and decoder. Finally, the studies with code structure [11,12] mainly used the AST
method to analyze the structure of the code.

2.2. Code Generation by Transformer

In transformers, Sun et al. built an encoder–decoder with six layers each of the
encoder and decoder and a total of 12 layers of encoder–decoder. The authors used the
transformer’s [13] attention mechanism to alleviate the long-dependency problem and
introduced a novel AST encoder to incorporate grammatical rules and AST structure into
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the model. The TreeGen is evaluated according to the Python-based HearthStone and two
semantic analysis benchmarks (ATIS and GEO).

However, these works leverage the model to learn models on term sequence arrange-
ment without pre-training.

2.3. Code Generation by Pre-Trained Models

For the BERT, Guo et al. [3] also used AST to convert the code into a tree structure.
The nodes of this structure are the variable sequence data. Most of them are composed of
variables in the program. The authors input the obtained comment, code, and obtained
variables into the BERT re-pretrain. According to the re-pretrain described by the authors,
the obtained variables can be linked with the original code. The final results improved
the effectiveness of the authors’ various tasks. Mark Chen et al. [14] evaluated a large set
of language models trained on code using GPT-3 architecture. Guo et al. [15] proposed a
BERT model to text-to-SQL generation with content enhancement. Norouzi et al. [16] uses
BERT to evaluate learning ability to generate code from natural language with less prior
knowledge but more monolingual data.

However, our work uses GTP-2 model with diverse variable features with base onto-
logical characteristics for improvement.

2.4. Code Generation Model with Code Structure

Allamanis et al. [17] use graph neural networks to reason over program structures
with graphs for program code. Hellendoorn et al. [18] propose a model using gated graph
neural network and transformer to combine local or global data to enable more detailed
program structure in code. The GraphCodeBERT [3] uses BERT model with text, code, and
uniform data flow information.

However, this work uses GPT-2 pre-training model with several variable features with
basic ontological information.

3. Data and GraphCodeGPT

For this study, we used the GPT-2 model. A transformer is a model composed
of encoding and decoding. However, if the transformer is disassembled into separate
encode and decode, it becomes two different models. Encode is a model BERT released
by Google, and decode is the GPT-2 model released by OpenAI. Both models have grown
substantially in various assessments. There are also large-scale natural language models
such as Transformer XL and XL Net. In particular, the performance in the context of the
generated text has exceeded original expectations, and adding a large number of data sets
to the training of the model is the greatest contributor.

3.1. Data Preparation
3.1.1. Data Set

The CodeSearchNet data set provided by CodeXBLUE is used for training and testing.
We explain the data for the CodeSearchNet data set. It is one of CodeXBLUE’s data
platforms that contain many issues related to code, and uses the most basic code search,
code translation, and code generation items. In CodeXBLUE, there are four main items:
text-to-text, text-to-code, code-to-text, and code-to-code. The most relevant to this study
are text-to-code and code-to-text. As shown in Table 1, it includes multiple programming
languages (Python, PHP, GO, Java, JavaScript, and Ruby).
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Table 1. CodeSearchNet data set.

Programming Language Train Dev Test

Python 251,820 13,914 14,918
PHP 241,241 12,982 14,014
Go 167,288 7325 8122

Java 164,923 5183 10,955
JavaScript 58,025 3885 3291

Ruby 24,927 1400 1261

Each programming language contains the following information for users:

• repo: the owner/repo;
• path: the full path to the original file;
• func_name: the function or method name;
• original_string: the raw string before tokenization or parsing;
• language: the programming language;
• code/function: the part of the original_string that is code;
• code_tokens/function_tokens: tokenized version of code;
• docstring: the top-level comment or docstring, if it exists in the original string;
• docstring_tokens: tokenized version of docstring.

3.1.2. Data Set Description

We divide the data preprocessing into two types. One is to restrict the length of
comments and codes, and the other is to remove the structure of the code.

