
electronics

Article

Embedded LUKS (E-LUKS): A Hardware Solution to
IoT Security

German Cano-Quiveu * , Paulino Ruiz-de-clavijo-Vazquez, Manuel J. Bellido, Jorge Juan-Chico ,
Julian Viejo-Cortes , David Guerrero-Martos and Enrique Ostua-Aranguena

����������
�������

Citation: Cano-Quiveu, G.;

Ruiz-de-clavijo-Vazquez, P.; Bellido,

M.J.; Juan-Chico, J.; Viejo-Cortes, J.;

Guerrero-Martos, D.;

Ostua-Aranguena, E. Embedded

LUKS (E-LUKS): A Hardware

Solution to IoT Security. Electronics

2021, 10, 3036. https://doi.org/

10.3390/electronics10233036

Academic Editors: Juan Antonio

López Ramos, Antonio David

Escobar Molero and José Antonio

Álvarez Bermejo

Received: 12 November 2021

Accepted: 3 December 2021

Published: 5 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electronics Technology, E.T.S. Ingeniería Informática, University of Seville,
Avda. Reina Mercedes s/n, 41012 Seville, Spain; pruiz@us.es (P.R.-d.-c.-V.); bellido@dte.us.es (M.J.B.);
jjchico@dte.us.es (J.J.-C.); julian@us.es (J.V.-C.); guerre@dte.us.es (D.G.-M.); ostua@dte.us.es (E.O.-A.)
* Correspondence: germancq@dte.us.es

Abstract: The Internet of Things (IoT) security is one of the most important issues developers have
to face. Data tampering must be prevented in IoT devices and some or all of the confidentiality,
integrity, and authenticity of sensible data files must be assured in most practical IoT applications,
especially when data are stored in removable devices such as microSD cards, which is very common.
Software solutions are usually applied, but their effectiveness is limited due to the reduced resources
available in IoT systems. This paper introduces a hardware-based security framework for IoT devices
(Embedded LUKS) similar to the Linux Unified Key Setup (LUKS) solution used in Linux systems to
encrypt data partitions. Embedded LUKS (E-LUKS) extends the LUKS capabilities by adding integrity
and authentication methods, in addition to the confidentiality already provided by LUKS. E-LUKS
uses state-of-the-art encryption and hash algorithms such as PRESENT and SPONGENT. Both are
recognized as adequate solutions for IoT devices being PRESENT incorporated in the ISO/IEC 29192-
2:2019 for lightweight block ciphers. E-LUKS has been implemented in modern XC7Z020 FPGA chips,
resulting in a smaller hardware footprint compared to previous LUKS hardware implementations,
a footprint of about a 10% of these LUKS implementations, making E-LUKS a great alternative to
provide Full Disk Encryption (FDE) alongside authentication to a wide range of IoT devices.

Keywords: LUKS; embedded systems; field programmable gate array; IoT

1. Introduction

The Internet of Things (IoT) industry has grown steadily in the last few years. Many
facts indicate that this growth is an upward trend [1], with IoT data traffic expected to
reach around 2000 petabytes of information by 2024 [2]. The use of IoT devices has reached
many fields such as industrial production [3], health care [4], or quality-of-life-related
devices [5]. Its implementations in our homes and personal environments has had a great
impact on many daily life processes [6,7]. However, IoT is still a recent technology in which
numerous devices with low resources share a large amount of personal and sensible data,
making data security one of the major issues of IoT. The security problem in IoT has been
addressed by many authors, mainly from the perspective of data communication between
nodes [8,9]. However, the security of the data stored internally by these devices should
also be addressed.

Currently, many IoT nodes based on complex embedded systems use a Flash memory
as their main storage for user applications. Some of these systems can expand their storage
by adding external Flash mass storage devices such as an SD card. If the application
requires some kind of confidentiality in the stored data, some type of data encryption must
be used. Data encryption can be implemented at the operating system (OS) level by using
dedicated libraries and factory software in order to encrypt single files or the complete
block device that holds the file system. Solutions such as Bitlocker from Microsoft, FileVault
from Apple, or VeraCrypt, among others, can be used at the user level by running software

Electronics 2021, 10, 3036. https://doi.org/10.3390/electronics10233036 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-8963-0855
https://orcid.org/0000-0001-6830-7576
https://orcid.org/0000-0001-7543-5082
https://orcid.org/0000-0002-6454-7676
https://doi.org/10.3390/electronics10233036
https://doi.org/10.3390/electronics10233036
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10233036
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10233036?type=check_update&version=2

Electronics 2021, 10, 3036 2 of 22

tools in the OS. But these kinds of solution have to face challenges such as key storage,
key change, and interoperability with other systems; for example, when the Flash storage
device is removable and needs to be accessed from a desktop computer.

In any case, the presence and evolution of IoT security must be studied in order to use
the available knowledge. Only in doing so can the way new devices and application areas
evolve be decided [10–13].

Implementing file encryption is not an option for many IoT devices. On the contrary,
block device encryption adds a new layer between the physical device and the read/write
device operations. This is much more resource-friendly and allows IoT applications to
access encrypted memory in a transparent way. It can pose a solution even for a very
simple IoT device that does not run an OS but a standalone application. In fact, there are
already solutions that implement this kind of Full Disk Encryption (FDE), such as the Linux
Unified Key System (LUKS) [14].

Another important aspect of IoT security is that IoT nodes must be robust against
the use of reverse engineering [15,16] and/or malware such as the Mirai botnet [17].
Thus, it is necessary to ensure the integrity and authenticity of user data in addition to
its confidentiality.

In this paper, a lightweight IoT protocol based on LUKS is introduced, which provides,
on top of the FDE of LUKS, both the integrity, and authenticity of the user data. This
protocol has been called Embedded LUKS (E-LUKS) and it has been especially tailored
to allow an efficient hardware implementation, making possible the implementation of
a small footprint hardware module that is able to read/write into a final storage device.
In this sense, the hardware E-LUKS module implemented will act as a transparent layer
between embedded systems and their storage memories.

