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Abstract: Recently, the multiobjective evolutionary algorithms (MOEAs) have been designed to cope
with the sparse unmixing problem. Due to the excellent performance of MOEAs in solving the NP
hard optimization problems, they have also achieved good results for the sparse unmixing problems.
However, most of these MOEA-based methods only deal with a single pixel for unmixing and are
subjected to low efficiency and are time-consuming. In fact, sparse unmixing can naturally be seen as a
multitasking problem when the hyperspectral imagery is clustered into several homogeneous regions,
so that evolutionary multitasking can be employed to take advantage of the implicit parallelism from
different regions. In this paper, a novel evolutionary multitasking multipopulation particle swarm
optimization framework is proposed to solve the hyperspectral sparse unmixing problem. First, we
resort to evolutionary multitasking optimization to cluster the hyperspectral image into multiple
homogeneous regions, and directly process the entire spectral matrix in multiple regions to avoid
dimensional disasters. In addition, we design a novel multipopulation particle swarm optimization
method for major evolutionary exploration. Furthermore, an intra-task and inter-task transfer and
a local exploration strategy are designed for balancing the exchange of useful information in the
multitasking evolutionary process. Experimental results on two benchmark hyperspectral datasets
demonstrate the effectiveness of the proposed method compared with the state-of-the-art sparse
unmixing algorithms.

Keywords: evolutionary multitasking; particle swarm optimization; multipopulation optimization;
computational intelligence; sparse unmixing

1. Introduction

With the progress of remote sensing technology, hyperspectral imagery, which can
obtain hundreds of sequential spectrum bands, has been widely applied in both civilian
and military scenarios, for example, land-cover classification [1–3], environmental monitor-
ing [4–6] and target detection [7,8], and so forth. However, there remains the problem of
mixed pixels due to the low spatial resolution of sensors and the mixture of the surface
features [9,10]. Therefore, spectral unmixing aims at extracting the collection of constituent
spectra (called endmembers) from the mixed pixels and calculating the fractional abun-
dances of these endmembers [11,12]. Accordingly, different spectral unmixing methods
can be divided into three categories, that is, the geometrical-based, statistical-based and
sparse-regression-based approaches. Traditional geometrical-based and statistical-based
methods are extensively used as they can be utilized easily and flexibly, but they also
suffer from the weakness of poor performance on highly mixed scenes spectra and the
limitedness of time consumption, respectively [13]. Sparse unmixing, as an emerging
spectral unmixing technology in recent years, is devised to find out the optimal solution
that can represent each pixel of the hyperspectral image the most from a spectral library
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known in advance. Among these algorithms, the sparse unmixing via variable splitting and
augmented Lagrangian (SUnSAL) based on the alternating direction method of multipliers
has been proposed to relax the l0 norm [14]. To overcome the disadvantage of SUnSAL
that only utilizes spectral information without considering the spatial-contextual informa-
tion, Iordache et al. proposed the collaborative SUnSAL (CLSUnSAL) which improves
the unmixing results by solving a joint sparse regression problem, where the sparsity is
simultaneously imposed to all pixels in the dataset [15,16].

Mathematically, sparse unmixing is an NP-hard problem. Multiobjective evolutionary
algorithms (MOEAs), which are able to optimize some contradictory objectives and acquire
a set of nondominated solutions called the Pareto-optimal front, are suitable for solving the
NP-hard problems and overcoming the aforementioned difficulty in sparse unmixing [17].
A multiobjective sparse unmixing (MOSU) model was first proposed by Gong et al. [18]
to deal with the sparse unmixing for hyperspectral imagery. Xu et al. [19] developed a
multiobjective optimization based sparse unmixing (SMoSU) to take full advantage of the
spectral characteristics of hyperspectral images under the framework of the multiobjective
evolutionary algorithm based on decomposition (MOEA/D). In [20], the SMoSU was
further improved and a classification-based model called CM-MoSU was designed. The
estimation of distribution algorithms is modified to pay more attention to the feasible space
with high quality.