• Restricting the length of comments and code: It allows the model to add the data
flow information and to generate complete code at one time. As shown in Table 2,
we observe the two data sets. Excessively long comments and codes may result in
poor performance and failure to generate complete codes. Therefore, the comment
is limited to a character length of 40 and a code character length of 400, as shown in
Table 3.

Table 2. Average length of count unrestricted comment and code character.

Unrestricted

Examples Comment Code

181,061 176.6 607.3

Table 3. Number of restricted comments and code character length. The comment character average
length is limited to 40. The code character length is limited to 400.

Restricted

Examples Comment Code

91,735 19.8 126.8

• Removing the structure of the code: The code with structure is fine-tuned in the model,
although the inherent structure can be generated when the code is regenerated. As
shown in Table 4, we found that the generated code is affected by the linefeed symbols
(carriage return, \r), (line feed, \n), and (tabulate, \t) present in the original code in
Windows. These symbols allow the code to have a structure that is easy to read, but
these symbols are not very important in the model. In the training set, we only use
the Java programming language. Therefore, removing this symbol will not affect the
execution of the code.
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Table 4. Original and visual format of the code.

Original

protected void unsetVirtualHost(VirtualHost vhost) {
if (TraceComponent.isAnyTracingEnabled() && tc.isEventEnabled()) {

Tr.event(tc, "Unset vhost: ", vhost);
}
secureVirtualHost = null;

}

Visualization

protected void unsetVirtualHost(VirtualHost vhost) {\r\n\tif
(TraceComponent.isAnyTracingEnabled() && tc.isEventEnabled())
{\r\n\t\tTr.event(tc, \"Unset vhost: \",
vhost);\r\n\t}\r\n\tsecureVirtualHost = null;\r\n}

3.1.3. Data Reconstruction

The data are rearranged according to limitations on the length of comments and codes
presented in Section 3.1.1. Limiting the length reduces the training data of the model.
However, GPT-2 must use a large amount of training data for fine-tuning for a good
effect. The training set, development set, and test set are reallocated. Table 5 shows the
distribution of reorganized CodeSearchNet data that allows the model to obtain more
training data. Our development set takes 10% of the original data set, the test set only uses
1000 data, and the rest is used for model training.

Table 5. Number of data by CodeSearchNet data reconstruction.

CodeSearchNet Total Train Dev Test

91,735 81,561 9174 1000

3.2. Code Generation

As shown in Figure 1, code generation is a field composed of two different topics:
semiautomatic and full automatic generation. Most of the code generation is semiautomatic.
‘Semiautomatic’ means that when the code is entered, the system will recommend the user
code [1,19]. The full automatic code generation can be divided into two areas: code-to-
code and text-to-code. Code-to-code is similar to language translation of two different
programming languages [20], while text-to-code [21,22] can take many forms. The model
can be applied to a question to predict the answer, and the other is to give a general and
clear purpose and generate a general structure.
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3.3. Data Flow

The data flow can represent the dependency graph between variables, variable types,
and objects as basic variable ontology. The nodes represent variables, variable types, and
objects, and the edges represent where each value comes from. We use an AST to extract
the required data flow. AST is an abstract representation of the original syntax structure. It
presents the grammatical structure of the programming language in the structure of a tree.
As shown in Figure 2, first, we bring a large amount of source code to the AST. Then, we
filter the code. Everyone has a different style of writing programs. Therefore, the variable
name will be different. Here, we prefer to use the algorithm code for training. The code of
the algorithm has a certain regularity that can be traced. For GPT-2, a context-dependent
language model, the grammatical structure of the algorithm can effectively help with the
training. We prefer generating functions rather than generating complete code. Because
of GPT-2 input restrictions, we choose a short code with a clear meaning. All the nodes
obtained by the syntax tree generated by AST are features that can be used for the training,
and arranging all data streams meaningfully can make GPT-2 focus more on data flows.
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3.4. GraphCodeGPT

