
electronics

Article

IPGM: Inertial Proximal Gradient Method for Convolutional
Dictionary Learning

Jing Li 1, Xiao Wei 1, Fengpin Wang 2 and Jinjia Wang 2,3,*

����������
�������

Citation: Li, J.; Wei, X.; Wang, F.;

Wang, J. IPGM: Inertial Proximal

Gradient Method for Convolutional

Dictionary Learning. Electronics 2021,

10, 3021. https://doi.org/10.3390/

electronics10233021

Academic Editor: Bhanu Prakash KN

Received: 14 October 2021

Accepted: 1 December 2021

Published: 3 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Science, Yanshan University, Qinhuangdao 066004, China; lijing1977@ysu.edu.cn (J.L.);
sjr@stumail.ysu.edu.cn (X.W.)

2 School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China;
wangfengpin@stumail.ysu.edu.cn

3 Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University,
Qinhuangdao 066004, China

* Correspondence: wjj@ysu.edu.cn

Abstract: Inspired by the recent success of the proximal gradient method (PGM) and recent efforts
to develop an inertial algorithm, we propose an inertial PGM (IPGM) for convolutional dictionary
learning (CDL) by jointly optimizing both an `2-norm data fidelity term and a sparsity term that
enforces an `1 penalty. Contrary to other CDL methods, in the proposed approach, the dictionary
and needles are updated with an inertial force by the PGM. We obtain a novel derivative formula for
the needles and dictionary with respect to the data fidelity term. At the same time, a gradient descent
step is designed to add an inertial term. The proximal operation uses the thresholding operation for
needles and projects the dictionary to a unit-norm sphere. We prove the convergence property of the
proposed IPGM algorithm in a backtracking case. Simulation results show that the proposed IPGM
achieves better performance than the PGM and slice-based methods that possess the same structure
and are optimized using the alternating-direction method of multipliers (ADMM).

Keywords: convolutional sparse representation; needle; convolutional dictionary learning; inertia
term; proximal gradient descent; convergence

1. Introduction

Sparse representation is a popular a priori mathematical modeling approach in various
signal and image processing applications. Inspired by deep learning-based convolutional
operations, convolutional sparse representation is a hot topic at present. In the convolu-
tional sparse representation model, the convolutional dictionary learning (CDL) process
plays an important role, but the associated algorithm and convergence proof are difficult
problems [1]. CDL involves training dictionaries and estimating codes from multiple
signals. In the past decade, the convolutional sparse representation model has achieved
impressive results in various applications. The resulting model can achieve excellent
performance in image denoising and repair [2], image decomposition [3], image recon-
struction [4], medical imaging [5,6], trajectory reconstruction [7], image segmentation [8],
superresolution [9], audio processing [10], and other applications. CDL research is a typical
interdisciplinary research subject combining mathematics and artificial intelligence. The
research results in this field have important theoretical and practical value for a variety of
signal and image processing applications. In such a case, a typical assumption is that a sig-
nal y ∈ RN , y = DΓ is a linear combination of columns, also known as atoms. The coefficient
Γ ∈ RM is a sparse vector. A matrix D ∈ RN×M is called a dictionary. Given y and D, this
task of finding its sparsest representation is equivalent to solving the following problem:

min
Γ
‖Γ‖0 s.t. ‖y-DΓ‖2 ≤ ε (1)

Electronics 2021, 10, 3021. https://doi.org/10.3390/electronics10233021 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-2210-5570
https://doi.org/10.3390/electronics10233021
https://doi.org/10.3390/electronics10233021
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10233021
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10233021?type=check_update&version=3

Electronics 2021, 10, 3021 2 of 19

where ε represents the degree of model mismatch or the additive noise intensity. The
solutions to such problems can be approximated by greedy algorithms (such as orthogonal
matching pursuit (OMP) [11]) or convex formulas (such as basis pursuit (BP) [12]). The
task of the developed learning model is to identify the dictionary D that can best represent
a set of training signals, called dictionary learning. Several processing methods have
been proposed, including K-singular value decomposition (K-SVD) [13], the method of
optimal directions (MOD) [14], online dictionary learning [15], and trainlet learning [16].
Unfortunately, many real-world signals, such as images and audio, are high-dimensional
signals, making sparse coding computationally challenging. To avoid the curse of dimen-
sionality, high-dimensional signals are decomposed into low-dimensional overlapping
signal patches, and sparse coding is performed independently on each signal block [17].
Because of its simplicity and high performance, this method has been widely utilized in a
successful manner. However, this method has some limitations that its patch-based process
ignores the correlations between patches.

Another option that contrasts with this local paradigm is a global model [18] called
the convolutional sparse representation model. The input signal is represented as the
superposition of the convolutional results of some local atoms and sparse feature mappings.
The problem is solved by applying a specific structure to the global dictionary involved. In
particular, the dictionary in this model is constrained to a banded circulant matrix formed
by atomic cascades, which is called convolutional sparse representation.

The convolutional sparse representation model is as follows:

y = DΓ = ∑
m

dm ∗ γm (2)

where a signal y ∈ RN , the banded global convolutional dictionary D ∈ RN×NM is
composed of a local convolutional dictionary filter, {dm}M

m=1 ∈ Rn, a cyclic shift composed
of the atom DL ∈ Rn×M, and the coding coefficient Γ ∈ RNM is composed of {γi}M

i=1,
where γi ∈ RN .

This work proposes a theoretical analysis of a new global convolutional sparse repre-
sentation model, which guarantees the local sparsity metric. The convolutional dictionary
directly determines translation invariance to compensate for the problem that the correla-
tions between adjacent signal patches are ignored. By using this convolutional dictionary
structure, convolutional sparse coding (CSC) and CDL have arisen. For the convenience of
calculation, the `1 norm of the coefficient is used instead of the `0 norm, and a spherical
constraint is used for the dictionary instead of the sphere constraint. Several convex and
relaxed CDL algorithms have been proposed [19–22]. They mainly utilize the alternating-
direction method of multipliers (ADMM) solver based on the Fourier domain. However,
the ADMM loses its connection to the patch-based processing paradigm that is widely
used in many signal and image processing applications [23].

Papyan proposed a new convex relaxation algorithm [23] via slice-based dictionary
learning (SBDL), where the sum of the slices forms the signal patches. The developed
algorithm is an ADMM solver based on the signal domain. It adopts a local point of view
and trains a convolutional dictionary only according to the local calculation of the signal
domain. It runs on local slices and faithfully solves the problem of global convolutional
sparse coding. This local–global method and its resulting decomposition follow a recent
work [18] that compared it with the Fourier-based method. The SBDL algorithm is easy to
implement, is intuitive, achieves the most advanced performance, and converges faster
than other approaches. Moreover, it provides a better model that can naturally allow a
different number of nonzero values to be contained in each spatial location according to
the local signal complexity. The ADMM parameters strongly depend on the given problem.
Although its corresponding pursuit algorithm can be proven to be convergent, when the
convolutional dictionary is iteratively updated in the ADMM algorithm, it is difficult to
prove the convergence of the tracking algorithm [24].

Electronics 2021, 10, 3021 3 of 19

The convex relaxation and ADMM-based optimization algorithm produce a nonsparse
coding solution, and it is challenging to prove the algorithmic convergence [25]. In addition,
in nonconvex optimization, the greedy algorithm for CDL problems has a high computa-
tional cost, poor performance, and convergence proof difficulty [26]. Chun and Fessler [27]
recently proposed an algorithm that could achieve full convergence. However, the method
involves approximate convex constraints, and its overall performance is slightly better
than that of the ADMM. The CDL problem is essentially a nonconvex and nonsmooth
optimization problem, as shown in the following formula, making it difficult to propose an
optimization algorithm and prove its convergence.

argmin
{dm},{γl,m}

1
2∑

l

∥∥∥∥∥ M

∑
m=1

dm ∗ γl,m − yl

∥∥∥∥∥
2

2

+ λ1∑
l

M

∑
m=1

Ω1
(
γl,m

)
+ λ2

M

∑
m=1

Ω2(dm) (3)

where λi, i = 1, 2 is the equilibrium coefficient and Ωi, i = 1, 2 is the nonconvex constraint
of the coefficient and the convolutional dictionary. For example, in a case with typical
nonconvex constraints, Ω1(x) = ‖x‖0 is a zero norm, and Ω2(dm) = ‖dm‖2

2 = 1 is a
spherical constraint.