However, the existing sparse unmixing algorithms based on MOEAs are limited to the
pixel-based unmixing, which leads to the disadvantage of the low efficiency and the lack
of the spatial structure information [21]. In some recent studies [22–24], a hyperspectral
image is clustered into multiple homogeneous regions based on the assumption that the
probability of the active endmember set in the homogeneous region is likely to be the same,
which not only reduces the complexity of unmixing, but also further enhances the spatial
correlation of pixels in the same category. Interestingly, this coincides with the idea of
evolutionary multitasking framework emerging in recent years. The evolutionary multi-
tasking [25] aims to solve different multiobjective optimization problems simultaneously
to take advantage of the implicit parallelism from different tasks. Therefore, it is promising
to employ the evolutionary multitasking multiobjective framework to efficiently solve
the sparse unmixing problem. Besides, the particle swarm optimization (PSO) algorithm,
which simulates the regularity of bird cluster activities, has proved to be effective in solving
multiobjective endmember extraction problems [26–28]. From this, the current multitasking
paradigm can be further explored and applied to sparse unmixing problems.

In this paper, we propose a novel evolutionary multitasking multipopulation particle
swarm optimization (EMMPSO) framework for sparse unmixing. In the proposed method,
a hyperspectral image is clustered into multiple homogeneous regions first, then the multi-
population particle swarm optimization is employed to explore each sparsity. Finally, the
multiobjective optimization is applied to each task simultaneously to obtain a compromise
between the reconstruction error and the endmember sparsity. Significantly, it is different
from the traditional MOEA-based algorithms that EMMPSO can process the entire matrix
due to the decomposition strategy of evolutionary multitasking, aiming at pixel-based
unmixing only. In addition, we design a novel intra-task and inter-task transfer strategy
to overcome the impact of negative transfer in multitasking. It can not only utilize the
effective information in the same task to speed up the convergence of each sub-particle
swarm, but also explore the similarities between different tasks to improve the overall
convergence performance. Finally, the Pareto optimal solution in each task can be obtained
to reverse the final endmember abundance.

The contributions of the proposed EMMPSO algorithm are summarized as follows:

(1) A novel evolutionary multitasking multipopulation particle swarm optimization
framework is proposed to solve the sparse unmixing problem. With the decomposition
of the evolutionary multitasking, multiple homogeneous regions of a hyperspectral
image can be processed simultaneously, which can accelerate the convergence by
exploring the relevance of all the tasks. In addition, the Pareto optimal solution
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between the reconstruction error and the endmember sparsity can be obtained with
the multiobjective optimization.

(2) A multipopulation particle swarm optimization is designed in the multitasking frame-
work for the major evolution. In addition, the intra-task and inter-task transfer strategy
are proposed to balance the evolutionary process of exploration and utilization. An
efficient local exploration strategy with MOEA is designed to facilitate the search
process to obtain the optimal points.

(3) The superiority of EMMPSO on the convergence speed, global optimization perfor-
mance and unmixing accuracy is substantiated compared with the classical mathemati
cal-based and MOEA-basd sparse unmixing algorithms.

The remainder of this paper is structured as follows: Section 2 briefly reviews some
related work on sparse unmixing. In Section 3, our method is introduced in detail. Section 4
gives the experimental settings and the analysis of the experimental results. Finally, the
conclusions and future works are described in Section 5.

2. Related Work

Generally, the mixed pixels are usually unmixed in the linear mixing model. For a
single mixed pixel y ∈ RL×1 with L spectral bands, which can be expressed as:

y = Ax + n, (1)

where A ∈ RL×D is the spectral library. It is worth noting that all the spectral information
is known in advance in the spectral library. In addition, x ∈ RD×1 is the corresponding
fractional abundance vector, that is, the proportion of each endmember, and n ∈ RL×1

represents the noise term for the mixed pixel. In normal circumstances, a hyperspectral
image Y ∈ RL×n contains n pixels, the matrix form of (1) can be formulated as:

Y = AX + N. (2)