This paper has been organized as follows. First, the Related Work section describes
other hardware solutions that can also provide security of the data. Then, in the Section
titled Linux Unified Key Setup, the LUKS specification used as blueprints for the proposed
solution, necessary to understand it, is described. Next, the section named Embedded
LUKS details the proposed solution and its changes compared to LUKS, finishing with the E-
LUKS core hardware implementation. The Results section follows, in which the experiment
conducted to verify the proposed solution is represented, displaying the execution time
of the system with E-LUKS and without it. Furthermore, this section also proves the
advantages of E-LUKS via the comparison, and describes the subsequent analysis of the
employ of resources between E-LUKS and the alternatives presented in the Related Work
section. Lastly, a brief evaluation of the proposed solution is provided in Conclusions.

2. Related Work

LUKS is a block-device encryption specification that aims to be implemented in soft-
ware, although there are some hardware implementations on FPGA chips as well [18,19]. In
Reference [18], the implementation is focused on an energy-efficient LUKS design that can
compete in terms of speed against software solutions on higher-end devices. Alternatively,
there is another LUKS implementation, which achieves high performance due to a pipeline
implementation, proposed in [19]. These designs are not suited for resource constrained
devices, since both use multiple instances of a cryptographic algorithm implementation in
order to increase the performance at the expense of additional FPGA resources.

Other hardware-solutions such as Sancus [20] are specifically designed for resource
constrained devices. Sancus is an open-source solution that focuses on the integrity and
authenticity of the data. Its objective is to assure that each file or program on the memory
device is untampered and authenticated without trusting any infrastructural software.
For this purpose, the device uses a symmetric key to assure the integrity and authenticity
of each file independently by means of a Key Derivation Function (KDF) implemented
in the hardware. The KDF, together with the device key and file parameters, such as its
contents and location on the memory device, generates a digest for each file.

Electronics 2021, 10, 3036 3 of 22

To isolate each in the device; Sancus uses a variation of the program-counter based
memory access control [21]. It allows access to the protected data of the file if and only if
the program counter is in its text section. In addition, the text section of a file can only be
executed if the program counter jumps to its defined entry point. A call to another file can
only be executed if a digest of the file to be accessed has been previously deployed in the
memory device.

Based on Sancus, several additional solutions have appeared. One of them is Sote-
ria [22], which adds confidentiality to the previous solution, and a specific software loader
module. This module is responsible for the confidentiality of the other modules in the node.

Other solutions are those that implement confidentiality on a System-on-Chip (SoC) FPGA
RAM memory. In Reference [23], the authors present a transparent encryption/decryption
hardware module that uses block ciphers to provide confidentiality of the data. It is also able to
achieve authenticity of the data by implementing a Tamper Evident Counter (TEC) tree with a
nonce value as a root stored on-chip. This TEC serves to provide a nonce value, which is used only
when the block cipher is the Authenticated Encryption (AE) cipher Ascon. Another proposed
solution is Atlas [24], which offers confidentiality alone. The idea of Atlas is to use the entry point
of the file or code as the Initialization Vector (IV) employed in the encryption/decryption of that
file. Currently, the lightweight SIMON block cipher is used.

The proposed solution in this paper, E-LUKS, provides FDE as the LUKS solutions do
in [18,19]. Nevertheless, as opposed to LUKS, E-LUKS has been designed for constrained
resources devices and also supports data authentication in addition to confidentiality.
While the solutions based on Sancus [20] require modifying the processor itself and its
own firmware, the E-LUKS solution is independent of the processor and, in fact, it can be
used in systems with no processor at all. Sancus-based solutions allow for the isolation of
different programs in the external RAM memory of the device. In contrast, E-LUKS uses
external Flash storage, which may be present as the main or complementary data storage
of the system, such as a microSD card, which is usually more vulnerable to data tampering.
The solutions in [23] and Atlas [24] also focus on securing the RAM memory of the system.
Atlas implements instructions for the selected processor but does not support the integrity
and authentication of the data. Finally, the work presented in [23] depends only on the
bus interfaces of the system. However, to allow integrity and authentication of the data, it
requires part of the TEC tree in the memory alongside the data, excluding the root nodes,
which may consume a significant amount of memory resources.

3. Linux Unified Key Setup

Linux Unified Key Setup (LUKS) is a specification intended to standardize crypto-
graphic key setup for data storage encryption. LUKS was introduced in 2005, and a new
version (LUKS2) [25] was released in 2018. This last version extends the previous one,
taking all its basic concepts as blueprints. The structure and operations described below
are taken from LUKS1.

LUKS performs full user data encryption using a master key that is itself encrypted
and stored in front of the encrypted data. The master key can be stored multiple times
using different user passwords, allowing many users to have access to the encrypted data.

An LUKS formatted block device consists of two parts: (1) a small unencrypted
part that consists of an LUKS header followed by several slots for each granted user; (2)
an encrypted part starting with eight slots, each one containing the encrypted master
key for one possible user, followed by the user data. All encryption is performed using
symmetric cryptography.

To retrieve the encrypted data, a user must unlock one of the eight slots and decrypt
the corresponding encrypted master key. A formatted LUKS device must have at least one
active slot with the corresponding encrypted master key.

Electronics 2021, 10, 3036 4 of 22

3.1. Cryptography

The type of cryptography used is a key factor in any secure specification. Modern
cryptography is mainly supported by ciphering algorithms and cryptographic hash func-
tions. The LUKS specification allows for the use of a variety of block ciphers and hash
functions. Possible block ciphers that can be used with LUKS are shown in Table 1, together
with supported modes, key lengths, and block lengths. Supported hash functions are listed
in Table 2. In addition, LUKS uses Password-Based Key Derivation Function 2 (PBKDF2)
as the Key Derivation Function (KDF), following the recommendations of RFC8018 [26].