Peng [28] realized the joint and direct optimization of the CDL problem under a non-
convex and nonsmooth optimization scheme and proposed a forward–backward splitting
algorithm based on the Fourier domain. The developed approach is better than the ADMM
algorithm. To be more precise, the forward step involves estimating the smooth part of
the objective function through a partial gradient. In contrast, the backward step counts the
degree of nonsmoothness of the objective function through its proximal operator. Peng
proved the convergence of the solution sequence of the proposed algorithm by using
the semialgebraic property of reference [29] and the Kurdyka–Lojasiewicz (KL) property.
Peng [28] used the gradient descent algorithm in the dictionary and coding process. Al-
though this dramatically reduces the computational complexity of the overall algorithm,
in theory, the gradient descent algorithm can only guarantee that it will reach the lowest
local point, not the lowest global point. Many minimum points are contained in many
complex functions. In many cases, we can only obtain the optimal local solution by using
the gradient descent method and not the optimal global solution. In addition, when the
sample size of the given dataset is large, the convergence speed of the gradient descent
algorithm is slow.

Polyak [30] proposed the heavy-ball method that an inertia term is added to the
standard gradient descent method. This method has a faster convergence rate than the
standard gradient method based on an unchanging number of required calculations. Peter
Ochs [31] applied this method to a convex optimization scheme. He proposed an iPiano
algorithm combining an inertia term and a forward–backward splitting frame to address
minimization problems consisting of differentiable (possibly nonconvex) and convex (pos-
sibly nondifferentiable) functions. These problems were strictly analyzed, and the global
convergence of the function values and parameters was determined. Simultaneously, the
efficiency of convergence was greatly improved. We will apply this inertia term algorithm
to the CDL problem.

In this paper, an inertial forward–backward splitting algorithm is proposed for the
CDL problem. The convergence of the algorithm is given and proven. The optimal
convergence rate is derived. Finally, a large number of experiments show that the proposed
algorithm has high efficiency and effectiveness.

The rest of this article is organized as follows. In Section 2, we introduce some related
knowledge. In Section 3, the inertia forward and backward splitting algorithm is proposed
to restate the CDL problem. In Section 4, the complexity of the proposed algorithm is
analyzed. In Section 5, the convergence of the proposed algorithm is analyzed and proven.
The convergence rate of the proposed algorithm is derived in Section 6. In Section 7, the
performance of the proposed algorithm is evaluated through experiments and compared
with other existing methods. Section 8 summarizes the full text.

Electronics 2021, 10, 3021 4 of 19

2. Related Knowledge
2.1. Convex CDL in the Time Domain via Local Processing

The CSC model [19] assumes that a global signal y ∈ RN can be decomposed as

y = DΓ = ∑N
i=1 PT

i DLαi (4)

The matrix D ∈ RN×NM is a banded convolutional dictionary. This matrix consists of
all shifted versions of a local dictionary DL ∈ Rn×m whose columns are atoms. L represents
the initial of the word “local.” The global sparse vector Γ ∈ RNM can be decomposed into
N non-overlapping, m-dimensional local sparse vectors {αi}N

i=1, where αi ∈ RM are called
needles. The operator PT

i places DLαi in the ith position of the signal. The above formula
can be used to obtain sparse coefficients using the basic pursuit problem, as shown below:

min
{αi}N

i=1

1
2

∥∥∥∥∥y−
N

∑
i=1

PT
i DLαi

∥∥∥∥∥
2

2

+ λ
N

∑
i=1
‖αi‖1 (5)

Papyan et al. [23] proposed slice-based local processing and defined si = DLαi as the
ith slice. Unlike other existing works in signal and image processing, which train a dictio-
nary in the Fourier domain, they defined the learning problem based on the constructed
slices, and CDL was carried out in the signal domain via local processing. Through local
processing in the original signal domain, the global problem was solved completely. The
global signal yl can be rewritten as y = ∑N

i=1 PT
i si.

The ADMM algorithm is used to solve the problem of minimizing the following
augmented Lagrangian problem:

min
DL ,{αi}N

i=1,{si}N
i=1,{ui}N

i=1

1
2

∥∥∥∥∥y−
N

∑
i=1

PT
i si

∥∥∥∥∥
2

2

+
N

∑
i=1

(
λ‖αi‖1 +

ρ

2
‖si −DLαi + ui‖2

2

)
(6)

where {ui}N
i=1 are the dual variables that satisfy the given constraint. ρ is the Lagrangian

coefficient. References [23,24] call this method the SBDL algorithm.
In the SBDL algorithm, the CDL problem is transformed into a traditional dictionary

learning problem solved by the K-SVD algorithm [13] or other dictionary learning algo-
rithms. The sparse coding process is based on the ADMM algorithm for updating, and each
coding update is regarded as a least absolute shrinkage and selection operator (LASSO)
problem, which is solved by the least-angle regression and shrinkage (LARS) algorithm.
The ADMM is used to solve the coding problem, which increases the numbers of auxiliary
variables, calculations and redundant iterations. In addition, different solving methods are
used to update dictionary and codes, which makes it difficult to prove the convergence of
the algorithm.

2.2. Forward–Backward Splitting

Splitting algorithms for convex optimization problems usually originate from the
proximal point algorithm [32]. The proximal point algorithm is very general, and the
results regarding its convergence affect many other algorithms. However, in practice, an
iteration of the computational algorithm can be as tricky as the original problem. The
strategy to solve this problem involves splitting approaches such as the Douglas–Rachford
method, several primal-dual algorithms, and forward–backward splitting.

Forward–backward splitting schemes have been used to solve a variety of problems
in recent years. For example, forward–backward splitting algorithms are used to solve
normal problems [33], to find generalized Nash equilibrium [34], to solve linear constraint
problems [35], or to analyze related function problems in Banach space [36,37]. In particular,
it is appealing to generalize forward–backward splitting schemes to nonconvex problems.
This is due to their simplicity and simpler formulations in some exceptional cases, such

Electronics 2021, 10, 3021 5 of 19

as the gradient projection method, where the backward step is a projection onto a set.
The backward step of the forward–backward algorithm studied in [28] is the solution of a
proximal term of a nonconvex function.

The goal of a forward–backward splitting framework is to solve the following forms
of an optimization problem:

argmin
x

f (x) + g(x) (7)

However, when a large amount of data is processed, even if misestimation is not
considered during processing, the processing result of the forward–backward splitting
algorithm becomes inaccurate. In this paper, the original algorithm is improved to increase
the accuracy and reduce the induced error.

2.3. Inertia Item

Polyak studied a multistep scheme for the accelerated gradient method in [30] and
proposed the heavy-ball method for the first time. Unlike the usual gradient method, this
approach adds an inertia term, which is calculated by the difference between the values
obtained during the previous two iterations. Compared with the standard gradient method,
this method can accelerate the convergence speed of the algorithm while keeping the cost
of each iteration unchanged. In addition, this method can obtain the optimal convergence
rate without additional knowledge.

The inertia term of the heavy-ball method was first applied to the minimization
of differentiable convex functions, and then it was extended to subdifferential convex
functions. Later, the heavy-ball method was used for forward–backward splitting [37,38].
Recently, it has been frequently applied to the minimization of nonconvex functions.
In [39,40], the inertia term was introduced into the nonconvex optimization problem to
improve the convergence speed. Refs. [31,41] used an inertia term to develop a nonconvex
optimization CDL scheme. The authors of [31] aimed to minimize problems composed of
differentiable (possibly nonconvex) and convex (possibly nondifferentiable) functions. The
iPiano algorithm was proposed by combining forward–backward splitting with an inertia
term. The global convergence of the function values and parameters was determined.
In [41], an inertial version of the proximal alternating linearization minimization (PALM)
algorithm was proposed, and its global convergence to the critical point of the input
objective function was proven.

3. Proposed IPGM Algorithm

The CDL problem to be solved via local processing is given as follows:

argmin
{αi}N

i=1,DL

1
2∑

l

∥∥∥∥∥ N

∑
i=1

PT
i DLαl,i − yl

∥∥∥∥∥
2

+ λ1∑
l

(
N

∑
i=1

Ω1(αl,i)

)
+ λ2Ω2(DL) (8)

DL is the local convolutional dictionary, which has n rows and m columns. αl,i, which
has m rows, is the sparse coding of each component i of each sample l. PT

i , which has N
rows and n columns, is the operator that puts DLαl,i in the ith position and pads the rest
of the entries with zeros. yl is the observed signal. ‖ · ‖ has different meanings; when the
interior is a vector, ‖ · ‖ represents the `2-norm, and when the interior is a matrix, ‖ · ‖
represents the Frobenius norm. λ1 and λ2 are hyperparameters. Ω1 is the sparse constraint
imposed on the column vectors with the `0 norm or `1 norm, which is defined as follows:
Ω1(x) = ‖x‖0 or Ω1(x) = ‖x‖1. Ω2 is the indicator function of unit-norm sphere.

To solve the above convex or nonconvex CDL optimization problem (8) via local
processing, we use the inertial forward-backward splitting framework. An inertial forward-
backward splitting algorithm via local processing called the inertial proximal gradient
method (IPGM) algorithm is proposed.