Therefore, the purpose of sparse unmixing is to obtain the most suitable set of end-
members for the reconstructing remote sensing image from the huge spectral library.
Mathematically, this is an NP hard optimization problem, which can be expressed as:

min
x
‖x‖0, s.t. ‖y−Ax‖2

2 ≤ δ. (3)

Many studies employed the relaxation methods to solve the l0-norm problem. SUn-
SAL [14] resorted to the l0-norm to match l0-norm, and the mathematical optimization
formula is as follows:

min
x

(1/2)‖y−Ax‖2
2 + λ‖x‖1 + ιR+(x) + ι{1}(1Tx), (4)

where λ stands for a regularization parameter that controls the relative weight between
the sparse term and the error term. In [15], the CLSUnSAL takes spatial information into
account and directly processes the whole matrix, which is shown as follows:

min
X
‖Y −AX‖2

F + λ‖X‖2,1 + ιR+(X). (5)

Considering the excellent performance of MOEAs in solving NP-hard optimization
problems, many studies have turned their attention to MOEAs to solve the sparse un-
mixing problem in recent year. Gong [18] proposed a novel multiobjective cooperative
coevolutionary algorithm to optimize the reconstruction term, the sparsity term and the
total variation regularization term simultaneously, which can be expressed as:

min
x

(‖y−Ax‖2
2, ‖x‖0, ∑j∈ε

∥∥x− xj
∥∥

1), (6)
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where ε stands for the set of the horizontal and vertical neighbors in X. Jiang [29] decom-
posed the sparse unmixing problem into two stages and employed the MOEAs to solve
them separately. In the first phase, it is mainly aimed at the endmember extraction, the
optimized formula is as follows: min

M
(RSE1, SP1), where RSE1 is the residual of the mea-

sured hyperspectral image, SP1 represents the size of the measured estimated endmembers
(M). In the second phase, the extracted abundance estimation becomes the focus, which
can be expressed as: min

M
(RSE2, SP2), where RSE2 is the residuals of the hyperspectral

unmixing, SP2 represents the favorable abundance matrix obtained by incorporating the
spatial–contextual information. In addition, Jiang [30] improved the Tp-MoSU to settle the
problems of the limited performance in identifying real endmembers from high-noise data
in the first phase, and cannot effectively use the spatial context information in the second
phase due to the similarity metric used. Besides, many sparse unmixing algorithms based
on evolutionary multiobjective decomposition [19,20,31] have also been explored.

Recently, evolutionary multitasking optimization [25,32] has become a new favorite in
the field of evolutionary computing. In a nutshell, evolutionary multitasking aims to deal
with multiple optimization problems at the same time, and promote the optimization of
each task by exploring the hidden relationship between these optimization problems. It is
worth noting that many evolutionary multitasking optimization related algorithms have
been explored and applied to many fields, such as feature selection [33], reinforcement
learning [34] and sparse regression [22] and so forth. In sparse unmixing, a hyperspectral
image can be clustered into multiple homogeneous regions according to spatial information,
so this coincides with the concept of evolutionary multitasking. It is very promising to
model each homogeneous region as an optimization task, though the decomposition of
multiple tasks can effectively reduce the impact of dimensional disasters.

3. EMMPSO Framework

The pseudo code of EMMPSO is shown in Algorithm 1. In this section, the proposed
framework is introduced in detail from initialization, multipopulation particle swarm
optimization and the decision making with MOEA.

3.1. Initialization and Representation

In sparse unmixing, the spectral library known in advance and a hyperspectral image
are input for processing, and the endmember set selected from the library and the corre-
sponding abundance map are output. In the proposed EMMPSO, a hyperspectral image is
first clustered into K homogeneous regions, and each homogeneous region is processed
as a task [22], which is shown in Figure 1. The spectra of the entire spectrum library are
coded into each particle in order, that is, the length of particle is equal to the number of
spectra. Considering that the sparsity of particles remains unchanged in the evolution for
most current discrete particle swarm optimization algorithms, the population in each task
is divided into multiple subpopulations according to the sparsity to ensure that there are
particles to explore in each sparsity. For the s-th subpopulation in the j-th task, the position
of each particle is initialized as follows:

{Xt
i,s}j = {(x1, x2, ..., xn)|xi ∈ {0, 1}, ||Xt

i,s||0 = s}, (7)

where xi is composed of two elements, 0 or 1. If the xi is equal to 1, it means that the
spectrum at the corresponding position in the spectral library is selected, and vice versa.

