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Abstract: A novel concept of four-beam antenna arrays operating in a one-octave frequency range
that allows stable beam directions and beamwidths to be achieved is proposed. As shown, such
radiation patterns can be obtained when radiating elements are appropriately spaced and fed by
a broadband 4 × 4 Butler matrix with directional filters connected to its outputs. In this solution,
broadband radiating elements are arranged in such a way that, for the lower and upper frequencies,
two separate subarrays can be distinguished, each one consisting of identically arranged radiating
elements. The subarrays are fed by a broadband Butler matrix at the output to which an appropriate
feeding network based on directional filters is connected. These filters ensure smooth signal switching
across the operational bandwidth between elements utilized at lower and higher frequency bands.
Therefore, as shown, it is possible to control both beamwidths and beam directions of the resulting
multi-beam antenna arrays. Moreover, two different concepts of the feeding network connected
in between the Butler matrix and radiating elements for lowering the sidelobes are discussed. The
theoretical analyses of the proposed antenna arrays are shown and confirmed by measurements of
the developed two-antenna arrays consisting of eight and twelve radiating elements, operating in a
2–4 GHz frequency range.

Keywords: antenna feeds; beam steering; Butler matrix; microstrip antennas; scalability

1. Introduction

In recent years, the development of modern wireless systems caused interest in
advanced antenna technology, among which multibeam antennas that offer multiple inde-
pendent beams can be distinguished. The concept of multibeam antennas was introduced
by Shelton [1] and has become the subject of extensive research up to date [2–4]. Multibeam
antenna arrays can be realized with the use of beamforming networks, such as Butler
matrices, which ensure an appropriate signal distribution across the array [5]. Although
there are many reported solutions that involve Butler matrices realized in different tech-
nologies, most of them are focused on narrowband concepts [6–9]. On the other hand, the
constant development of communication systems calls for more advanced solutions, such
as multiband or broadband networks. Therefore, the concept of scalable antenna arrays
has recently gained a lot of interest [10–16], since such arrays allow the assumed antenna
parameters to be achieved, i.e., beamwidth or beam direction in a very broad bandwidth.
In the literature, some concepts of scalable antenna arrays with constant broadside beam
can be found [13,17,18] which are realized with the use of frequency-dependent feeding
networks, whereas multi-beam antenna arrays with almost constant multiple beam pat-
terns are rarely reported. This is due to the required distance between radiating elements
which has to be kept around 0.5 λ and appropriate signal distribution, which has to be
ensured across the array in a broad bandwidth. Although broadband Butler matrices are
known [19,20], the required spacing between radiating elements causes that dual-band
concepts often involve separate antenna arrays operating in each sub-band [21,22], whereas
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solutions that allow constant broad frequency range to be covered are rarely reported. One
exemplary solution is described in [23], where multibeam antennas operating in an octave
frequency range have been described. In this concept, frequency-dependent Butler matrices
change their orders from N to N/2 as the frequency increases. As shown, multiple-beam
radiation patterns can be achieved with such a beamforming network. As presented, even
wider bandwidths can be achieved by the utilization of modified Butler matrices which
change their behavior three times across the operational frequency range [24]. However, the
major drawback of these solutions is the complexity of the applied beamforming networks,
which limits the applicability of the described concepts [23,24]. A simpler approach to the
realization of scalable multibeam antennas is presented in [25], where the feeding network
consists of a broadband quadrature directional coupler and frequency-dependent power
dividers. As shown, this allows an attractive two-beam radiation pattern to be achieved
over the frequency range reaching fH/fL = 3. However, the solution proposed in [25] can be
implemented only in two-beam antenna arrays and cannot be straightforwardly extended
to antenna arrays with a higher number of beams.