To form the objective function of the proposed CDL optimization problem via local
processing with the developed framework, based on the proposed Equation (8), supposing

Electronics 2021, 10, 3021 6 of 19

that x =
(

Dt
L
,
{
αt

l,i

})
,
{

xt} can be generated by iteratively implementing the follow-
ing equation:

xt+1 ← prox
(
(xt − ηt∇ f (xt) + ξt(xt − xt−1)

)
(9)

where prox refers to the proximal mapping operation.
f and g are, respectively defined as follows:

f
(
DL,

{
αl,i
})

=
1
2∑

l

∥∥∥∥∥ N

∑
i=1

PT
i DLαl,i − yl

∥∥∥∥∥
2

(10)

g
(
DL,

{
αl,i
})

= ∑
l

(
N

∑
i=1

λ1Ω1(αl,i)

)
+ λ2Ω2(DL) (11)

To generate the sequence
{

xt} =
{

Dt
L
,
{
αt

l,i

}}
using iterative Equation (9) based

on inertial forward-backward splitting, we first need to derive the gradient of f and the
proximal mapping of g.

Since f is a function of the composite variable x or
(

D
L
,
{
αl,i

})
, we define the gradient

of f as follows:
∇ f :=

{
∇DL f ,

{
∇αl,i f

}}
(12)

∇DL f and ∇αl,i f can be computed as follows:

∇DL f = ∑
l

N

∑
i=1

(
Pi

(
N

∑
i=1

PT
i DLαl,i − yl

)
αT

l,i

)
(13)

∇αa,b f = DT
L

Pb

(
N

∑
i=1

PT
i DLαa,i − ya

)
(14)

To show the result of the descent process, we use an intermediate variable(
Dt+1/2

L
,
{
αt+1/2

l,i

})
:

Dt+1/2
L := Dt

L − ηt∇DL f + ξt

(
Dt

L −Dt−1
L

)
(15)

αt+1/2
l,i := αt

l,i − ηt∇αl,i f + ξt

(
αt

l,i −αt−1
l,i

)
(16)

where ηt is a step size or descent parameter and ξt is an inertial parameter. Therefore, we
compute the proximal mapping of g at

({
Dt+1/2

L

}
,
{
αt+1/2

l,i

})
as follows:(

Dt+1
L

,
{
αt+1

l,i

})
= proxηtg

(
Dt+1/2

L
,
{
αt+1/2

l,i

})
=
({

proxηtλ2Ω2

(
Dt+1/2

L

)}
,
{

proxηtλ1‖·‖0

(
αt+1/2

l,i

)})
(17)

The function prox refers to the proximal mapping operation, which is defined with
the following form:

proxηp(u) = argmin
v

1
2η
‖u− v‖2 + p(v) (18)

Furthermore, in the inertial forward-backward splitting framework, to accelerate
the convergence rate, we propose using ηt to fit the local curvature of f in each iteration
and capturing the local curvature f by estimating the local Lipschitz constant of the CDL
problem via local processing. This constant is defined as follows:

Lt =

√
‖∇ f (xt)−∇ f (xt−1)‖2√

‖xt − xt−1‖2
(19)

Electronics 2021, 10, 3021 7 of 19

However, the direct derivation of ηt from Lt does not satisfy the convergence require-
ment. It is suggested to insert a backtracking scheme in the inertial forward-backward
splitting framework to restore its convergence.

We introduce a sequence {τt}, where τt > 1 holds for all t, to represent the adaptive
parameter such that the sequence

{
xt} satisfies the following equation:

f
(

xt+1
)
≤ f

(
xt)+ 〈∇ f

(
xt), xt+1 − xt

〉
+

τtLt

2
‖xt+1 − xt‖2

(20)

We assume that each step size ηt is maintained by τt using the inequality 0 < ηt <
(1/(τtLt)) and that (20) can be reformulated as follows:

f
(
xt+1) = f

(
Dt+1

L ,
{
αt+1

l,i

})
≤ f

(
xt)+ 〈∇ f

(
xt), xt+1 − xt〉+ 1

2ηt
‖xt+1 − xt‖2

= f
(

Dt
L,
{
αt

l,i

})
+ ∑

p,q

[
αt+1

p,q �
(
∇αp,q f

)(
Dt

L,
{
αt

l,i

})
+ 1

2ηt
Γr

((
αt+1

p,q −αt
p,q

)T(
αt+1

p,q −αt
p,q

))]
+Dt+1

L
�
(
∇DL

f
)(

Dt
L,
{
αt

l,i

})
+ 1

2ηt
Γr

((
Dt+1

L
−Dt

L

)T(Dt+1
L
−Dt

L

)) (21)

where � stands for the Hadamard product.
We present the IPGM algorithm that solves the proposed CDL problem via local

processing using inertial forward–backward splitting in Algorithm 1.

Algorithm 1 The IPGM algorithm for solving the proposed CDL problem via local processing

Input: initial dictionary D0
L
; initial dictionary D−1

L = D0
L; initial coefficients map

{
α0

l,i

}
; initial

coefficient maps
{
α−1

l,i

}
=
{
α0

l,i

}
; adaptive parameter τ > 1; choose c1 > 0 close to 0; inertial

parameter ξ0 ∈
[
0, 1

2

)
; and descent parameter 1 < η0 < (1− 2ξ0)/τL, where L is the Lipschitz

constant of ∇ f .

Output: learned dictionary Dt
L
; learned coefficients

{
αt

l,i

}
;

1: Initialization: t← 0
2: repeat
3:
if t < 2, then
4:
ηt ← η0 , ξt ← ξ0
5:
else
6:
compute Lt using Equation (19)
7:
ηt ← 1

Lt
8:
end if
9:
k ← 0
10: repeat
11:
compute ∇DL f and ∇αl,i f using Equations (13) and (14)
12:
compute

(
Dt+1/2

L
,
{
αt+1/2

l,i

})
using Equations (15) and (16)

13:
update

(
Dt+1

L
,
{
αt+1

l,i

})
using Equation (17)

Electronics 2021, 10, 3021 8 of 19

Algorithm 1 Cont.

14:
τt ← τk

15:
ηt ← ηt

τ
16:
k← k + 1
17:
until Equation (21) is satisfied
18:
ηt ≥ c1, ξt ≥ 0

19:
δt := 1

2ηt
− τt Lt

2 −
ξt

2ηt
20:
γt := 1

2ηt
− τt Lt

2 −
ξt
ηt

21:
until δt ≥ γt ≥ c1 and (δt)

∞
t=0 is monotonically decreasing

22:
t← t + 1
23: until convergence

24: return
{{

Dt
L

}
,
{
αt

l,i

}}
4. Computational Complexity Analysis

The computational complexity of our algorithms is discussed as follows. We assume
the following. N is the signal dimension. I is the number of signals. n is the patch size. m
is the number of filters. k is the maximal number of nonzeros in a needle αl,i, which is very
sparse k � m. C is the number of backtracking loops, which is usually very small. The
convolution is performed by the local processing operation. The operation PT

i is only an
operator of a column to an image.

The dominant computational complexity of the signal reconstruction performed by
the local processing operation is approximately O(INnk). The computation of the signal
residual requires O(IN) operations. Neglecting some minor factors, the computational
complexity of the gradient of needles and dictionary performed by the local processing
operation is effectively O(INnm) and O(INnk), respectively. In addition, the inertia term
includes an addition and a multiplication for each iteration which is negligible.

5. Proof of the Convergence of Algorithm 1

Before describing the convergence theorem, let us analyze the relevant lemmas
and hypotheses.

Lemma 1. (The abstract convergence result for KL functions) This convergence result is based on
three abstract conditions for a sequence

(
zt)

t∈N :=
(
xt, xt−1)

t∈N ∈ R2N , xt ∈ RN , xt−1 ∈ RN .
We fix two positive constants a > 0 and b > 0 and consider a proper lower semicontinuous function
F : R2N → R∪ {∞} . Then, the conditions for

(
zt)

t∈N are as follows:

(H1) For each k ∈ N, it holds that

F
(

zk+1
)
+ a‖xk − xk−1‖ ≤ F

(
zk
)

(H2) For each k ∈ N, there exists a wk+1 ∈ ∂F
(

wk+1
)

such that

‖wk+1‖ ≤ b
2

(
‖xk − xk−1‖+ ‖xk+1 − xk‖

)

Electronics 2021, 10, 3021 9 of 19

(H3) There exists a subsequence
(

zkj
)

j∈N
such that

zkj → ~
z and F

(
zkj
)
→ F

(~
z
)

as j→ ∞

When F is a KL function and H1, H2, and H3 are satisfied, F satisfies the conver-
gence result.

Lemma 2. For all n ≥ 0, δt ≥ γt, ξt ∈
[
0, 1

2

)
, and ηt ≤ (1− 2ξt)/τtLt. Furthermore, given

Lt > 0, there exists a pair of parameters ηt and ξt such that (δt)
∞
t=0 is monotonically decreasing.