Then, each particle is evaluated with the reconstruction error (||Y −AvXv||F) in the
corresponding task, where the Y is the hyperspectral image, v represents the endmember set
from the particle {Xt

i,s}j, Av and Xv are the subset of spectral library A and the abundances
of endmembers, respectively. After the evaluation is completed, the skill factor τi,s, defined
as the task with the best performance of the subpopulations with sparsity s in all the tasks,
is assigned to each particle. Besides, the {pbests}j and {gbests}j for the subpopulation with
sparsity s in the j-th task can be obtained. The velocity of particle is initialized as:
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{Vt
i,s}j = ({pbests}j − {Xt

i,s}j) + ({gbests}j − {Xt
i,s}j). (8)

Algorithm 1 The EMMPSO Framework

1: %Initialization
2: Set t = 0, G = ∅.
3: for j = 1 to K do
4: for s = 1 to S do
5: for i = 1 to N/KS do
6: {Xt

i,s}j = {(x1, x2, ..., xn)|xi ∈ {0, 1}, ||Xt
i,s||0 = s}.

7: end for
8: end for
9: Evaluate the fitness of each particle in task Tj.

10: Assign the skill factor τi.
11: Initialize the {pbestt

s}j and {gbestt
s}j.

12: {Vt
i,s}j = ({pbestt

s}j − {Xt
i,s}j) + ({gbestt

s}j − {Xt
i,s}j).

13: Gt
j = ∑S

s=1{gbestt
s}j.

14: end for
15: %Evolution
16: while t<Maxt do
17: for j = 1 to K do
18: Update the {Xt+1

i,s }j and {Vt+1
i,s }j based on (9).

19: end for
20: Update the particle according to Algorithm 2.
21: Evaluate the fitness of each particle.
22: Update the {pbestt

s}j, {gbestt
s}j, and Gt

j with the Local Exploration Strategy.
23: t = t + 1.
24: end while
25: %Decision Making
26: Obtain the optimal point in each task from Gj.

......

Y A 

...

X

...

...

Y1

A

X1

...

...

Yj

A

Xj

... ... ...

...

Yk

A

Xk

Task 1 Task j Task k

... ... ...

Figure 1. The evolutionary multitasking optimization framework for hyperspectral sparse unmixing.
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3.2. Multipopulation Particle Swarm Optimization for Knowledge Transfer

Considering the discreteness of decision variables in sparse unmixing, the population
in each task is divided into multiple subpopulations according to the sparsity during
initialization. In the process of particle swarm evolution, the position and velocity of the
particles in the j-th task with the sparsity s are updated as follows:

{Xt+1
i,s }j = {Xt

i,s}j + {Vt
i,s}j,

{Vt+1
i,s }j =

{
T({Vt+1

i,s }j), if (any({Vt
i,s}j) ≥ 0)

R({Xt+1
i,s }j), otherwise,

(9)

where T and R are both the selection functions [35].
After updating the positions and velocities of all the particles, we designed an efficient

knowledge transfer of intra-task and inter-task to explore the useful information, which
is shown in Algorithm 2. Firstly, two particles are randomly selected from the current
generation of particles. In the intra-task transfer, the same positions of the particles focus on
exploitation. ∩(pa, pb) represents the positions where the elements in pa and pb are both 1.
Then, the new particles directly inherit positions in ∩(pa, pb), and the remaining randomly
inherit the position on the original particle. On the contrary, the exploration of randomness
focuses on the inter-task transfer. ∪(pa, pb) represents the positions where the elements
are equal to 1 in pa or pb. For the new particles pa′ and p