In this paper, we present a novel concept of the multi-beam antenna arrays that allows
a four-beam radiation pattern to be achieved over a one-octave frequency range. The
proposed feeding network consists of a broadband Butler matrix at the outputs to which
an appropriate feeding network based on directional filters is connected. Such a solution
provides attractive four-beam radiation properties over a very broad bandwidth. Simul-
taneously, it leads to a simpler feeding network comparing to the previously developed
concept [23], since the classic broadband Butler matrices are well developed and the re-
quired directional filters are relatively easy to design. The proposed concept was verified
by the design and measurements of two four-beam antenna arrays operating in a 2–4 GHz
frequency range and consisting of eight and twelve radiating elements, respectively.

2. Concept of Octave-Band Four-Beam Antenna Arrays

A concept of the proposed scalable four-beam antenna array is explained in Figure 1.
It is based on [25]; however, there are substantial differences between these two approaches.
First of all, the antenna array described in [25] utilizes four equally spaced broadband
radiating elements. The distance between two inner elements at a higher frequency is equal
to the one for two outer elements at a lower frequency; therefore, the frequency ratio in
this case equals fH/fL = 3. This means that the concept described in [25] is only reserved for
two-beam antenna arrays. Therefore, in this paper, we propose a novel approach, in which
the radiating elements are not equally distributed across the array, as shown in Figure 1. In
particular, the distance between the two elements operating at the lowest and highest frequencies
(radiating elements marked in blue and red colors) is equal to half (or 3/2 times) the distance
between two inner elements (two middle radiating elements marked in red). This implies
that the relative distance among all elements operating at a lower frequency is exactly
the same as the one among the ones operating at a higher frequency when the frequency
ratio is equal to fH/fL = 2. Such radiating elements’ distribution allows scalable four-beam
antenna arrays to be realized when appropriate modifications of the amplitude excitation
are applied, as it is explained in detail below.

To generate a multiple beam radiation pattern, a broadband 4 × 4 Butler matrix
together with four directional filters (DF) is utilized, as shown in Figure 1. The Butler matrix
ensures appropriate amplitude and phase distribution between each pair of radiating
elements that operate at high and low frequency ranges, whereas directional filters realize
smooth signal switching between these elements. This implies that a similar radiation
pattern can be obtained over the entire bandwidth from fL to fH (equal to 2fL). The proposed
antenna array was analyzed with the use of numerical optimization and the frequency
characteristics of the required directional filters were found. The optimization process
focused on achieving the minimum beamwidth variation together with the minimum
variation of all beams’ directions. The resulting switching function is shown in Figure 2,
which shows the amplitude delivered to each of the radiating elements operating at the
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lowest frequency (marked as LF) together with the amplitude delivered to each radiating
elements operating at the highest frequency range (marked as HF). As can be seen, the signal
is smoothly switched between the lowest and highest frequency outputs of the directional
filters across the bandwidth (see Figure 1). The optimization process reveals that, although it is
possible to achieve an almost constant beam pattern across such a broad bandwidth, the relative
sidelobe level reaches about −4 dB for such an array when the directivity of the single radiating
element is taken into account. This is illustrated in Figure 3, where calculation results are
shown assuming that the utilized radiating element is directive with its radiation pattern
described by the approximate function cos1.3(θ). As can be seen, the two outer beams
(2L and 2R beams) feature very low sidelobe levels reaching −4 dB. This is due to the fact
that the angles at which the array factor has its maximum, the single radiating element
features a severe attenuation; therefore, the relative sidelobe level raises.
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Therefore, in this paper, we propose the application of unequal power distribution
to overcome this problem, which allows us to achieve a good radiation pattern. This is
another substantial difference between this concept and the one presented in [25]. The
tapered excitation across the proposed scalable antenna array can be achieved in either
lossy or theoretically lossless networks. The first approach mentioned is illustrated in
Figure 1, in which additional attenuators (Att) are applied in the outer channels between
the applied Butler matrix and the four directional filters. By controlling the attenuation
level of these two attenuators, it is possible to achieve tapered excitation across the entire
antenna array. It has to be underlined that, by introducing only 1.25 dB of attenuation of
the total signal resulted in the application of 3 dB attenuators in the outer channels, it is
possible to improve the overall radiation pattern. The calculated radiation pattern is shown
in Figure 4. As can be seen, the proposed method allows sidelobe level, which is now better
than −10 dB, to be improved.
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The second possible approach which allows to minimize the sidelobe level of the
resulting antenna array with a theoretically lossless network is based on the concept
proposed in [6] and further developed in [7]. The schematic diagram of the proposed
scalable antenna array is shown in Figure 5. As seen in this concept, twelve radiating
elements are used to achieve taper excitation across the array and additional unequal power
dividers having a power division ratio of 1:2.6 are applied, whereas, to achieve appropriate
phase distributions, the selected four radiating elements are rotated, which ensures an
ideal 180◦ phase shift. Moreover, the two outer elements operating at the lower frequency
range marked in red color in Figure 5 are placed closer to reduce the directivity of the entire
antenna array; therefore, they minimize the resulting grating lobe. Such modifications
resulted in the scalable antenna array having the radiation pattern shown in Figure 6. As
seen also in this case, a significant sidelobe reduction is achieved; however, the larger
difference in beamwidths of the two outer beams that can be observed is caused by the high
directivity of the entire antenna array, which is composed of twelve radiating elements.
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3. Design and Realization of Octave-Band Four-Beam Antenna Arrays