Proof of Lemma 2. By the algorithmic requirements,

δt =
1

2ηt
− τtLt

2
− ξt

2ηt
≥ 1

2ηt
− τtLt

2
− ξt

ηt
= γt ≥ 0 (22)

The upper bounds for ξt and ηt are obtained by rearranging γt ≥ c1 to
ξt ≤ (1− ηtτtLt − 2ηtc1)/2 and ηt ≤ (1− 2ξt)/(2c1 + τtLt), respectively.

The last statement follows by incorporating the descent property of δt . Let δ−1 ≥ c1
be chosen initially. Then, the decent property of (δt)

∞
t=0 requires one of the equivalent

statements below

δt−1 ≥ δt ⇔ δt−1 ≥
1

2ηt
− τtLt

2
− ξt

2ηt
⇔ ηt ≥ (1− ξt)/(2δt−1 + τtLt) (23)

to be true. An upper bound on ηt is obtained by

γt ≥ c1 ⇔ ηt ≤
1− 2ξt

2c1 + τtLt
(24)

Consider the condition for a nonnegative gap between the upper and lower bounds
of ηt:

1− 2ξt

2c1 + τtLt
− 1− ξt

2δn−1 + τtLt
≥ 0⇒ 2δn−1 + τtLt

2c1 + τtLt
≥ 1− ξt

1− 2ξt
(25)

Defining b := (2δ + τtLt)/(2c1 + τtLt) ≥ 1, it is easily verified that there exists
ξt ∈

[
0, 1

2

)
satisfying the equivalent condition

b− 1
2b− 1

≥ ξt (26)

As a consequence, the existence of a feasible ηt follows, and the decent property for
δt holds. �

Proposition 1. (a) The sequence
(

Hδt

(
xt, xt−1))∞

n=0 is monotonically decreasing and thus conver-
gent. In particular, it holds that

Hδt+1

(
xt+1, xt

)
≤ Hδt

(
xt, xt−1

)
− γt∆

2
t (27)

(b) It holds that ∑∞
n=0 ∆2

t < ∞, and thus, limt→∞∆t = 0.

Proof of Proposition 1. (a) For a more convenient notation, we abbreviate h = f + g in the
IPGM algorithm for the nonconvex nonsmooth CDL problem via local processing; this
does not mean that the value of the function drops, so we construct a function Hδ(x, y) =
h(x) + δ‖x− y‖2, δ ∈ R. Note that for x = y, Hδ(x, y) = h(x).

Electronics 2021, 10, 3021 10 of 19

We show below that Hδ(x, y) satisfies the convergence requirement. In the inertial
forward–backward splitting framework, the sequence

{
xt} is generated by iteratively

implementing Equation (9).
Notably, in the IPGM algorithm, the function f satisfies the adaptive descent formula

in (20).
The function g is a nonconvex, nonsmooth, and proper closed function. Combining

the iterative mapping of the sequence
{

xt} in the inertial forward–backward splitting
framework and the definition of the proximal operator, we can obtain

1
2ηt
‖xt+1 −

(
xt − ηt∇ f

(
xt)+ ξt

(
xt − xt−1))‖2

+ g
(
xt+1)

≤ 1
2ηt
‖xt −

(
xt − ηt∇ f

(
xt)+ ξt

(
xt − xt−1))‖2

+ g
(
xt) (28)

Thus, this simplifies to

g
(

xt+1
)
+

1
2ηt
‖xt+1 − xt‖2

+
1
ηt

〈
xt+1 − xt, ηt∇ f

(
xt)− ξt

(
xt − xt−1

)〉
≤ g

(
xt) (29)

Now, using (20) and (29) by summing both inequalities, it follows that

h(xt+1) ≤ h(xt)−
(

1
2ηt
− τt Lt

2

)
‖xt+1 − xt‖2

+ ξt
ηt

〈
xt+1 − xt, xt − xt−1〉

≤ h(xt)−
(

1
2ηt
− τt Lt

2 −
ξt

2ηt

)
‖xt+1 − xt‖2

+ ξt
2ηt
‖xt − xt−1‖2 (30)

where the second line follows from 2〈A, B〉 ≤ ‖A‖2
2 + ‖B‖

2
2 for vectors A, B ∈ RN . Then,

a simple rearrangement of the terms yields:

h
(

xt+1
)
+ δt‖xt+1 − xt‖2 ≤ h

(
xt)+ δt‖xt − xt−1‖2 − γt‖xt − xt−1‖2

(31)

which establishes (27) as δt is monotonically decreasing. The sequence
(

Hδt

(
xt, xt−1))∞

n=0
monotonically decreases if and only if γt ≥ 0, which is confirmed by the algorithmic
requirements. By assumption, h is bounded from below by some constant h > −∞; hence,(

Hδt

(
xt, xt−1))∞

n=0 converges.
(b) Summing (27) from t = 0, · · · , T yields (note that Hδt

(
x0, x−1) = h(x0))

T

∑
t=0

rt∆
2
t ≤

T

∑
t=0

Hδt

(
xt, xt−1

)
−Hδt+1

(
xt+1, xt

)
= h

(
x0
)
− HδT+1

(
xT+1, xT

)
≤ h

(
x0
)
− h < ∞ (32)

Letting T tend to ∞, it can be seen from (32) that lim
t→T

γt∆
2
t = 0 since γT ≥ c1 > 0

implies the above statement. �

Proposition 2. (a) The sequence (h(xt))
∞
t=0 converges.

(b) There exists a convergent subsequence (xtk)
∞
k=0.

(c) Any limit point x∗ := limk→∞xtk is a critical point of h(x), and h(xtk)→ h(x∗) as
k→ ∞ .

Proof of Proposition 2. (a) This follows from the squeeze theorem as for all t ≥ 0, the
following holds:

H−δt

(
xt, xt−1

)
≤ h

(
xt) ≤ Hδt

(
xt, xt−1

)
(33)

and due to Propositions 1(a) and (b),

lim
t→∞

H−δt

(
xt, xt−1

)
= lim

t→∞
Hδt

(
xt, xt−1

)
− 2δt∆

2
n = lim

t→∞
Hδt

(
xt, xt−1

)
(34)

(b) By Proposition 1(a) and the fact that Hδ0

(
x0, x−1) = h

(
x0), it is clear that the whole

sequence (xt)
∞
t=0 is contained in the level set

{
x ∈ RN : h ≤ h(x) ≤ h

(
x0)}, which is

Electronics 2021, 10, 3021 11 of 19

bounded due to the coercivity of h and because h = infx∈RN h(x) > −∞. Using the Bolzano-
Weierstrass theorem, we deduce the existence of a convergent subsequence (xtk)

∞
k=0.

(c) To show that each limit point x∗ = limj→∞xtj is a critical point of h(x), we recall
that the subdifferential is closed. We define

ς j :=
xtj − xtj+1

ηtj

−∇ f
(

xtj
)
+

ξtj

ηtj

(
xtj − xtj−1

)
+∇ f

(
xtj+1

)
. (35)

Then, the sequence
(

xtj , ς j

)
∈ Graph(∂h) :=

{
(x, ς) ∈ RN ×RN

∣∣ς ∈ ∂h(x)
}

. Fur-

thermore, it holds that x∗ = limj→∞xtj , and due to Proposition 1(b), ∇ f is Lipschitz-
continuous, and

‖ςj − 0‖ ≤ 1
ηtj

∆nj+1 +
ξtj

ηtj

∆nj + ‖∇ f
(

xtj+1
)
−∇ f

(
xtj
)
‖ (36)

It holds that limj→∞ςj = 0. It remains to be shown that limj→∞h
(

xtj
)
= h(x∗). By the

closure property of the subdifferential ∂h, (x∗, 0) ∈ Graph(∂h), which means that x∗ is a
critical point of h.

According to the iterative mapping (Equation (9)) of the sequence
{

xt} in the inertial
forward-backward splitting framework, we can obtain:

1
2ηt
‖xt+1 −

(
xt − ηt∇ f

(
xt)+ ξt

(
xt − xt−1))‖2

+ g
(
xt+1)

≤ 1
2ηt
‖x−

(
xt − ηt∇ f

(
xt)+ ξt

(
xt − xt−1))‖2

+ g(x)
(37)

which implies that

g
(

xtj+1
)
+ 1

ηtj

〈
ηtj∇ f

(
xtj
)
− ξt

(
xtj − xtj−1

)
, xtj+1 − x

〉
+ 1

2ηtj

(
‖xtj+1 − xtj‖2 − ‖x− xtj‖2

)
≤ g(x)

(38)

Proposition 1(b) and the boundedness of ηtj∇ f
(

xtj
)
− ξt

(
xtj − xtj−1

)
yield that

lim supj→∞g
(

xtj
)
≤ g(x). Invoking the lower semicontinuity of g yields limj→∞g

(
xtj
)
=

g(x∗).
Moreover, f is differentiable and continuous, thus, limj→∞ f

(
xtj
)
= f (x∗). We imply

that limj→∞h
(

xtj
)
= h(x∗).