As shown in Figure 3, we introduce the model architecture of GraphCodeGPT that
uses GPT as the base model. Here, we use some code as the natural language on the pre-
trained language model with data flow that is a graph similar to the AST tree structure to
This graph is show the dependency relationship between variable sequences. Given a Java
source code S = {s1, s2, . . . , sn} with its textual content T = {t1, t2, . . . , tm}, the corresponding
data flow F(C) = (V, E) can be obtained, where V = {v1, v2, ..., vk} is a set of variables and
E = {e1, e2, . . . , ei} is a set of direct edges that describe where the value of each variable
appears. We construct the textual comment from source code and the set of variables as
the sequence input I = {[CLS], T, [SEP], S, [SEP], V}, where [CLS] is a special token, and
we classify the type of variable as Type(V) = {Variable No Sort; Variable Sort; Variable type;
Variable type add object}.
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GraphCodeGPT takes sequence I as the input and then converts the sequence into
input H0. For each token, its input vector is constructed by summing the corresponding
token and position embeddings. We use a special position embedding for all variables to
indicate that they are nodes of data flow. The GPT-2 model has N layers of transformers
according to different pre-training models. Each layer of transformer [23] contains a self-
attention mechanism. The GPT-2 model input context tokens use multi-head self-attention.
The output distribution of self-attention generated tokens is as follows, where U = (u–k, ...,
u–1) is the context vector of tokens, n is the number of layers, We is the token embedding
matrix, and Wp is the position embedding matrix.

h0 = UWe + Wp (1)

hl = trans f ormer_block(hl−1) (2)

P(u) = so f tmax
(

hnWT
e

)
(3)

The previous layer’s output Hn−1 is linearly projected to a triplet of queries, keys,
and values using model parameters WQ

i , WK
i , and WV

i , respectively. The u represents the
number of heads, dk represents the dimension of a head, and WO

i represents the model
parameters. M is a mask matrix, where Mij is 0 if the ith token is allowed to attend the jth
token; otherwise, Mij is −∞.

Qi = Hn−1WQ
i , Ki = Hn−1WK

i , Vi = Hn−1WV
i (4)

headi = so f tmax

(
QiKT

i√
dk

+ M

)
Vi (5)

Ĝn = [headi; . . . ; headn]WO
n (6)

4. Experiment and Evaluation
4.1. Evaluation Metrics

In the evaluation method, we use bilingual evaluation understudy (BLEU) and exact
match (EM). BELU is evaluated using Formula (7), where BP represents the penalty factor,
to penalize sentences that are too short in length and to prevent the training results from
tending to produce sentences that are too short. Pn represents the accuracy of the n-gram.
The BLEU of the experimental results is presented as 4-g results. EM means that the model
answer matches any standard answer and counts as 1; otherwise, it is zero. Finally, the
evaluation system will count the overall accuracy rate.

BLEU = BP× exp(
N

∑
n=1

Wn log Pn) (7)
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4.2. Fine-Tuning

In the fine-tuning phase, we use the “CodeGPT-Small-Java” pre-trained model pro-
vided by CodeXGLEU. As shown in Figure 4, this model only uses annotations and codes
for pre-training. In addition, the model uses the same training set we use for pre-training.
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4.2.1. Fine-Tuning without Code Graph

In this section, we evaluate experiments that did not use the code graph. The evalua-
tion is based on BLEU and EM scores. Table 6 shows that the results of 87.11 and 79.2 can
be obtained by fine-tuning BLEU and EM without using the code graph. The next stage of
the experiment uses this score as the standard score.

Table 6. BLEU and EM scores without code graph.