Both the proposed concepts were verified by the design and realization of four-beam
antenna arrays operating in a 2–4 GHz frequency range. First, a directional filter that features
the desired switching function was designed, since, among different approaches to achieve
the required switching functionality, such a circuit provides the simplest solution. The
proposed schematic diagram and layout of the designed filter are shown in Figure 7. As can
be seen, it consists of a circuit composed of two coupled-line sections with two quarter-
wave transmission lines in-between. Moreover, at one of the outputs, a Schiffman C-
section is added to equalize the differential phase response between the two outputs of
the directional filter. The parameters of the designed directional filter are summarized in
Table 1. The designed directional filter was realized in a homogeneous symmetric stripline
structure shown schematically in Figure 8, in which a thin laminate layer having thickness
h2 = 0.1 mm was inserted between two thick laminate layers having thicknesses h1 = 1.52 mm.
All layers have the same dielectric constant equal to εr = 3.38. The designed directional
filter was manufactured and measured. The obtained results in comparison with the
electromagnetically calculated ones are shown in Figure 9. As can be seen, the appropriate
switching function is achieved. Moreover, the directional filter features a good impedance
match and differential phase variation not higher than ±10◦. It is worth underlining
that the larger phase imbalance is observed around the 2 GHz and 4 GHz frequencies.
This has a negligible impact on the antenna array, since, in these regions, the magnitude
difference for the LF and HF paths becomes large. Furthermore, the use of the filter
provides almost constant gain across the one-frequency octave of the resulting antenna
arrays. The performed simulation reveals that the gain change does not exceed ±1 dB for
all beams of the eight-element array and 1L and 1R beams of the twelve-element antenna
array and it does not exceed ±1.5 dB for 2L and 2R beams of the twelve-element array.
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It has to be underlined that both proposed feeding networks allow good radiation
properties of the resulting scalable antenna arrays to be achieved. Moreover, they are
much simpler and easier to design than the solution described in [23], where the concept
of a four-beam antenna array operating in an octave frequency range is shown. This is
due to the fact that broadband Butler matrices, power dividers and directional filters are
well known, whereas the feeding network proposed in [23] requires a very complicated
modified Butler matrix, which consists of different types of directional couplers that change
their properties over the bandwidth.
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Table 1. Electrical parameters of the developed directional filter utilized in the design of a broadband
four-beam antenna array.

Parameter Value

k1 0.818
k2 0.793
kS 0.784

ZT [Ω] 50
ZL [Ω] 50
Θ1 [◦] 90.0
Θ2 [◦] 90.0
ΘS [◦] 59.8
ΘT [◦] 90.0
ΘL [◦] 298.0
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As a single radiation element, a linearly tapered slot antenna, shown in Figure 10,
was selected. Such a radiating element ensures very broad bandwidth, sufficient to cover
one frequency octave on one hand and a stable radiation pattern over the bandwidth on
the other hand [26–28]. The linearly tapered slot antenna was optimized for operation
in the 2–4 GHz frequency range. The obtained layout showing all the dimensions is
presented in Figure 10 and in Table 2. The calculated reflection coefficient in comparison
to the measured one is shown in Figure 11 and is better than −10 dB within the required
bandwidth. Although some discrepancies between the simulated and measured reflection
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coefficients are seen, most likely caused by the inaccuracy of the FR4 dielectric permittivity
determination, the designed radiating element features good impedance match in the
required bandwidth.
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Table 2. Physical dimensions of the feeding line in the developed radiating element, where L is length
and W is width of the line.