Now, using Lemma 1, we can verify the convergence of the sequence
(
xt)

t∈N generated
by Algorithm 1. �

Theorem 1 (Convergence of the IPGM algorithm to a critical point). Let
(
xt)

t∈N be generated
by Algorithm 1, and let δt = δ for all t ∈ N. Then, the sequence

(
xt+1, xt)

t∈N satisfies H1, H2,
and H3 for the function Hδ : R2N → R∪ {∞}, (x, y) 7→ h(x) + δ‖x− y‖2

2. Moreover, if the
sequence possesses the KL property at a cluster point, then the sequence has a finite length and is a
critical point Hδ; hence, x∗ is a critical point of h.

Proof of Proposition Theorem 1. First, we prove that the function has the KL property.h

is a semialgebraic function. If we consider that ‖x− y‖2 =
N
∑

i=1
[x(i)− y(i)]2, then ‖x− y‖2

is a polynomial function. Therefore, it is semialgebraic, so δ‖x− y‖2 is a semialgebraic
function. Hδ(x, y) is semialgebraic and has the KL property.

Next, we verify that Assumptions H1, H2, and H3 are satisfied.

Electronics 2021, 10, 3021 12 of 19

Condition H1 is proven in Proposition 1(a) with a = c2 ≤ γt. To prove Condition
H2, consider wt+1 := (wt+1

x , wt+1
y)

T ∈ ∂Hδ

(
xt+1, xt) with wt+1

x ∈ ∂g
(
xt+1)+∇ f

(
xt+1)+

2δ(xt+1 − xt) and wt+1
y = −2δ(xt+1 − xt) . The Lipschitz continuity of ∇ f and the use of

(9) to specify an element from ∂g
(
xt+1) imply that

‖wt+1‖ ≤ ‖wt+1
x ‖+ ‖wt+1

y ‖
≤ ‖∇ f

(
xt+1)−∇ f

(
xt)‖+ (1

ηt
+ 4δ

)
‖xt+1 − xt‖+ ξt

ηt
‖xt − xt−1‖

≤ 1
ηt
(ηtτtLt + 1 + 4ηtδ)‖xt+1 − xt‖+ 1

ηt
ξt‖xt − xt−1‖

(39)

As δt ≥ γt ≥ c1 > 0, we can obtain ηtτtLt ≤ 1− 2ξt ≤ 1, and δηt = 1
2 −

ηtτt Lt
2 −

ξt
2 ≤

1
2 . Setting b = 4

c1
verifies condition H2, i.e., ‖wt+1‖ ≤ b

(
‖xt − xt−1‖+ ‖xt+1 − xt‖

)
.

Condition H2 is proven.
In Proposition 2(c), it is proven that there exists a subsequence

(
xtj+1

)
j∈N

of
(
xt)

t∈N

such that lim
j→∞

h
(

xtj+1
)
= h(x∗). The following corollary uses the fact that semialgebraic

functions have the KL property. Proposition 1(b) shows that ‖xt+1 − xt‖ → 0 as t→ ∞ ;
hence, limj→∞ xt

j+1 = x∗. As the term δ‖x− y‖2 is continuous in x and y, we deduce that

lim
j→∞

H(xtj+1 , xtj) = lim
j→∞

h(xtj+1) + δ‖xtj+1 − xtj‖ = H(x∗, x∗) = h(x∗) (40)

Therefore, Condition H3 is proven.
Now, Theorem 1 concludes the proof. �

Remark 1. IPGM algorithm is convergent under nonconvex optimization. It is easy to prove the
convergence under convex optimization constraints, which is equivalent to a special case of the
iPiano algorithm for the CDL problem.

6. Convergence Rate

We prove a global O(1/k) convergence rate for ‖xt+1 − xt‖2. We first define the error
uN to be the smallest squared `2 norm value of successive iterations:

uN := min
0≤n≤N

‖xt − xt−1‖2
(41)

Theorem 2. Algorithm 1 guarantees that for all N ≥ 0,

uN ≤ c−1
1

h
(
x0)− h

N + 1
(42)

Proof of Proposition Theorem 2. In view of Proposition 1(a) and the definition of γN in
(21), summing both sides of (26) for n = 0, . . . , N and using the fact that δN > 0 from
(21), we obtain

h ≤ h
(

x0
)
−

N

∑
n=0

γn‖xt − xt−1‖2 ≤ h
(

x0
)
− (N + 1) min

0≤n≤N
γnµN . (43)

As γn > c1, a simple rearrangement concludes the proof. �

Electronics 2021, 10, 3021 13 of 19

7. Experimental Results and Analysis

In this section, we compare the performance of the proposed IPGM with that of
various existing methods with respect to solving CDL problems.

7.1. Experimental Setup
7.1.1. List of Compared Methods

1. SBDL denotes the method proposed in [23] based on convex optimization with an `1
norm-based sparsity-inducing function that uses slices via local processing.

2. Local block coordinate descent (LoBCoD) denotes the method proposed in [24] based
on convex optimization with an `1 norm-based sparsity-inducing function that utilizes
needle-based representation via local processing.

3. The PGM denotes the method proposed in [1] based on convex optimization with
an `1 norm-based sparsity-inducing function that uses the Fast Fourier transform
(FFT) operation.

4. The IPGM denotes the method proposed in Algorithm 1 in this paper uses needle-
based representation via local processing.

7.1.2. Parameter Settings

The parameter settings used for the comparison methods are described as follows:

1. In SBDL [23], the model parameter is λ, and its initial value is 1. The maximum
nonzero value of the LARS algorithm is 5. The filter size of the dictionary is 11*11*100.
In addition, special techniques are used in the first few iterations of the dictionary
learning process.

2. In LoBCoD [24], the model parameter λ is initialized to 1. The maximum nonzero
value of the LARS algorithm is 5. The filter format of the dictionary is 11*11*100. In
addition, the dictionary learning process first carries out 40 iterations and then uses
the proximal gradient descent algorithm.

3. In the PGM [1] model, the Lipschitz constant L is set to 1000 for fruit, and λ = 1.
4. In the IPGM, the model parameter Lt is set at 1000 for fruit, and λ = 1.

7.1.3. Implementation Details

The computations of the SBDL, LoBCoD, and PGM algorithms, as well as the IPGM
algorithm, are performed using a PC with an Intel i5 CPU and 12 GB of memory.

7.2. Efficiency of Dictionary Learning Algorithms
7.2.1. Motivation and Evaluation Metrics

The efficiency and stability of objective function are the most important criteria for
evaluating a numerical optimization algorithm. The sequence generated by an efficient
dictionary learning algorithm converges quickly to the corresponding clustering point with
a lower function value. The relevant evaluation indicators are listed below.

1. Final Value of f + g and the Algorithmic Convergence Properties: In the f + g
minimization-based analysis method, we use the function value of the generated
sequence to evaluate its optimization efficiency and convergence.

2. Computing Time: We compare the computing times of the SBDL, LoBCoD, PGM, and
IPGM algorithms and compare the computing efficiency.

7.2.2. Training Data and Experimental Settings

A set of generic grayscale natural images is used as the training data in this experi-
ment. The set includes 10 fruit images (100 × 100 pixels). It is decomposed into high- and
low-frequency components. The means are subtracted. These images are normalized to a
range of 0 to 1. The dictionary includes 100 elements, the sizes of which are 11 × 11. One
thousand iterations are carried out for each method. The dataset comes from SBDL [23]
and LOBCOD [24], and the experimental process refers to the experimental process in

Electronics 2021, 10, 3021 14 of 19

references SBDL and LOBCOD. Similar to references [23,24], there is a similar trend in
the experimental results under different atomic numbers or different sizes. We give the
final objection function value representing the convergence properties and computing
time representing convergence efficiency using only the conditions of 100 atoms with a
size of 11 × 11 from the fruit grayscale natural images. Each of the average results repre-
sents the four trials using different initial dictionaries, from which the initial coefficients
were derived.

7.2.3. Results

The experimental results are described as follows. The set of training data described
above is used to derive the results. Figure 1 shows the functional values of all com-
pared methods in each iteration of the dictionary learning procedure. In addition, Table 1
shows the experimental data yielded by all compared methods over 1000 iterations.
Figures 2 and 3 correspond to the trained dictionaries and reconstructed images of all
compared methods after 1000 iterations, respectively.

Electronics 2021, 10, x FOR PEER REVIEW 16 of 21

11 × 11 from the fruit grayscale natural images. Each of the average results represents the
four trials using different initial dictionaries, from which the initial coefficients were de-
rived.

7.2.3. Results
The experimental results are described as follows. The set of training data described

above is used to derive the results. Figure 1 shows the functional values of all compared
methods in each iteration of the dictionary learning procedure. In addition, Table 1 shows
the experimental data yielded by all compared methods over 1000 iterations. Figures 2
and 3 correspond to the trained dictionaries and reconstructed images of all compared
methods after 1000 iterations, respectively.