Table 1. Linux Unified Key Setup (LUKS) block cipher algorithms.

Cipher Key Lenght Block Lenght Modes
(bits) (bits)

AES [27] 128–256 128 ecb, cbc-plain, cbc-essiv: hash, xts-plain64

Twofish [28] 128–256 128 ecb, cbc-plain, cbc-essiv: hash, xts-plain64

Serpent [29] 128–256 128 ecb, cbc-plain, cbc-essiv: hash, xts-plain64

cast5 [30] 128–256 128 ecb, cbc-plain, cbc-essiv: hash, xts-plain64

cast6 [31] 40–128 64 ecb, cbc-plain, cbc-essiv: hash, xts-plain64

Table 2. LUKS hash functions.

Hash Output Lenght
(bits)

sha1 [32] 160

sha256 [33] 256

sha512 [33] 512

ripemd160 [34] 160

3.2. Linux Unified Key Setup Internal Layout

As previously mentioned, the layout of an LUKS block device is divided into two parts,
one is unencrypted and the other one is encrypted, as depicted in Figure 1. The unencrypted
part is called the LUKS partition header (LUKS phdr). It starts at the beginning of the block
device and holds two types of blocks: the header and various Key Slots (KSx). The encrypted
part contains two types of blocks as well: Key Materials (KMx) blocks and User Data blocks.
The header identifies the block device as an LUKS partition and stores information about
the master key, together with information about the cryptographic algorithms selected in
the LUKS block device. Table 3 summarizes the fields of the phdr. The Key Slots (KSx)
have information about the user key and the parameters to recover the master key. The 8
KSx allow up to eight users to access the master key, each one with a different personal
user password. Each of the KSx blocks (x = 1, 2, . . . , 8) points to a KMx block, which is the
encrypted master key that can only be recovered using the corresponding personal user
password. Table 4 shows all fields of a KSx. Following the KMx blocks are the User Data,
which are encrypted with the master key.

user dataks
1header

Unencrypted data (LUKS phdr)

ks
2

ks
3

ks
4

ks
5

ks
6

ks
7

ks
8

km
1

km
2

Encrypted data

ks
x
: key slot X

km
x
: key material X

user data...

Figure 1. LUKS layout.

Electronics 2021, 10, 3036 5 of 22

Table 3. LUKS partition header (LUKS phdr) fields.

Offset (Bytes) Field Name Lenght (Bytes) Description

0 magic 6 indicates an LUKS partition

6 version 2 indicates LUKS version

8 cipher-name 32 String with the cipher used

40 cipher-mode 32 String indicating the cipher mode

72 hash-spec 32 String with the hash used

104 payload-offset 4 block (512-bytes sector)
where the encrypted data begins

108 key-bytes 4 lenght of the master key

112 mk-digest 20 master key digest from Key Derivation
Function (KDF)

132 mk-digest-salt 32 salt parameter for master key in KDF

164 mk-digest-iter 4 count parameter for master key in KDF

168 uuid 40 UUID of the partition

208 KS1 48 Key Slot 1

.

544 KS8 48 Key Slot 8

Table 4. LUKS Key Slot (KSx) fields.

Offset (Bytes) Field Name Lenght (Bytes) Description

0 active 4 indicates if the KMx is enabled

4 iterations 4 count parameter for the KDF

8 salt 32 salt parameter for the KDF

40 key-material-offset 4 block (512-bytes sector)
where the KMx begins

44 stripes 4 number of anti-forensic stripes

3.3. Operations

LUKS devices are managed using four types of operation: initialisation, add new
password, master key recover, and password revocation. By using these functions, LUKS is able
to store and retrieve the necessary master key to perform any operation on disk. These
functions are summarized below.

3.3.1. Initialisation

The initialisation operation consists of formatting the block device according to the
LUKS layout. This operation requires the following parameters: the master key, the salt for
the KDF (mk-digest-salt), and a number of iterations (mk-digest-iter). These parameters are
auto-generated by the software that performs the LUKS formatting. In the process, a new
LUKS phdr is written in the block device, followed by KSx. It is also mandatory to specify
which cryptographic algorithms (block cipher and hash function) are selected to be used
on the block device. To complete the LUKS phdr, the master key is used as a parameter,
along with the salt and the number of iterations, to generate a digest (mk-digest). Lastly,
the LUKS format must store the encrypted master key in at least one KMx. Because the
master key is encrypted by a user key, a new user password needs to be added in the way
described below.

Electronics 2021, 10, 3036 6 of 22

3.3.2. Add New Password

This operation consists of adding a new password for a user, using one of the eight
KSx available. When the block device is being formatted, the unencrypted master key is
available from the initialisation operation. On the contrary, for an already LUKS-formatted
device, the master key is retrieved by the Master Key Recovery operation. The Add New
Password operation begins with the user providing a new user password. After that, it
generates random values from the salt and iteration count for the KSx and stores them.
Once the values are generated, the KDF takes the new password along with the salt and
the iteration count. The master key is then processed by an anti-forensic splitter, generating
a new derived key. This derived key is encrypted using the KDF output as the key for the
cipher. Then, the encrypted password is stored on the device as KMx for later use.

3.3.3. Master Key Recovery

The third operation is to recover the master key from a KMx. This operation consists
of decrypting the encrypted master key for two purposes: access to the encrypted user data
or to change a user password by using the Add New Password operation. The Master Key
Recovery operation requires the user password associated with the KSx. It uses the KSx salt
and iteration count values, along with the user password, as parameters for the KDF. Next,
the KMx is recovered from the storage device and is decrypted using the KDF output as the
cipher key. Then, the decrypted result is processed by an anti-forensic merge, generating a
new candidate key. This candidate key, the mk-digest-salt and the mk-digest-iter are passed
as parameters to the KDF. Finally, the KDF output is compared with the mk-digest from the
header, and if both values match, the candidate key is returned.