Dimension Value (mm)

L1 5.8
W1 1.195
L2 15.6
W2 0.8
L3 16
W3 0.3
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The radiating element was measured in an anechoic chamber. It was placed on the
3D-printed rail using plastic screws to avoid a negative impact on the radiation pattern. A
reference horn antenna was placed on the other side of the anechoic chamber at a distance
of 4 m. Both the reference antenna and the manufactured element were connected to
the two-port vector network analyzer. Figure 12 presents the calculated and measured
radiation patterns of the developed linearly tapered slot antenna element and it is seen
that the designed radiating element exhibits a wide beamwidth over the entire bandwidth,
which is significant for applications in multi-beam antenna arrays.

The developed radiating element was used in both concepts of scalable four-beam
antenna arrays. The feeding network and the rail containing radiating elements were mounted
on the back and front of the robotic arm, respectively. The feeding network was connected
to the antenna array using SMA cables. Both reference antenna and antenna array were
connected to the two-port vector network analyzer. As it is seen in Figures 1 and 5, the
feeding networks for both eight-element and twelve-element scalable antenna arrays have
four ports so, for each of the ports, a separate measurement was conducted. During the
measurements, one of the feeding network’s ports was connected to the network analyzer,
whereas the other ports were terminated with 50 Ohm impedance. Figure 13 presents the
radiation pattern of the eight-element antenna array in which additional attenuators and
the radiation pattern of a single radiating element were taken into account. As can be seen,
the application of such a radiating element slightly deteriorated the sidelobe level of the
antenna array, but they were at an acceptable level since they did not exceed −8 dB. The
developed radiating element and directional filter together with the previously developed
broadband Butler matrix described in detail in [19] were utilized to realize the broadband
four-beam antenna array. The used Butler matrix exhibits bot return loss and isolation
not worse than 20 dB and its transmission imbalance does not exceed ±1 dB/8◦ over the
frequency of interest. Additionally, two 3 dB attenuators were added at the appropriate
outputs of the Butler matrix. The assembled model of the four-beam antenna array was
measured in an anechoic chamber. The obtained results are shown in Figure 14. It can be
seen that good radiation properties were achieved, i.e., the antenna array features constant
beam directions and beamwidths. The achieved beamwidths’ variation does not exceed
±4◦ for 1L and 1R beams and ±6◦ for 2L and 2R beams, whereas the direction change does
not exceed ±4◦ for 1L and 1R beams and ±2.5◦ for 2L and 2R beams, respectively.
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Similarly, the concept of a scalable antenna array composed of twelve radiating
elements was verified experimentally. The calculated radiation pattern in which the
radiation pattern of the developed radiating element is taken into account is shown in
Figure 15. In addition, in this case, a good sidelobe level was achieved; however, a larger
difference of the beamwidths caused by the directivity of the entire array is noticeable. The
designed antenna array was developed based on the same components as in the case of
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eight-element antenna array. Additionally, in this case, two simple power dividers were
developed to assemble the entire scalable antenna array. The obtained radiation pattern of
the manufactured four-beam scalable antenna array is shown in Figure 16. As can be seen,
the achieved beamwidths’ variation does not exceed ±4◦ for 1L and 1R beams and ±18◦