Figure 1. Comparison of the average function values obtained over four trials versus the number of
iterations for learning 100 atoms with sizes of 11 × 11 from the grayscale natural fruit images.

(a) SBDL (b) LoBCoD

Figure 1. Comparison of the average function values obtained over four trials versus the number of
iterations for learning 100 atoms with sizes of 11 × 11 from the grayscale natural fruit images.

Table 1. The experimental results obtained by all compared methods after 1000 iterations with the
grayscale natural fruit images.

Fruit SBDL LoBCoD PGM IPGM

Obj 9.545 × 103 9.857 × 103 1.048 × 104 9.449 × 103

Data consistent 3.067 × 103 3.136 × 103 3.528 × 103 3.035 × 103

Regularization 6.478 × 103 6.722 × 103 6.957 × 103 6.415 × 103

Sparsity 0.146% 0.141% 1.696% 0.145%
Time (s) 1110.134 1879.400 1955.365 1222.722

PSNR (dB) 29.348 29.252 28.799 29.438

Electronics 2021, 10, 3021 15 of 19

Electronics 2021, 10, x FOR PEER REVIEW 16 of 21

11 × 11 from the fruit grayscale natural images. Each of the average results represents the
four trials using different initial dictionaries, from which the initial coefficients were de-
rived.

7.2.3. Results
The experimental results are described as follows. The set of training data described

above is used to derive the results. Figure 1 shows the functional values of all compared
methods in each iteration of the dictionary learning procedure. In addition, Table 1 shows
the experimental data yielded by all compared methods over 1000 iterations. Figures 2
and 3 correspond to the trained dictionaries and reconstructed images of all compared
methods after 1000 iterations, respectively.

Figure 1. Comparison of the average function values obtained over four trials versus the number of
iterations for learning 100 atoms with sizes of 11 × 11 from the grayscale natural fruit images.

(a) SBDL (b) LoBCoD

Electronics 2021, 10, x FOR PEER REVIEW 17 of 21

(c) PGM (d) IPGM

Figure 2. Dictionaries obtained by the four algorithms after 1000 iterations from the grayscale natu-
ral fruit images. (a–d) is the dictionary obtained by SBDL, LOBCOD, PGM, IPGM, respectively.

7.2.4. Discussion
A discussion of the experimental results is as follows. Table 1 shows the experimental

results produced by the four algorithms for the fruit dataset, which shows that the IPGM
method yields better results in terms of performances. In terms of the objective function
values of the four algorithms, the IPGM algorithm is lowest with 9.449×103. In terms of
sparsity, except for the poor sparsity of the PGM, there is little difference among the other
algorithms. The time consumption of our algorithm is 122.722 s, which is better than that
of LoBCoD and the PGM but worse than that of SBDL. The SBDL algorithm calls for the
C++ function in the MATLAB program, so it requires less time than the IPGM method.
The peak signal-to-noise ratio (PSNR) of the IPGM algorithm is best with 29.438 dB, which
is the highest value among the four algorithms. After analyzing Figure 3 above, we see
that compared with other algorithms, the IPGM algorithm provides the reconstructed im-
age with the clearest texture details. Generally, the IPGM algorithm has the best perfor-
mance and the best effect when compared with other algorithms.

Table 1. The experimental results obtained by all compared methods after 1000 iterations with the
grayscale natural fruit images.

Fruit SBDL LoBCoD PGM IPGM
Obj 9.545 × 103 9.857 × 103 1.048 × 104 9.449 × 103

Data consistent 3.067 × 103 3.136 × 103 3.528 × 103 3.035 × 103
Regularization 6.478 × 103 6.722 × 103 6.957 × 103 6.415 × 103

Sparsity 0.146% 0.141% 1.696% 0.145%
Time (s) 1110.134 1879.400 1955.365 1222.722

PSNR (dB) 29.348 29.252 28.799 29.438

(a) SBDL (b) LoBCoD

Figure 2. Dictionaries obtained by the four algorithms after 1000 iterations from the grayscale natural
fruit images. (a–d) is the dictionary obtained by SBDL, LOBCOD, PGM, IPGM, respectively.

Electronics 2021, 10, x FOR PEER REVIEW 17 of 21

(c) PGM (d) IPGM

Figure 2. Dictionaries obtained by the four algorithms after 1000 iterations from the grayscale natu-
ral fruit images. (a–d) is the dictionary obtained by SBDL, LOBCOD, PGM, IPGM, respectively.

7.2.4. Discussion
A discussion of the experimental results is as follows. Table 1 shows the experimental

results produced by the four algorithms for the fruit dataset, which shows that the IPGM
method yields better results in terms of performances. In terms of the objective function
values of the four algorithms, the IPGM algorithm is lowest with 9.449×103. In terms of
sparsity, except for the poor sparsity of the PGM, there is little difference among the other
algorithms. The time consumption of our algorithm is 122.722 s, which is better than that
of LoBCoD and the PGM but worse than that of SBDL. The SBDL algorithm calls for the
C++ function in the MATLAB program, so it requires less time than the IPGM method.
The peak signal-to-noise ratio (PSNR) of the IPGM algorithm is best with 29.438 dB, which
is the highest value among the four algorithms. After analyzing Figure 3 above, we see
that compared with other algorithms, the IPGM algorithm provides the reconstructed im-
age with the clearest texture details. Generally, the IPGM algorithm has the best perfor-
mance and the best effect when compared with other algorithms.

Table 1. The experimental results obtained by all compared methods after 1000 iterations with the
grayscale natural fruit images.

Fruit SBDL LoBCoD PGM IPGM
Obj 9.545 × 103 9.857 × 103 1.048 × 104 9.449 × 103

Data consistent 3.067 × 103 3.136 × 103 3.528 × 103 3.035 × 103
Regularization 6.478 × 103 6.722 × 103 6.957 × 103 6.415 × 103

Sparsity 0.146% 0.141% 1.696% 0.145%
Time (s) 1110.134 1879.400 1955.365 1222.722

PSNR (dB) 29.348 29.252 28.799 29.438

(a) SBDL (b) LoBCoD

Electronics 2021, 10, x FOR PEER REVIEW 18 of 21

(c) PGM (d) IPGM

Figure 3. Reconstruction images yielded by all compared methods after 1000 iterations from the
grayscale natural fruit images. (a–d) is the reconstruction images yielded by SBDL, LOBCOD, PGM,
IPGM, respectively.

7.3. Ablation Experiment
7.3.1. Motivation and Evaluation Metrics

In the proposed IPGM algorithm, the inertia parameters are assigned directly, and
they are equivalent to fixed values. Nevertheless, the magnitudes of the inertia parameters
have specific impacts on the performance of the algorithm. Therefore, this section uses
ablation experiments to analyze the performance of IPGM under different inertia param-
eters and the performance of IPGM under different optimization conditions.

7.3.2. Training Data and Experimental Settings
The experimental setting of the ablation experiment is consistent with that of the ex-

periment in the previous section. The fruit dataset is also used as the ablation experiment
dataset. The dataset comes from SBDL [23] and LOBCOD [24], and the experimental pro-
cess refers to the experimental process in references SBDL and LOBCOD. We experiment
on IPGM algorithms with different inertia parameters under convex optimization con-
straints and nonconvex optimization constraints.

7.3.3. Results
A discussion of the experimental results is as follows. Table 2 shows the objective

function and PSNR values obtained with different inertia parameters under the constraint
of nonconvex optimization. Table 3 shows the objective function and PSNR values ob-
tained with different inertia parameters under the constraint of convex optimization.

Table 2. Objective function values and PSNR values of IPGM models with different inertia param-
eters under the constraint of nonconvex optimization.

 0.1 0.2 0.3 0.4
Obj 1.072 × 104 1.059 × 104 1.097 × 104 1.167 × 104

PSNR 31.960 32.139 32.335 32.734

Table 3. Objective function values and PSNR values of IPGM models with different inertia param-
eters under the constraint of convex optimization.

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Obj 9.737 × 103 9.642 × 103 9.604 × 103 9.569 × 103 9.565 × 103 9.543 × 103 9.516 × 103 9.484 × 103 9.449 × 103

PSNR 29.350 29.394 29.401 29.427 29.414 29.422 29.433 29.431 29.438

7.3.4. Discussion
1. The above table summarizes the performance of the IPGM algorithm under different

inertia parameter settings. Under nonconvex optimization, with the increase in the

Figure 3. Reconstruction images yielded by all compared methods after 1000 iterations from the
grayscale natural fruit images. (a–d) is the reconstruction images yielded by SBDL, LOBCOD, PGM,
IPGM, respectively.