3.3.4. Password Revocation

The last operation is the password revocation for a selected key slot. This operation
consists of deleting the selected KMx and setting the activate field of the KSx to inactive.

4. Embedded LUKS

Embedded LUKS (E-LUKS) is a new proposal to bring LUKS to devices with limited
resources, such as IoT devices. It can be applied in scenarios where the security of the local
data is an issue, such as devices in public locations, where an attacker has easy access to
the device. E-LUKS performs FDE of the block device. To perform this task, it requires a
master key, which is used to create the user keys, as well as in LUKS. The difference being
that E-LUKS allows integrity and authentication, on top of confidentiality, of the user data.

Another major aspect to consider is the cryptographic algorithm used for small devices
with limited resources. In the last few years, a growing trend of low footprints crypto-
graphic algorithms has emerged for these types of devices. Although these algorithms are
designed mainly to optimize the use of internal device resources, at the same time, they
also decrease the security level. Nevertheless, the security provided by these algorithms is
enough and presents more advantages than disadvantages.

4.1. E-LUKS Internal Layout

The E-LUKS layout is heavily based on LUKS. In Figure 2, a diagram of the layout
is shown. However, in E-LUKS, the Key Material (KMx) is integrated into the Key Slot
(KSx). In addition, some parts present differences in their number of fields, as can be seen
in Tables 5 and 6 with respect to the E-LUKS header and KSx. Another characteristic of
E-LUKS is that the E-LUKS header and the KSx must be located in the first 512 bytes of the
memory. This limitation is due to the fact that embedded devices usually have an external
flash memory, such as a microSD card, as their main storage. These flash memories are
typically divided into blocks of 512 bytes and, to facilitate the HDL design, it has been
decided that the first block of the memory contains all the E-LUKS related data, while the
rest of the memory is reserved for the user encrypted data. The fields below are taken by
selecting the PRESENT cipher with an 80-bit key and, as a hash function, the same as that

Electronics 2021, 10, 3036 7 of 22

used in the KDF and the HMAC, the SPONGENT-88. With these requirements, the E-LUKS
header takes 52 bytes, and each KSx takes 40 bytes. Therefore, the maximum number of KSx
is up to 11.

user dataks
1header

Unencrypted data (E-LUKS phdr)

ks
2

ks
3

ks
4

ks
5

ks
6

ks
7

ks
8

ks
9

ks
10

Encrypted data

ks
x
: key slot X

ks
11 user data user data...

Figure 2. Embedded LUKS (E-LUKS) layout.

Table 5. E-LUKS header fields.

Offset (Bytes) Field Name Lenght (Bytes) Description

0 magic 6 indicates an E-LUKS partition

6 mk-digest 11 master key digest from KDF

17 mk-digest-salt 8 salt parameter
for master key in KDF

25 mk-digest-iter 4 count parameter
for master key in KDF

29 mk-hmac 11 output from the HMAC
of the encrpyted user data

40 mk-IV 8 Initialization Vector (IV)
parameter

for the block cipher

48 user-data-blocks 4 blocks (512-bytes sector)
of user data

Table 6. E-LUKS Key Slot (KSx) fields.

Offset (Bytes) Field Name Lenght (Bytes) Description

0 activate 4 indicates if the KSx is enabled

4 iterations 4 count parameter for the KDF

8 salt 8 salt parameter for the KDF

16 pwd-encrypted 16 key material KMx, encrypted
master key

40 IV 8 IV parameter for the block cipher
used to generate pwd-encrypted

4.2. Cryptographic Algorithms

The cryptography used in ELUKS inherits from LUKS the way to store the master key.
In this sense, ELUKS uses a block cipher, a HASH function, and a KDF. The main feature of
E-LUKS is the fact that it uses cryptographic algorithms designed for resource constrained
devices. To simplify the design and standardize the internal layout, it has been decided
that there will be only one choice for each of the algorithms (block cipher, hash function,
HMAC, and KDF). These algorithms are introduced in the following sections.

4.2.1. PRESENT

PRESENT is a block cipher optimized for low resource usage that also has low power
consumption. In recent years, multiple implementations of this cipher have appeared with
different hardware architectures to boost certain aspects [35]. However, even though there
are multiple alternatives for PRESENT, this work has implemented it as was originally

Electronics 2021, 10, 3036 8 of 22

presented in [36]. PRESENT is a substitution–permutation network (SP-network) of 31
rounds of encryption–decryption, all of them with the same structure, which uses a block
length of 64 bits and allows keys of 80 bits and 128 bits. Its pseudocode is shown in
Algorithm 1.

Algorithm 1 Pseudo-code of the PRESENT encrypt operation.

1: STATE← 0
2: ROUNDKEYS = [K1, K2, . . . , K32]
3: ROUNDKEYS← generateRoundKeys()
4: for i← 1 to 31 do
5: STATE← addRoundKey(STATE, Ki)
6: STATE← sBoxLayer(STATE)
7: STATE← pLayer(STATE, Ki)

8: STATE← addRoundKey(STATE, K32)
9: return STATE

Each of the functions of the algorithm is described as follows:

• addRoundKey: Given the round key Ki = k63, k62, . . . , k0 for 1 ≤ i ≤ 32 and the current
STATE = b63, b62, . . . , b0, the function returns a new state RESULT = r63, r62, . . . , r0,
calculated as:

rj = bj ⊕ k j. for 0 ≤ j ≤ 63. (1)

• sBoxLayer: Is a function with an input of 64 bits that returns an output of 64 bits. Inter-
nally, the input data are divided into 16 groups of 4 bits, such that
INPUT = b63, b62, . . . , b0 = w15, w14, . . . , w0. Each group (wi) is then processed by S-
boxes, an S-box S transforms 4-bit input into 4-bit output such that S : F4

2 → F4
2. Table 7

shows all possible S-boxes results. Finally, the sBoxLayer and the result are calculated
as follows:

wi = b4∗i+3 ‖ b4∗i+2 ‖ b4∗i+1 ‖ b4∗i+0

RESULT = S[w16], . . . , S[w0]

}
for 0 ≤ i ≤ 15.