b
′ , ||pa||0 and ||pb||0 positions are

directly selected from ∪(pa, pb), respectively. Then the pa and pb are updated with the better
fitness particles. In order to more intuitively illustrate the essence of Algorithm 2, Figure 2
shows a simple example for the genetic knowledge transfer. Two particles with sparsity
of 3 and 4 are selected from the current generation first, in the intra-task transfer, the new
particles are updated by inheriting all positions in their same positions which refer to the
positions in pc, then randomly set the rest of positions to 1 to ensure that the sparsity of the
new particles is the same as the previous particles. Similar operations are also performed in
the inter-task transfer, but the difference is that the new particles are updated by selecting
form the positions with 1 in the previous particle, and randomly set them to 1 with the
same sparsity.

Algorithm 2 Genetic Knowledge Transfer

Input: Pt: the current generation of particles.
1: for g = 1 to N/2 do
2: Randomly select two particles pa and pb in Pt.
3: if τa = τb then
4: %Intra-task Transfer
5: pc ← ∩(pa, pb).
6: pa′ ← Inherit all positions of pc and randomly set (||pa||0 − ||pc||0) positions to 1.
7: p

b
′ ← Inherit all positions of pc and randomly set (||pb||0 − ||pc||0) positions to 1.

8: else
9: %Inter-task Transfer

10: pc ← ∪(pa, pb).
11: pa′ ← Randomly select ||pa||0 positions in pc.
12: p

b
′ ← Randomly select ||pb||0 positions in pc.

13: end if
14: Evaluate the fitness of pa′ and p

b
′ .

15: Update the pa and pb.
16: g = g + 1.
17: end for
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p

Intra-Task

0 1 0 1 00 1 0...
a p1 0 0 1 10 1 0...

b

Task i Task i

1 1... pc

0 0 0 1 10 1 0... pa'
0 0 1 1 01 1 0... p

b'

τi τi

τiτi

p

Inter-Task

0 1 1 0 10 0 0...
a p0 1 1 0 01 1 0...

b

Task i Task j

1 1 11 1... pc

0 1 1 0 00 1 0... pa'
0 0 0 1 11 1 0... p

b'

τi τj

τjτi

Figure 2. An example of the knowledge transfer.

3.3. An Efficient Local Exploration Strategy with MOEA

After the optimization of multipopulation particle swarms, the set of globally opti-
mal particles with all the sparsity levels on each task (G = {∑K

j=1{∑
S
s=1{gbests}j) can be

obtained. Two conflicting parameters are included in each particle, that is, the endmember
sparsity and the reconstruction error. Therefore, we employ the multiobjective optimization
algorithm to facilitate the search process to obtain the optimal points in each task. In the
evolutionary multitasking multiobjective framework, the optimized function is expressed
as follows: {X

∗
1 , X∗2 , ..., X∗K} = arg min{F(X1), F(X2), ..., F(XK)} ,

F(Xj) = min
Xj

(||Xj||0, ||Y j −AXj||F), (10)

where the Y j and Xj represent the original image and inversion abundance in the j-th task,
respectively.

The local exploration strategy processes are in Figure 3. First, the globally optimal
particles are transcoded to the first generation of the evolutionary algorithm for the NSGA-
II framework. The roulette selection, single-point crossover and bitwise mutation operators
are employed to participate in the evolution of multiobjective optimization. Then, the
generated offspring are evaluated to update the Pareto front in each task according to
the nondominated sorting and crowding distance, and the nondominated solutions are
transcoded back to the globally optimal particles.

With the above design, the optimal point in each task can finally be obtained by:
X∗jv = arg min ||Y j −AvXjv||F, which can be solved simply with the least squares method.
Finally, the optimal abundance map obtained from each task constitutes the final inverted
abundance map.

Tj

Subpopulation1 Subpopulation2 SubpopulationS

...

Gbest of each 

subpopulation

Selection

Crossover&

Mutation

Pareto Front Updating Nondominated 

solutions

nondominated sorting and 

crowding distance

...

...