BLEU EM

No Code Graph 87.11 79.2

4.2.2. Fine-Tuning with Code Graph

In this section, we evaluate all the code graph methods. ‘Variable nosort’ is the name
of all variables in the data flow. We do not sort these variable names. The reason is that
we believe that the variable names that the program executes from top to bottom must
be sorted according to the original order. ‘Variable sort’ is to gather all the same codes
together. Thus, when the code is training, the programs of the same code should be linked
together again. Variable type and add object use the idea of variable no-sort and add more
information. The BLEU and EM scores are also used to evaluate the results. As shown in
Table 7, the scores of all BLEU and EM decrease when the code graph is added. However,
we do not think that a decrease in scores means bad results.

Table 7. BLEU and EM scores with code graph.

BLEU EM

Variable Nosort 82.76 76.1
Variable Sort 63.26 51.2
Variabletype 82.48 75.7
Variabletype
Add_object 64.24 51.4

According to the data presented in Table 7, we provide an analysis in Table 8. From
the results of Examples 1 and 2, the result of the no code graph can show that most of the
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results are similar to the standard answer. Therefore, similar results lead to higher BLEU.
The code in Example 3 indicates that nothing produces the same result as the standard
answer. The performance of variable_nosort has some influence on the result because of
the influence of the code graph.

Table 8. Comparison of examples of code generation with and without code graph.

Examples Model Code

1

GOLD public boolean searchBase(String base, String filter) throws
NamingException { return search(base, filter, scopeBase); }

No Code
Graph

public boolean search(String base, String filter) throws
NamingException { return search(base, filter, scopeSub); }

Variable
Nosort

public boolean search(Scope s) {if (defaultScope == null) {
defaultScope = s; return true; } return defaultScope.search(s); }

2

GOLD

void format(StringBuilder sb, Temporal localDate) {//Instant
localDate = ClockCurrent.GMT.instant(); int len =
_timestamp.length; for (int j = 0; j < len; j++) {
_timestamp[j].format(sb, localDate); } }

No Code
Graph

public void format(StringBuilder sb, Temporal localDate)
{//Instant localDate = ClockCurrent.GMT.instant(); int len =
_timestamp.length; for (int j = 0; j < len; j++) {
_timestamp[j].format(sb, localDate); } }

Variable
Nosort

public static String format(Integer year, Integer month, Integer
day){Object[] _args = {year, month, day};return
SHORT__DATE.format(_args);}

3

GOLD
protected void addOption(ApplicationOption<?>
option){if(option! =
null){this.getCli().addOption(option);this.options.add(option);}}

No Code
Graph

protected void addOption(ApplicationOption<?>
option){if(option! =
null){this.getCli().addOption(option);this.options.add(option);}}

Variable
Nosort

public void addOption(ApplicationOption<?> option){if(option!
= null){this.getCli().addOption(option);this.options.add(option);}}

From the description in Table 8, joining code graph affects all scores. The table shows
how it is affected by variable_nosort and variabletype, whose scores are not drastically
low. Table 9 shows the “Protected” and “private” results of variable_nosort. This is the
correct answer at the beginning of Example 1 because comment does not specify what
type to use as the beginning. Consequently, there may be errors, but they will not cause
the code to fail to execute. Example 2 produces an error at the beginning of “Long”, thus
causing the following code to also produce an error because GPT-2 has a very powerful
context processing ability. Example 3 is similar to Example 1 and is easily affected by the
code graph.
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Table 9. Examples of code generation with code graph.

Examples Model Code

1

GOLD

protected void reConnectAsync (IOException originalExcep) {
setAllowReconnect (false); this.reconnecting = true;

this.reconnectException = originalExcep; connectAsynch
(getTargetAddress()); }

Variable Nosort

private void reConnectAsync (IOException originalExcep) {
setAllowReconnect (false); this.reconnecting = true;

this.reconnectException = originalExcep; connectAsynch
(getTargetAddress()); }

2

GOLD

@Override public final DoubleStream limit(long maxSize) { if
(maxSize < 0) throw new IllegalArgumentException

(Long.toString (maxSize)); return SliceOps.makeDouble (this,
(long) 0, maxSize); }