Electronics 2021, 10, 3021 16 of 19

7.2.4. Discussion

A discussion of the experimental results is as follows. Table 1 shows the experimental
results produced by the four algorithms for the fruit dataset, which shows that the IPGM
method yields better results in terms of performances. In terms of the objective function
values of the four algorithms, the IPGM algorithm is lowest with 9.449 × 103. In terms of
sparsity, except for the poor sparsity of the PGM, there is little difference among the other
algorithms. The time consumption of our algorithm is 122.722 s, which is better than that
of LoBCoD and the PGM but worse than that of SBDL. The SBDL algorithm calls for the
C++ function in the MATLAB program, so it requires less time than the IPGM method. The
peak signal-to-noise ratio (PSNR) of the IPGM algorithm is best with 29.438 dB, which is
the highest value among the four algorithms. After analyzing Figure 3 above, we see that
compared with other algorithms, the IPGM algorithm provides the reconstructed image
with the clearest texture details. Generally, the IPGM algorithm has the best performance
and the best effect when compared with other algorithms.

7.3. Ablation Experiment
7.3.1. Motivation and Evaluation Metrics

In the proposed IPGM algorithm, the inertia parameters are assigned directly, and they
are equivalent to fixed values. Nevertheless, the magnitudes of the inertia parameters have
specific impacts on the performance of the algorithm. Therefore, this section uses ablation
experiments to analyze the performance of IPGM under different inertia parameters and
the performance of IPGM under different optimization conditions.

7.3.2. Training Data and Experimental Settings

The experimental setting of the ablation experiment is consistent with that of the
experiment in the previous section. The fruit dataset is also used as the ablation experiment
dataset. The dataset comes from SBDL [23] and LOBCOD [24], and the experimental process
refers to the experimental process in references SBDL and LOBCOD. We experiment on
IPGM algorithms with different inertia parameters under convex optimization constraints
and nonconvex optimization constraints.

7.3.3. Results

A discussion of the experimental results is as follows. Table 2 shows the objective
function and PSNR values obtained with different inertia parameters under the constraint
of nonconvex optimization. Table 3 shows the objective function and PSNR values obtained
with different inertia parameters under the constraint of convex optimization.

Table 2. Objective function values and PSNR values of IPGM models with different inertia parameters
under the constraint of nonconvex optimization.

0.1 0.2 0.3 0.4

Obj 1.072 × 104 1.059 × 104 1.097 × 104 1.167 × 104

PSNR 31.960 32.139 32.335 32.734

Table 3. Objective function values and PSNR values of IPGM models with different inertia parameters under the constraint
of convex optimization.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Obj 9.737 × 103 9.642 × 103 9.604 × 103 9.569 × 103 9.565 × 103 9.543 × 103 9.516 × 103 9.484 × 103 9.449 × 103

PSNR 29.350 29.394 29.401 29.427 29.414 29.422 29.433 29.431 29.438

Electronics 2021, 10, 3021 17 of 19

7.3.4. Discussion

1. The above table summarizes the performance of the IPGM algorithm under different
inertia parameter settings. Under nonconvex optimization, with the increase in the in-
ertia parameter, the objective function value decreases, and the PSNR value increases.
The effect is the best when the inertia parameter is 0.4. The objective function value
is 1.167 × 104, and the PSNR value is 32.734. Under convex optimization, with the
increase in the inertia parameter, the value of the objective function decreases, and
the value of PSNR increases. The effect is the best when the inertia parameter is 0.9.
At this time, the value of the objective function is 9.449 × 103, and the value of PSNR
is 29.438. The results show that the larger the inertia parameter setting is, the better
the performance of IPGM is under both convex and nonconvex constraints.

2. According to the ranges of inertia parameters allowed under different constraints, the
results in the above table are obtained. By comparing Tables 2 and 3, it can be found
that with the increase in inertia parameters, the PSNR of the IPGM algorithm under
convex optimization constraints is higher, the objective function value is low, and the
performance improves. Under the constraint of nonconvex optimization, although the
PSNR of the IPGM algorithm is high, the value of the objective function is also high,
and the performance is not ideal. This result shows that the simple utilized inertia
term cannot achieve the perfect effect under the nonconvex constraint. In the future,
we will continue to study the IPGM algorithm with dynamic inertia parameters under
nonconvex optimization.

8. Conclusions

For the CDL problem, an IPGM algorithm based on a forward–backward splitting
algorithm with an inertial term is proposed. The complexity of the algorithm is analyzed,
and the convergence of the algorithm is proven. Finally, the IPGM algorithm is compared
with other algorithms in terms of performance and effect through experiments. The results
show that the IPGM algorithm produces a lower objective function value, lower sparse
value, and higher reconstruction PSNR. In summary, the IPGM algorithm has many good
theoretical properties, and it is efficient and straightforward.

In addition, according to the allowable range of inertia parameters under different
constraints, the ablation experiment of the IPGM algorithm is carried out. According to the
experimental results, it can be found that the IPGM algorithm achieves better performance
under convex optimization. However, under the nonconvex optimization constraint, the
performance of the IPGM algorithm does not reach the ideal value, indicating that the
perfect effect cannot be achieved by simply using the inertia term under the nonconvex
constraint. In the future, we will further study the IPGM algorithm with dynamic inertia
parameters under nonconvex optimization.

Author Contributions: Supervision, Conceptualization, J.L.; Formal analysis, Methodology, Writing,
X.W.; Mathematical aspects, F.W.; Review, Funding acquisition, J.W. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by Special Projects on Basic Research Cooperation of Beijing,
Tianjin and Hebei, grant number 19JCZDJC65600Z, & F2019203583; Central Funds Guiding the
Local Science and Technology Development, grant number 206Z5001G; National Natural Science
Foundation of China grant number 61473339.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wohlberg, B. Efficient algorithms for convolutional sparse representations. IEEE Trans. Image Process. 2016, 25, 301–315. [CrossRef]

[PubMed]
2. Simon, D.; Elad, M. Rethinking the CSC Model for Natural Images. In Proceedings of the Thirty-third Conference on Neural

Information Processing Systems (NeurIPS), Vancouver, BC, Canada, 8–14 December 2019; Volume 32, pp. 1–8.

http://doi.org/10.1109/TIP.2015.2495260
http://www.ncbi.nlm.nih.gov/pubmed/26529765

Electronics 2021, 10, 3021 18 of 19

3. Zhang, H.; Patel, V.M. Convolutional Sparse and Low-Rank Coding-Based Image Decomposition. IEEE Trans. Image Process. 2018,
27, 2121–2133. [CrossRef] [PubMed]

4. Yang, L.; Li, C.; Han, J.; Chen, C.; Ye, Q.; Zhang, B.; Cao, X.; Liu, W. Image Reconstruction via Manifold Constrained Convolutional
Sparse Coding for Image Sets. IEEE J. Sel. Top. Signal Process. 2017, 11, 1072–1081. [CrossRef]

5. Bao, P.; Sun, H.; Wang, Z.; Zhang, Y.; Xia, W.; Yang, K.; Chen, W.; Chen, M.; Xi, Y.; Niu, S.; et al. Convolutional Sparse Coding for
Compressed Sensing CT Reconstruction. IEEE Trans. Med. Imaging 2019, 38, 2607–2619. [CrossRef] [PubMed]

6. Hu, X.-M.; Heide, F.; Dai, Q.; Wetzstein, G. Convolutional Sparse Coding for RGB+NIR Imaging. IEEE Trans. Image Process. 2018,
27, 1611–1625. [CrossRef] [PubMed]

7. Zhu, Y.; Lucey, S. Convolutional Sparse Coding for Trajectory Reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37,
529–540. [CrossRef]

8. Annunziata, R.; Trucco, E. Accelerating Convolutional Sparse Coding for Curvilinear Structures Segmentation by Refining
SCIRD-TS Filter Banks. IEEE Trans. Med Imaging 2016, 35, 2381–2392. [CrossRef]

9. Gu, S.; Zuo, W.; Xie, Q.; Meng, D.; Feng, X.; Zhang, L. Convolutional sparse coding for image super-resolution. In Proceedings of
the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1823–1831.

10. Wang, J.; Xia, J.; Yang, Q.; Zhang, Y. Research on Semi-Supervised Sound Event Detection Based on Mean Teacher Models Using
ML-LoBCoD-NET. IEEE Access 2020, 8, 38032–38044. [CrossRef]

11. Chen, S.; Billings, S.A.; Luo, W. Orthogonal least squares methods and their application to non-linear system identification. Int. J.
Control 1989, 50, 1873–1896. [CrossRef]

12. Chen, S.S.; Donoho, D.L.; Saunders, M.A. Atomic Decomposition by Basis Pursuit. SIAM Rev. 2001, 43, 129–159. [CrossRef]
13. Aharon, M.; Elad, M.; Bruckstein, A. K-svd: An algorithm for designing overcomplete dictionaries for sparse representation.