Update

Figure 3. The illustration of the Local Exploration Strategy with MOEA.
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4. Experimental Results
4.1. Data Sets

Data 1 provided by Iordache et al. [36] is an image which contains 100 × 100 pix-
els and 224 bands in each pixel, and the related abundance map of nine endmembers
is shown Figure 4. It contains nine randomly selected signatures from a sublibrary of
230 spectral signals, and the fractional abundances are piecewise smooth. Data 2 pro-
vided by Tang et al. [37] is an image which contains 64 × 64 pixels and 224 bands in each
pixel, the related abundance map of five endmembers is shown Figure 5. It includes five
endmembers from a sublibrary of 498 spectral signals, and the fractional abundances are
also homogeneous. These two benchmark datasets were tested at different levels of white
noise, that is, SNR = 20, 30 and 40 dB. The number of tasks was set to three on these two
datasets as recommended in [22]. In order to maintain the fairness of the experiments, all
experimental results were taken from the average results of 20 experiments, which is the
same as in the comparative method paper.

Figure 4. True abundance maps of five endmembers in data 1.

Figure 5. True abundance maps of nice endmembers in data 2.
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4.2. Performance Analysis of EMMPSO

In this section, the ablation experiments were performed to demonstrate the effec-
tiveness of the knowledge transfer and the local exploration strategy. The hypervolume
indicator was used to compare the evolution process and the convergence procedure of
the EMMPSO and the EMMPSO without transfer. Hypervolume was calculated using a
reference point 1% larger in every component than the corresponding nadir point [38]. As
an important indicator to measure the Pareto-optimal front (PF), the larger the value of
the hypervolume, or the faster the convergence speed of the hypervolume, the better the
PF obtained by the algorithms. The evolution of the hypervolume indicator is shown in
Figure 6. It is clear that, after a few iterations, our method can obtain the higher hy-
pervolume values with the help of the intra-task and inter-task transfer strategy. When
several related tasks are optimized simultaneously under the framework of evolutionary
multitasking, the convergence rate is improved significantly.

Secondly, to test the efficiency of the local exploration, the performance of EMMPSO
and EMMPSO without local exploration was compared. Usually, signal to reconstruction
error (SRE) is used to measure the quality of the reconstruction of a signal. Table 1 shows
the SRE (dB) with different noise levels of our proposed method and the EMMPSO without
the local exploration on the simulated data. It can be observed that our method can achieve
values of SRE (dB) higher than the EMMPSO without local exploration on both simulated
datas. It is obvious to see that the local exploration is useful for facilitating the search
process to obtain the optimal points.

Table 1. Comparison of EMMPSO and EMMPSO without Local Exploration on data 1 and data 2.

Data 1
SRE (dB)

20 30 40

EMMPSO without LE 7.9435 13.3654 22.7536
EMMPSO 8.2783 15.8039 25.2174

Data 2
SRE (dB)

20 30 40

EMMPSO without LE 10.7025 14.7089 17.0224
EMMPSO 12.3572 20.5891 25.7204

0 50 100 150 200

Interation

0.86

0.88

0.9

0.92

0.94

0.96

0.98

H
V EMMPSO without transfer

EMMPSO

(a)

0 50 100 150 200

Interation

0.84

0.86

0.88

0.9

0.92

0.94

0.96

H
V

EMMPSO without transfer

EMMPSO

(b)

Figure 6. Cont.
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EMMPSO

(a)

0 50 100 150 200

Interation

0.84

0.86

0.88

0.9
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0.96

H
V EMMPSO without transfer

EMMPSO

(b)

0 50 100 150 200

Interation

0.88

0.89

0.9
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0.92

0.93

0.94
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0.96

H
V

EMMPSO without transfer

EMMPSO

(c)

0 5 10 15 20

Interation

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

H
V

EMMPSO without transfer

EMMPSO

(d)

Figure 6. Comparison of the hypervolume indicator for EMMPSO and EMMPSO without transfer. (a) task 1 on data 1, (b) task 2 on
data 1, (c) task 3 on data 1, (d) task 1 on data 2, (e) task 2 on data 2, (f) task 3 on data 2.