Variable Nosort

@Override public final LongStream limit (long maxSize) { if
(maxSize < 0) throw new

IllegalArgumentException(Long.toString (maxSize)); return
SliceOps.makeLong (this, 0, maxSize); }

3

GOLD

private static Optional < ICondition > asNotLessThan (
JsonObject json) { return Optional.of ( json) .filter ( j ->
j.containsKey ( NOT_LESS_THAN_KEY)) . map ( j ->

j.getJsonObject ( NOT_LESS_THAN_KEY)) .map ( a -> new
AssertNotLess( a.getString ( PROPERTY_KEY), a.getInt (

MIN_KEY))); }

Variable Nosort

private static Optional < ICondition > asNotLessThan (
JsonObject json) { return Optional.of ( json) .filter ( j ->
j.containsKey ( NOT_LESS_THAN_KEY)) .map ( j ->

j.getJsonObject ( NOT_LESS_THAN_KEY)) .map ( a -> new
AssertNotLess ( a.getString ( PROPERTY_KEY), a.getInt (

MAX_KEY))); }

Table 10 presents the special code in the examples generated by GPT-2. The standard
answer and the generated answer of Examples 1 and 2 are slightly different. However,
variable_nosort uses the code graph method to learn to use another method to generate
different codes and the same answer. Consequently, the model can generate a variety of
codes according to its own ideas. In addition, if the code graph is not used, it will be close
to the standard answer.

Table 10. Special examples of code generation with code graph.

Examples Model Code

1

GOLD public static int distanceSq (int x0, int y0, int x1, int y1) {
return ((x1 − x0) * (x1 − x0)) + ((y1 − y0) * (y1 − y0)); }

Variable Nosort public static int distanceSq (int x1, int y1, int x2, int y2) { x2 -=
x1; y2 -= y1; return x2 * x2 + y2 * y2; }

2

GOLD private String removeQuotes (String str) { if (str != null &&
!str.isEmpty()) { str = str.replaceAll("\"", ""); } return str; }

Variable
type

public static String removeQuotes (String s) { if
(s.startsWith("\"") && s.endsWith("\"")) return s.substring(1,
s.length() - 1); else return s; }

4.3. Pre-Training Code Graph from Scratch

As shown in Figure 5, we have trained a GPT model from scratch to allow GPT-2 to
show its functions. This pre-training model contains a sequence of variables not shown in
Figure 4. The CodeSearchNet data set is also used for pre-training and for reorganizing
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the data set in Section 3.1.3. The purpose is to use unknown data for development and
testing during pre-training. In Section 4.3.1, we discuss the details of the pre-trained model.
Section 4.3.2 then fine-tunes the model pre-trained in Section 4.3.1 once.
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4.3.1. Pre-Training GPT-2 with and without Code Graph

In this section, we use a data set containing comments, codes, and variable sequences
to pre-train a new GPT-2 pre-training model. We observe the two cases: The pre-trained
model that does not use code graph and the pre-trained model that uses code graph again.
These two pre-trained models are divided into three epochs and 30 epoch models for a
simple comparison using pre-trained data from scratch. Using the pre-trained model of
code graph, we select variable_nosort that performs well in Section 4.2.2.

4.3.2. Fine-Tuning with and without Code Graph

We fine-tune the four pre-trained models trained in the previous section. Table 11
shows the results of 30 epochs’ fine-tuning of four pre-trained models. The results show
that there is a large difference between the scores of only three epochs of pre-training and
30 epochs of pre-training. Finally, the result of the same 30 epochs shows that the effect of
using the code graph is better than that of not using the code graph.

Table 11. Comparison results of the pre-trained model from scratch with and without code graph.