IEEE Trans. Signal Process. 2006, 54, 4311–4322. [CrossRef]
14. Engan, K.; Aase, S.O.; Husoy, J.H. Method of optimal directions for frame design. In Proceedings of the 1999 IEEE International

Conference on Acoustics, Speech, and Signal Processing, Phoenix, AZ, USA, 15–19 March 1999; Volume 5, pp. 2443–2446.
15. Mairal, J.; Bach, F.; Ponce, J.; Sapiro, G. Online dictionary learning for sparse coding. In Proceedings of the 26th Annual

International Conference on Machine Learning, Montreal, QC, Canada, 14–18 June 2009; pp. 689–696.
16. Sulam, J.; Ophir, B.; Zibulevsky, M.; Elad, M. Trainlets: Dictionary learning in high dimensions. IEEE Trans. Signal Process. 2016,

64, 3180–3193. [CrossRef]
17. Wright, J.; Yang, A.Y.; Ganesh, A.; Sastry, S.S.; Ma, Y. Robust face recognition via sparse representation. IEEE Trans. Pattern Anal.

Mach. Intell. 2009, 31, 210–227. [CrossRef] [PubMed]
18. Papyan, V.; Sulam, J.; Elad, M. Working locally thinking globally: Theoretical guarantees for convolutional sparse coding. IEEE

Trans. Signal Process. 2017, 65, 5687–5701. [CrossRef]
19. Garcia-Cardona, C.; Wohlberg, B. Convolutional dictionary learning: A comparative review and new algorithms. IEEE Trans.

Comput. Imaging 2018, 4, 366–381. [CrossRef]
20. Bristow, H.; Eriksson, A.; Lucey, S. Fast convolutional sparse coding. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), Portland, OR, USA, 13–28 June 2013; pp. 391–398.
21. Heide, F.; Heidrich, W.; Wetzstein, G. Fast and flexible convolutional sparse coding. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 513–5143.
22. Rey-Otero, I.; Sulam, J.; Elad, M. Variations on the Convolutional Sparse Coding Model. IEEE Trans. Signal Process. 2020, 68,

519–528. [CrossRef]
23. Papyan, V.; Romano, Y.; Sulam, J.; Elad, M. Convolutional dictionary learning via local processing. In Proceedings of the

International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 5306–5314.
24. Zisselman, E.; Sulam, J.; Elad, M. A Local Block Coordinate Descent Algorithm for the Convolutional Sparse Coding Model. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20
June 2019; pp. 8200–8209.

25. Peng, G. Adaptive ADMM for Dictionary Learning in Convolutional Sparse Representation. IEEE Trans. Image Process. 2019, 28,
3408–3422. [CrossRef] [PubMed]

26. Elad, P.; Raja, G. Matching Pursuit Based Convolutional Sparse Coding. In Proceedings of the IEEE International Conference on
Acoustics Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 6847–6851.

27. Chun, I.I.Y.; Fessler, J. Convolutional dictionary learning: Acceleration and convergence. IEEE Trans. Image Process. 2017, 27,
1697–1712. [CrossRef] [PubMed]

28. Peng, G. Joint and Direct Optimization for Dictionary Learning in Convolutional Sparse Representation. IEEE Trans. Neural Netw.
Learn. Syst. 2020, 31, 559–573. [CrossRef]

29. Attouch, H.; Bolte, J.; Svaiter, B.F. Convergence of descentmethods for semi-algebraic and tame problems: Proximal algorithms,
forward–backward splitting, and regularized Gauss–Seidel methods. Math. Program. 2013, 137, 91–129. [CrossRef]

30. Polyak, B.T. Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys. 1964, 4, 1–17.
[CrossRef]

31. Ochs, P.; Chen, Y.; Brox, T.; Pock, T. iPiano: Inertial proximal algorithm for nonconvex optimization. SIAM J. Imaging Sci. 2014, 7,
1388–1419. [CrossRef]

32. Rockafellar, R.T. Monotone Operators and the Proximal Point Algorithm. SIAM J. Appl. Math. 1976, 14, 877–898. [CrossRef]

http://doi.org/10.1109/TIP.2017.2786469
http://www.ncbi.nlm.nih.gov/pubmed/29432095
http://doi.org/10.1109/JSTSP.2017.2743683
http://doi.org/10.1109/TMI.2019.2906853
http://www.ncbi.nlm.nih.gov/pubmed/30908204
http://doi.org/10.1109/TIP.2017.2781303
http://www.ncbi.nlm.nih.gov/pubmed/29324415
http://doi.org/10.1109/TPAMI.2013.2295311
http://doi.org/10.1109/TMI.2016.2570123
http://doi.org/10.1109/ACCESS.2020.2974479
http://doi.org/10.1080/00207178908953472
http://doi.org/10.1137/S003614450037906X
http://doi.org/10.1109/TSP.2006.881199
http://doi.org/10.1109/TSP.2016.2540599
http://doi.org/10.1109/TPAMI.2008.79
http://www.ncbi.nlm.nih.gov/pubmed/19110489
http://doi.org/10.1109/TSP.2017.2733447
http://doi.org/10.1109/TCI.2018.2840334
http://doi.org/10.1109/TSP.2020.2964239
http://doi.org/10.1109/TIP.2019.2896541
http://www.ncbi.nlm.nih.gov/pubmed/30714925
http://doi.org/10.1109/TIP.2017.2761545
http://www.ncbi.nlm.nih.gov/pubmed/28991744
http://doi.org/10.1109/TNNLS.2019.2906074
http://doi.org/10.1007/s10107-011-0484-9
http://doi.org/10.1016/0041-5553(64)90137-5
http://doi.org/10.1137/130942954
http://doi.org/10.1137/0314056

Electronics 2021, 10, 3021 19 of 19

33. Moursi, W.M. The Forward-Backward Algorithm and the Normal Problem. J. Optim. Theory Appl. 2018, 176, 605–624. [CrossRef]
34. Franci, B.; Staudigl, M.; Grammatico, S. Distributed forward-backward (half) forward algorithms for generalized Nash equilibrium

seeking. In Proceedings of the 2020 European Control Conference (ECC), Saint-Petersburg, Russia, 12–15 May 2020; pp. 1274–1279.
35. Molinari, C.; Peypouquet, J.; Roldan, F. Alternating forward–backward splitting for linearly constrained optimization problems.

Optim. Lett. 2020, 14, 1071–1088. [CrossRef]
36. Guan, W.B.; Song, W. The forward–backward splitting method and its convergence rate for the minimization of the sum of two

functions in Banach spaces. Optim. Lett. 2021, 15, 1735–1758. [CrossRef]
37. Abass, H.A.; Izuchukwu, C.; Mewomo, O.T.; Dong, Q.L. Strong convergence of an inertial forward-backward splitting method

for accretive operators in real Hilbert space. Fixed Point Theory 2020, 21, 397–412. [CrossRef]
38. Bot, R.I.; Grad, S.M. Inertial forward–backward methods for solving vector optimization problems. Optimization 2018, 67, 1–16.

[CrossRef] [PubMed]
39. Ahookhosh, M.; Hien, L.T.K.; Gillis, N.; Patrinos, P. A block inertial Bregman proximal algorithm for nonsmooth nonconvex

problems with application to symmetric nonnegative matrix tri-factorization. J. Optim. Theory Appl. 2020, 190, 234–258. [CrossRef]
40. Xu, J.; Chao, M. An inertial Bregman generalized alternating direction method of multipliers for nonconvex optimization. J. Appl.

Math. Comput. 2021, 1–27. [CrossRef]
41. Pock, T.; Sabach, S. Inertial proximal alternating linearized minimization (iPALM) for nonconvex and nonsmooth problems.

SIAM J. Imaging Sci. 2016, 9, 1756–1787. [CrossRef]

http://doi.org/10.1007/s10957-017-1113-4
http://doi.org/10.1007/s11590-019-01388-y
http://doi.org/10.1007/s11590-020-01544-9
http://doi.org/10.24193/fpt-ro.2020.2.28
http://doi.org/10.1080/02331934.2018.1440553
http://www.ncbi.nlm.nih.gov/pubmed/30008539
http://doi.org/10.1007/s10957-021-01880-5
http://doi.org/10.1016/j.camwa.2020.12.002
http://doi.org/10.1137/16M1064064

	Introduction
	Related Knowledge
	Convex CDL in the Time Domain via Local Processing
	Forward–Backward Splitting
	Inertia Item

	Proposed IPGM Algorithm
	Computational Complexity Analysis
	Proof of the Convergence of Algorithm 1
	Convergence Rate
	Experimental Results and Analysis
	Experimental Setup
	List of Compared Methods
	Parameter Settings
	Implementation Details

	Efficiency of Dictionary Learning Algorithms
	Motivation and Evaluation Metrics
	Training Data and Experimental Settings
	Results
	Discussion

	Ablation Experiment
	Motivation and Evaluation Metrics
	Training Data and Experimental Settings
	Results
	Discussion

	Conclusions
	References