for 2L and 2R beams, whereas the direction change does not exceed ±2.5◦ for 1L and 1R
beams and ±7◦ for 2L and 2R beams, respectively.
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To complete the description of the presented design, the radiation efficiency was
calculated with the use of EM simulations. For the eight-element scalable antenna array, the
radiation efficiency in the frequency range of interest varies from 81.3% to 76.4%. Similarly,
for the twelve-element scalable antenna array, the radiation efficiency varies between 77.9%
and 71.3%. Moreover, the measured radiation efficiencies for both antenna arrays possess
similar behavior to the calculated ones. The measured radiation efficiency varies from
63.2% to 55.2% and from 54.6% to 47.4% for the eight-element array and the twelve-element
array, respectively. The main cause for the disproportion between EM simulations and
measurements is the EM simulation setup. During simulations, an ideal and lossless, apart
from the 3 dB attenuators, feeding network was assumed. Such a condition cannot be met
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during measurements because it is well known that, theoretically, lossless circuits provide
some attenuation in the signal path.
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The obtained measurement results reveal some discrepancies between the calculated
and measured radiation patterns of both the developed antenna arrays, caused by the
couplings between radiating elements, which were not taken into account during the
calculations, even though both the developed scalable multi-beam antenna arrays confirm
the correctness of the proposed approach and prove the possibility of the realization of four-
beam antenna arrays operating in an octave frequency range with the use of the proposed
approach. Figure 17 presents both the assembled models of the developed antenna arrays
during measurements.

To illustrate the advantages of the presented solution against other recently reported
multibeam antennas, Table 3 is presented below. As can be seen, the considered designs
offer a large variety in terms of number of beams and the frequency range of operation at
the expense of the overall design complexity. It can be observed that the proposed design
allows four beams with the lowest variation in terms of both direction and width to be
obtained and, simultaneously, it features low complexity.
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Table 3. Major parameters of recent multibeam antenna solutions.

Feature [23] [25] [29] [30] [31] [32] [33] [34] [35] This
Work

Bandwidth (GHz) 1.75–3.5 1–3 25–30 12–18 8–10 5.3–12 6–18 2.5–7 2–4 2–4
Bandwidth ratio f 2/f 1 2 3 1.2 1.5 1.25 2.26 3 2.8 2 2

No. of beams 4 2 16 7 4 5 8 9 3 4
Beamwidth variation ±4.5◦ ±10◦ ±3◦ N/A N/A N/A ±20◦ N/A ±8◦ ±6◦

Direction variation ±6.5◦ ±6◦ ±7◦ N/A N/A N/A N/A N/A ±10◦ ±4◦

No. of antennas 8 4 16 8 4 8 8 16 4 8
Complexity very high low very high medium very high high very high high low low

4. Conclusions

In this paper, a novel concept of multi-beam antenna arrays that operate over one-
octave frequency range is proposed. The developed antenna arrays consist of appropriately
distributed radiating elements, which are fed with the use of a classic broadband Butler
matrix in conjunction with directional filters. Moreover, it is shown that, in such antenna
arrays, a tapered excitation is required to improve the resulting radiation patterns. As
shown, this can be achieved with either lossy or theoretically lossless feeding networks. The
proposed feeding networks allow multi-beam antenna arrays that cover a broad frequency
range with a relatively simple design to be realized. They also allow a stable four-beam
radiation pattern to be achieved, one that is opposite to the concept presented in [25], where
only a two-beam radiation pattern can be achieved. Furthermore, the proposed feeding
network is much easier to design than the one presented recently in [23]. It utilizes classic
well-developed components in contrast to the previously described solution, where a
sophisticated Butler matrix needs to be designed to achieve appropriate amplitude and dif-
ferential phase characteristics. Moreover, it has to be underlined that the concept presented
in this paper can be extended to antenna arrays having more beams, e.g., eight beams,
whereas frequency-dependent Butler matrices based on the concept from [23] become
highly complicated and are not feasible. The proposed concept was successfully verified
by the design and measurements of four-beam antenna arrays operating in the 2–4 GHz
frequency range and consisting of eight and twelve radiating elements, respectively. The
obtained measurement results confirm the correctness and applicability of the presented
design methodology. Simultaneously, as shown in the comparison table, the presented
design is of low complexity and provides stable beams over one-octave bandwidth.
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