Table 7. PRESENT S-box.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

• pLayer: The pLayer operation performs a permutation operation defined by:

P(i) =

{
i ∗ 16 mod 63, i ∈ 0, . . . , 62
63, i = 63.

• generateRoundKeys: Let us assume a length key of 80 bits such as K = k79, k78, . . . , k0.
It is necessary to generate a different round key Ki of 64 bits for each of the rounds.
The steps are the following:

1. [k79, k78, . . . , k1, k0] = [k18, k17, . . . , k20, k19] = K << 61 (2)

2. [k79, k78, k77, k76] = S[k79, k78, k77, k76] (3)

3. [k19, k18, k17, k16, k15] = [k19, k18, k17, k16, k15]⊕ i (4)

4. Ki = k79, k78, . . . , k16 = MSB64(K). (5)

Block ciphers can operate in different modes, the default mode being the ECB mode
(Electronic Code Book mode). However, this mode does not provide security as the other
modes do. Therefore, for the PRESENT cipher in this work, it has been decided to select the

Electronics 2021, 10, 3036 9 of 22

CTR mode (counter mode). In this mode, the cipher behaves as a stream cipher, thus being
used to generate a keystream s. In the equation below, the CTR mode is described where
mi is the i-th 64-bit unencrypted block and ci is the i-th encrypted block. In this mode, x1
begins at a random value IV (Initialization Vector) and behaves as a counter. Therefore,
this mode allows each encrypted block to be different, regardless of its data.

ci = mi ⊕MSBs(ENCk(xi))

xi+1 = INC(xi)

}
for 1 ≤ i ≤ n.

4.2.2. SPONGENT

SPONGENT [37] is a hash function based on the sponge architecture and the use of
the permutation operation introduced in PRESENT.

The sponge architecture is an iterative design composed of stages. It takes an arbitrary
length of input data and generates an output whose length is related to the number of
stages in the architecture. The parameters and operations are the following:

• r: bits length of the ratio.
• c: bits length of the capacity.
• R: number of rounds that take place in each stage.
• n: bits length for the output of the sponge architecture.
• b: bits length for the internal state, which is b = r + c.
• πb: represents the function for the permutation operation. This function πb(x) = y

such that x, y ∈ 0, 1b. In addition, this function is the main operation in each stage of
the sponge architecture.

Once the parameters are defined, it is necessary to describe the three phases of the
sponge architecture.

• Initialization phase: This phase pads the input M with a ’1’ followed by many ’0’ until
achieving len(M) mod r = 0. Then, the input M is divided into blocks of r-bits such
that M = m1, m2, . . . m len(M)

r
.

• Absorbing phase: This phase is composed of stages. In each stage, the input block
mi is added to the current state, as follows STATE = STATE ⊕ mi. Once the
input is added, a new state is generated by the permutation operation such that
STATE = πb(STATE).

• Squeezing phase: This phase, as well as the absorbing phase, is composed of stages. Each
stage generates r-bits of the output h, from the state hi = STATE[b− 1 : b− 1− r] =
MSBr(STATE). Then, a new state is created STATE = πb(STATE). The stages go on
until n-bits of the output h have been generated.

SPONGENT offers five different variants to reach different levels of security. Variants,
as well as the value of the parameters, are shown in Table 8.

Table 8. Security levels of SPONGENT.

Variant n b c r R Preimage 2nd Preimage Collision

SPONGENT-88 88 88 80 8 45 80 40 40

SPONGENT-128 128 136 128 8 70 128 64 64

SPONGENT-160 160 176 160 16 90 144 80 80

SPONGENT-224 224 240 224 16 120 208 112 112

SPONGENT-256 256 272 256 16 140 240 128 128

PRESENT Permutation πb

The permutation operation πb is the main part of the design. The behaviour of the
function can be defined as follows:

Electronics 2021, 10, 3036 10 of 22

for (i = 1; i ≤ R; i = i + 1)

STATE = lCounterb(i)[0 : log2(R)− 1]⊕ STATE[b− 1 : b− 1− log2(R)]

STATE = lCounterb(i)[log2(R)− 1 : 0]⊕ STATE[log2(R)− 1 : 0]

STATE = sBoxLayerb(STATE)

STATE = pLayerb(STATE)

end for.

The sBoxLayerb and pLayerb functions are based on their homology described in the
PRESENT section. The main difference is that these functions are modified to accept either
input or output of b-bit. In the case of the sBoxLayerb, more S-boxes have been used in
parallel. Thus, pLayerb is defined as:

pLayerb(i) =

{
i ∗ (b/4) mod b− 1, i ∈ 0, . . . , b− 2
b− 1, i = b− 1.

Regarding the lCounterb, it is an LFSR of log2(R)-bits. This register is activated in
each iteration i = 1, 2, . . . , R. It uses different irreducible polynomials as coefficients and
different initial values for each variant of SPONGENT, as shown in Table 9.

Table 9. lCounterb values.

Variant Polynomial Initial Value

SPONGENT-88 x6 + x5 + 1 0x05

SPONGENT-128 x7 + x6 + 1 0x7A

SPONGENT-160 x7 + x6 + 1 0x45

SPONGENT-224 x7 + x6 + 1 0x01

SPONGENT-256 x8 + x4 + x3 + x2 + 1 0x9E

HMAC

The hash function is used in E-LUKS as part of the HMAC construction. An HMAC
allows both: integrity and authentication. The HMAC used was presented in [38] with the
following definition:

HMACK(X) = Y.