Models
Epochs

BLEU EM
Pre-Training Fine-Tuning

No Code Graph
3

30

10.2 22.44

30 36.5 52.12

Variable_nosort
3 10.7 22.39

30 45.6 59.15

The results show a difference between pre-training and fine-tuning when each has
30 epochs. The BLEU and EM of variable_nosort are significantly higher than the no code
graph. Because of the analysis based on the results in Table 12, in most cases, no code
graph will generate less code. As shown in Example 1, the code of no code graph can
completely generate the code of the upper and lower half. However, the intermediate code
is missing. As shown in Example 2, the ‘void’ model from the beginning was affected by
unknown data, resulting in an error. The last half of the code also generates less ‘return’.
The presented reasons lead to the decline in performance in the case of the no code graph.
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Table 12. Comparison results of the new pre-trained model with and without code graph.

Examples Model Code

1

Gold

public static FastForward setup (InetAddress addr, int
port) throws SocketException { final DatagramSocket
socket = new DatagramSocket(); return new
FastForward (addr, port, socket); }

No Code Graph

public static FastForward setup (InetAddress addr, int
port) throws SocketException { (final DatagramSocket
socket = new DatagramSocket();) return new
FastForward (addr, port, null); }

Variable_nosort

public static FastForward setup (InetAddress addr, int
port) throws SocketException { final DatagramSocket
socket = new DatagramSocket(); return new
FastForward (addr, port, socket); }

2

Gold

public final boolean defineSynthesizedProperty
(String propertyName, JSType type, Node
propertyNode) { return defineProperty
(propertyName, type, false, propertyNode); }

No Code Graph

public void defineSynthesizedProperty (String
propertyName, JSType type, Node propertyNode) {
(return) defineProperty (propertyName, type, false,
propertyNode); }

Variable_nosort

public final boolean defineSynthesizedProperty
(String propertyName, JSType type, Node
propertyNode) { return defineProperty
(propertyName, type, false, propertyNode); }

As shown in Table 13, we increase the number of pre-training data in this experiment.
The pre-training data use all the data of CodeSearchNet. To test the effect of pre-training,
we gradually increase from the original 30 epochs to 300 epochs. The results show that the
BLEU and EM scores obtained by only training the model for 30 epochs after increasing the
data improved slightly. By contrast, after 100 epochs of training, the model’s scores greatly
improved. However, the final scores obtained by the model during continuous training for
200 epochs to 300 epochs surpassed the BLEU and EM scores of the no code graph. Thus,
this experiment shows that increasing the number of data and the number of pre-training
epochs can effectively improve the performance of the model.

Table 13. Result of improvement by pre-training from the scratch.

Variable_nosort

Epochs
BLEU EM

Pre-Training Fine-Tuning

30

30

32.5 18

100 76.17 65

200 84.81 77.1

300 88.68 82

5. Conclusions

In this paper, we present GrapchCodeGPT that uses data flow from code. This
approach shows an efficient model with GPT-2 similar to BERT. In this work, we mainly
used the data type of data flow and added the architecture of the deep learning model
GPT-2 to improve code generation. The experimental phase is divided into two phases: fine-
tuning and pre-training. In the first stage, we use the existing model and add information
about the code graph for fine-tuning. The generated code after fine-tuning was not ideal, so



Electronics 2021, 10, 2706 13 of 14

we analyzed the generated code examples to get the idea of the second stage of pre-training.
It is not sufficient to add the information of the code graph during the fine-tuning. The code
graph pre-training must be added during the pre-training from scratch. The experiment at
this stage shows that adding a code graph is very effective. The score of the no code graph
in the first experiment was significantly lower than the score of the variable nosort case
when they both had 30 epochs. The next experiment increases the number of pre-training
data and epochs. The facts have proven that this experiment is correct. When the number
of rounds increased to 300 epochs, the results of BLEU and EM surpassed the results of the
first phase of the no code graph. The final results show that the score of the model with the
code graph is significantly higher than the model without the code graph. The analysis
shows the pre-trained GPT-2 model with data flow information increases code generation
performance efficiently with enough data.
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