4.3. Comparing with State-of-Art Algorithms

In order to reflect the superiority of our proposed algorithm, EMMPSO compares
with the state-of-art algorithms, including SUnSAL, CLSUnSAL, two-phase multiobjective
sparse unmixing (Tp-MOSU) and evolutionary multitasking sparse reconstruction (MTSR).
Among them, SUnSAL and CLSUnSAL are the traditional pixel-based and matrix-based
processing algorithms. Tp-MOSU and MTSR are two algorithms based on the multiob-
jective optimization and multitasking optimization, respectively. In order to reflect the
advantage of the proposed method, Figures 7 and 8 depict the estimated abundance maps
for the endmember 2, 5, 8 on data 1 and the endmember 1, 3, 5 data 2, respectively. The
rightmost column represents the abundance map of the real endemembers. The closer the
inverted abundance map is to the real abundance map, the better the unmixing perfor-
mance of the modified algorithm is. It can be seen that the Tp-MOSU, MTSR and EMMPSO
exhibit better performances than the other two methods in the similarity with the original
abundance map. Although the abundance maps obtained by the Tp-MOSU, MTSR and
EMMPSO are similar, the abundance map of EMMPSO has much less noise. Table 2 shows
the results of SRE (dB) obtained by the five methods on data 1 and data 2. At different
levels of noise, the proposed EMMPSO can always achieve the highest values of SRE (dB)
on both simulated datasets. The experimental results on two datasets have proved that
our proposed EMMPSO is able to achieve a competitive performance by evolutionary
multitasking and local exploration strategy.
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Figure 7. The fractional abundance maps of endmember 2, 5, 8 by SunSAL, CLSUnSAL, Tp-MOSU,
MTSR and EMMPSO on Data 1.
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Figure 8. The fractional abundance maps of endmember 1, 3, 5 by SunSAL, CLSUnSAL, Tp-MOSU,
MTSR and EMMPSO on Data 2.

Table 2. Comparison of EMMPSO and other methods on data 1 and data 2.

Data 1
SRE (dB)

20 30 40
SunSAL 4.5568 8.5833 12.9890

CLSUnSAL 5.5164 11.4842 18.7935
Tp-MOSU 8.4083 14.4070 22.5478

MTSR 7.0496 13.7802 22.7329
EMMPSO 8.5783 15.2039 24.2174

Data 2
SRE (dB)

20 30 40
SunSAL 3.5823 8.0323 12.9896

CLSUnSAL 8.2382 13.0988 14.3502
Tp-MOSU 11.3578 15.7132 18.0457

MTSR 10.7254 14.6143 17.6775
EMMPSO 12.3572 20.5891 25.7204

5. Conclusions

In this paper, we propose a novel evolutionary multitasking multiobjective particle
swarm optimization framework called EMMPSO to solve the sparse unmixing problem.
With processing multiple homogeneous regions of a hyperspectral image simultaneously,
the evolution convergence is accelerated. The local exploration strategy with MOEA is
also designed to obtain the optimal solution. For the case study, the proposed EMMPSO
is compared with some state-of-the-art methods on benchmark simulated datasets. The
results demonstrate the superiority of the EMMPSO.
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In future work, we will focus on reducing the time complexity of EMMPSO, and
design an efficient multiobjective particle swarm optimization paradigm for the sparse
unmixing problem.
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The following abbreviations are used in this manuscript:

SUnSAL sparse unmixing algorithm via variable splitting and augmented Lagrangian
CLSUnSAL collaborative SUnSAL
MOEAs Multiobjective evolutionary algorithms
MOSU multiobjective sparse unmixing
MOEA/D multiobjective evolutionary algorithm based on decomposition
PSO particle swarm optimization
EMMPSO evolutionary multitasking multipopulation particle swarm optimization
Tp-MOSU two-phase multiobjective sparse unmixing
MTSR multitasking sparse reconstruction
SRE signal to reconstruction error
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