First, the key K is XORed with a repetitive pattern of bits called ipad. Then, m0 is
calculated as the hash of the input of the HMAC with a suffix of the XORed key.

ipad = 0x33, 0x33, . . . , 0x33

m0 = h[(K⊕ ipad)||X].

After that, it proceeds to calculate the output of the HMAC. To this end, another
repetitive pattern of bits called opad is XORed with the key and is used as a suffix with the
previous hash output m0. These data are then passed to the hash function to get the output:

opad = 0x5C, 0x5C, . . . , 0x5C

Y = h[(K⊕ opad)||m0].

4.2.3. KDF

The KDF used in E-LUKS is based on the PBKDF2, the KDF used in LUKS. Therefore,
this function will be explained.

PBKDF2(P, S, c, dkLen) contains the following parameters:

• P: the master key.

Electronics 2021, 10, 3036 11 of 22

• S: salt value.
• c: represents the number of iterations.
• dkLen: length of the derivated key.

First, PBKDF2 checks that the desired derived key is in the range in which hLen
represents the output length of the hash function.

dkLen > (232 − 1) ∗ hLen→ ERROR.

Then, it calculates the number of blocks of length hLen used in the derivated key. This
value is stored and, for the last block, in the case of a non-integer result dividing by hLen,
the number of bytes is also stored.

l =
⌈

dkLen
hLen

⌉
(6)

r =dkLen− [(l − 1) ∗ hLen]. (7)

For each of the blocks of length hLen, Ti, the F function will be applied, which takes
P, S, c and the index block as a parameter.

T1 =F(P, S, c, 1) (8)

T2 =F(P, S, c, 2) (9)

. . . (10)

Tl =F(P, S, c, l). (11)

The function F is the XOR of the first c iterations of the HMAC function H.

F(P, S, c, i) =U1 ⊕U2 ⊕ · · · ⊕Uc (12)

U1 =HMACP(S||i) (13)

U2 =HMACP(U1) (14)

. . . (15)

Uc =HMACP(Uc−1). (16)

Lastly, all the calculated blocks are concatenated in order to generate the derivated
key DK.

DK = T1||T2|| . . . ||Tl [r− 1 : 0].

However, this construction could be improved as shown in [39]. This has been the
alternative chosen for E-LUKS.

In this construction, instead of an HMAC, a hash function was used for the F function.
In addition, the parameter c is passed as a parameter for the hash function.

y = F(P, S, c) = Hc(P||S||c).

Here, Hc represents the hash function executed c times as follows:

yc =Hc(P||S||c)
y1 =H(P||S||c)
y2 =H(y1)

. . .

yc =H(yc−1).

4.3. Operations

Similarly to the previous subsection, E-LUKS has the same operations as LUKS,
adding a new one that allows the integrity and authentication of the user data.

Electronics 2021, 10, 3036 12 of 22

4.3.1. Initialisation

The main difference in this operation compared to LUKS is the inclusion of integrity
and authentication of the user data. Therefore, to allow integrity and authentication, this
stage requires the calculation of the HMAC of all the encrypted user data. Below is a brief
description of the whole operation.

The initialisation operation requires the master key, mk-digest-iter, mk-digest-salt and
mk-IV. It can be divided into three parts; the first one populates the simple fields of the
E-LUKS header as: the random value for the salt of the KDF, the constant value of the magic
field, the count value, and the initial value. The second part generates the KDF of the
master key with the salt and count parameters. Lastly, the third part generates the HMAC
digest of all the encrypted user data.

4.3.2. Add New Password

The most significant change in this operation with respect to LUKS is the exclusion of
the anti-forensic functions. Therefore, there is no need to calculate the split key.

The Add New Password operation requires the master key, the count iteration value for
the KSx, and the user key. This operation begins by setting the selected KSx to activate.
Doing so, random values start to generate for the salt and Initial Value fields. Once all
the values have been generated for the KSx, the user key is processed by the KDF given
the user key digest. Then, the master key will be divided into chunks the size of the block
cipher size. Each chunk will be encrypted with the user key digest and is concatenated to
create the KMx.

4.3.3. Master Key Recovery

It is similar to the Add New Password operation; the main difference is the exclusion of
the anti-forensic functions.

The Master Key Recovery operation requires the user key. First of all, it performs a
search for each KSx. If the activate field is set, then it will create the user key digest with
the KDF, using the parameters of the KSx. Next, it divides the encrypted password into
chunks the size of the block cipher; each chunk is decrypted using the user key digest,
and each part is concatenated into the master key candidate. This master key candidate is
then processed by the KDF with the parameters from the E-LUKS header and is compared
with the mk-digest. If both values are equal, then the master key candidate is returned.

4.3.4. HMAC Verification

The HMAC verification is a new operation for E-LUKS, which requires the master key.
Once the HMAC is initialised with the master key, the user data are then divided into
chunks and are fed to the HMAC. When all the data have been fed, the HMAC generates a
digest, which is compared with the mk-hmac stored in the E-LUKS header.

This operation allows for the integrity and authentication of the user data. Therefore,
it brings out the possibility of creating a secure boot for the device in which E-LUKS
is running.

4.3.5. Password Revocation

The Password Revocation is the last operation, an exact duplicate of its counterpart
in LUKS.

4.4. Comparison between LUKS and E-LUKS

This subsection shows the difference between LUKS and E-LUKS, as shown in
Table 10.

Electronics 2021, 10, 3036 13 of 22

Table 10. Properties of LUKS and E-LUKS.

LUKS E-LUKS

Cryptography

block ciphers aes, twofish, PRESENT
serpert, cast5, cast6

block ciphers ecb, cbc-plain, ctr
mode cbc-essiv:hash, xts-plain64

hash functions sha1, sha256, SPONGENT-88
sha512, ripemd160

KDF
Password-Based Key
Derivation Function 2

(PBKDF2)
KDF [39]

HMAC - based on
SPONGENT-88

Layout

header size 208 52
(bytes)

KSx size 48 48
(bytes)

phdr size 596 512
(bytes)

Operations

Initialisation yes yes

Add New yes yes
Password

Master Key yes yes
Recovery

HMAC no yes
verification

Password yes yes
Revocation

Before starting to describe the hardware implementation of E-LUKS, Table 11 shows
the key differences between LUKS and E-LUKS. LUKS allows more security against brute-
force attacks, but lacks integrity and authentication of the data. Therefore, while LUKS
cannot provide a mechanism of secure boot, it is possible for E-LUKS.

Table 11. LUKS and E-LUKS comparison.

LUKS E-LUKS

confidentiality yes yes

integrity no yes

authentication no yes

max. cipher key lenght (bits) 256 80

max. cipher block lenght (bits) 128 64

max. digest lenght (bits) 512 88

4.5. Hardware Implementation

E-LUKS has been implemented in SystemVerilog, the schematic of which is shown in
Figure 3. The E-LUKS core has four main parts, three of them related to the aforementioned
cryptographic algorithms described earlier: the PRESENT cipher core, the HMAC based on
SPONGENT, and the KDF. The last part is the control module, a finite state machine, which
implements the Master Key Recovery operation and the HMAC verification operation.

Electronics 2021, 10, 3036 14 of 22

In addition, the control module has an SPI interface to communicate with the formatted
E-LUKS memory.

blk_numPRESENT

key blk_i blk_o

rq

clk rst

IV

end

output

end

feed_data

data_rdystop_feed

busy

HMAC SPONGENT

key

clk rst

salt count

inputKDF

clk rst end

output

clk
cipher_end

rst
cipher_rst

hmac_en
cipher_rq

err
cipher_IV

user_psw
cipher_key

end_eluks_header
cipher_i

eluks_first_blk
cipher_o

spi_busy
cipher_blk_num

spi_err
hmac_busy

r_byte
hmac_end

eluks_r_byte
hmac_rst

eluks_busy
hmac_stop_feed

eluks_blk_addr
 hmac_feed_data
blk_addr

hmac_o

hmac_key
eluks_r_blk

hmac_data_rdy
r_blk

kdf_end

kdf_rst
eluks_r_mult_blk

kdf_o
r_mult_blk

kdf_salt
mux_ctl

kdf_count
spi_data

kdf_i
eluks_data

ADDER
1

ELUKS CORE

CONTROL

Figure 3. E-LUKS core schematic.

The flow chart that represents the Master Key Recovery operation performed by the
control module is shown in Figure 4.

The operation begins with the reset signal. After that, the control module resets all the
internal counters and registers and proceeds to read from the memory the first block of the
E-LUKS partition. Then, it stores all the fields from the E-LUKS header. Although some of
the fields are not used in this operation, they will be used later by other operations (HMAC
verification or reading the encrypted user data from the E-LUKS partition). After that,
the magic field is compared with the E-LUKS_ID, which identifies it as an E-LUKS partition.
However, in another case, it reaches the error state from which the error signal is raised,
and finishing the operation. Following the operation, the control module proceeds to read
each key slot KSx in order, checking for each one if the activate field is set. If all KSx are
deactivated, the control module goes to the error state. If the KSx is activated, it continues
to decrypt the pwd-encrypted field. First, it must calculate the key to decrypt, done by
calculating the KDF of the user_psw, provided as an input of the E-LUKS core. In addition,
the KDF takes the salt and iterations fields related to the KSx. Once with the key, it is able
to decrypt the pwd-encryted getting a master key candidate. To verify this candidate, it
generates the KDF of the candidate with the fields mk-digest-salt and mk-digest-iter. Finally,
the calculated digest is compared against the field mk-digest. If both values are equal, then
the candidate is the master key and is returned. Otherwise, the control module goes to the
error state.

Regarding the HMAC verification operation, this is only performed if the hmac-enable
signal is activated. A flow chart of this operation is shown in Figure 5. The HMAC
verification operation takes place after a successful Master Key Recovery operation. Therefore,
it is assumed that the required fields from the E-LUKS phdr have been precisely stored.
The operation begins by initializing the HMAC with the master key. Then, it reads the
encrypted user data that begins in the second block of the E-LUKS partition. It reads

Electronics 2021, 10, 3036 15 of 22

all data byte by byte, each of which feeds the HMAC. When all user data is processed,
the control module calculates the HMAC output. Finally, the digest generated by the
HMAC is compared to the mk-hmac field. If both values are equal, then the user data are
proven to be authenticated and unmodified. Otherwise, the control module goes to the
error state described earlier in the Master Key Recovery operation.

yes

•Reset all counters
•Reset all registers
•mem_block ← eluks_first_blk
•current_KS ← 1
•error ← 0

no
reset?

●Wait reset

•Read mem_block and stores all
fields from E-LUKS header
(magic, mk-digest, mk-digest-salt,
mk-digest-iter, mk-hmac, mk-IV,
 user-data-blocks)

magic = E-LUKS_ID?

•Read mem_block and stores all
fields from current_KS.
(activate, iterations, salt,
pwd-encrypted, IV)

activate = 1? current_KS = MAX-KS?

•Clear register of KS fields
•current_KS ← current_KS + 1

•dec_key ← kdf(user-password,salt,iterations)

•mk-candidate[63:0] ← decrypt(dec_key, pwd-encrypted[63:0])
•mk-candidate[87:64] ← decrypt(dec_key, pwd-encrypted[127:64])

digest = mk-digest?

•digest ← kdf(mk_candidate, mk-digest-salt, mk-digest-iter)

•Return mk_candidate

•error ← 1

no

no

no

no

yes

yes

yes

yes

Figure 4. Flow diagram of the Master Key Recovery operation.

Electronics 2021, 10, 3036 16 of 22

yes

● hmac_state ← init_hmac(master-key)
● mem_block ← eluks_first_blk + 1

● byte_to_read ← 0

● data ← read_byte(512*mem_block + byte_to_read)

● hmac_state ← fed_hmac(data,hmac_state)
● byte_to_read ← byte_to_read + 1

byte_to_read = user_data_blocks?

● hmac_o ← generate_hmac_digest(hmac_state)

hmac_o = mk-hmac?

● Return hmac_o

● Error ← 1
● Jump to first state of the
 flow chart of mk-recovery

operation

yes

no

no

Figure 5. Flow diagram of the HMAC verification operation.

5. Results

In order to validate the proposed solution, an experiment has been conducted that
provides a functional verification of E-LUKS and execution times with and without it.
These resource results are then compared to the previous solution shown in Related Work.

The experiment has been designed using the SystemVerilog Hardware Description
Language (HDL) and is implemented on a Nexys4DDR development board from Digilent
Inc. that has an XC7A100T FPGA chip from Xilinx Inc. [40]. The selected development
environment is Vivado 2020.1 from Xilinx Inc. [41]. This board features a microSD card slot.

A microSD card is the system’s storage device. It is divided into two parts: the first
part contains the E-LUKS partition, which stores a target file as the encrypted user data,
and the second part contains the unencrypted target file.

The main goal of the experiment is to obtain the execution times when reading the
target file in different ways: (1) From inside an E-LUKS partition. It can be done either
without the HMAC verification as with LUKS or with the HMAC verification to provide
authentication and integrity of the data; (2) From the unencrypted memory area.

To perform the experiment, three different and independent tasks have been developed:

1. Functional verification: The first task begins by reading the unencrypted target file
and storing it in a block RAM in the FPGA. Once the unencrypted target file is read,
the E-LUKS partition is accessed in order to get the encrypted target file. The E-LUKS
can be accessed with HMAC verification or not, depending on the hmac-enable signal
attached to any switch from the board. For its part, the encrypted file is read and
compared with the previously stored values. If all data are equal, then the functional
verification is correct.

2. Reading the unencrypted target file: This task reads the unencrypted target file from
the microSD card. The duration of this process is measured with an internal counter
that gives a precise execution time for this task. The results are displayed in a 7-
segments display on the board. This execution time excludes the initialisation time
for the microSD card, which takes around 250 ms.

Electronics 2021, 10, 3036 17 of 22

3. Reading the target file from the E-LUKS partition: This last task retrieves the target
file from the E-LUKS partition both with or without HMAC verification, depending
on the value of hmac-enable. It starts by reading the phdr from the microSD card
to get the master key. Once the master key is retrieved, it is stored in a volatile
memory accessible only to the E-LUKS core. Thus, it is only necessary to get the
master key once. As in the previous task, an internal counter is used to calculate the
execution time and display it on a 7-segments display skipping the microSD card
initialisation time.

All the source code is available on the authors’ github [42]. The files are ready to be
used with the Fusesoc tool [43], which allows the reuse of previous designs and facilitates
the creation of the bitfile. This repository has three folders:

1. hdl: Contains the SystemVerilog implementation of the E-LUKS core. In addition, it
also holds the core in a format that can be used with the Fusesoc tool.

2. examples: Contains the files needed to replicate the proposed experiment. The files
needed to create the bitfile are in the fusesoc folder. Whereas the file create_partition.py
in the python folder is a script that generates the layout needed in this experiment for
a microSD card.

3. cores: Contains a list of Fusesoc cores used in this experiment taken from previous
designs.

In the first task, the file from the unencrypted partition is read and compared with
the file read from the E-LUKS encrypted partition, both with HMAC and without HMAC
verification. If the comparison is successful, E-LUKS is proven to be functionally valid.

The second and third tasks are intended to obtain the execution times of the reading
operations. Different sizes have been used for the target file: 4 KB, 8 KB, and 16 KB.
In addition, the count value stored in the E-LUKS header and the KSx, is also variable.
The count value increases the security by stretching the original password length (88 bits)
with log2 count-value [39]. Therefore, the total password length obtained for the different
count values is 93-bit for 32, 94-bit for 64, and 95-bit for 128.

The execution time results from the experiment are shown in Table 12. These results,
as expected, indicate that the execution time increases when the target file size or the count
value increases. It is also observed that the HMAC verification is the worst case scenario for
execution time, but the best case scenario from the security perspective. Therefore, in order
to provide more security to the system, the payoff is the execution time. In addition, it is
noticed that the percentage of time needed for the E-LUKS, compared with the unencrypted
file, is decreased with larger files (+418.8% for 4 KB, +310.3% for 8 KB, and +257.1% for
16 KB).

Regarding the resource taken from the FPGA. E-LUKS has been designed to occupy
the least amount of resources. To get a better perspective, the resources’ results have been
compared with previous solutions. To this end, the E-LUKS core has been synthesized in
different FPGAs, XC7Z020 [44] and XC6VLX240T [45]. The results can be divided in two
groups: (1) results for solutions that are not specifically for resource constrained devices,
and (2) results for solutions that are designed for these devices.

In the first group are the LUKS hardware implementations in [18,19], already presented
in the Related Work Section. Its results, shown in Table 13, are an order of magnitude
above E-LUKS. It is remarkable that E-LUKS takes less than 90% of the resources when
compared to these LUKS hardware implementations. In Figure 6, it is observed that the
best LUKS results are those of [18], which takes around 50% of Slice LUTs and 30% of
Slice Registers from the FPGA. However, E-LUKS only takes about 5% of Slice LUTs
and 3% of Slice Registers. Therefore, E-LUKS proves to be better suited to performing
FDE in resource constrained devices which seek to have a small footprint over time
execution. In this regard, the LUKS hardware solutions offer better performance due to
their pipeline implementation.

The second group is about hardware solutions specifically for resource constrained
devices. It contains Sancus [20], Soteria [22], Atlas [24], and [23]. The results are shown

Electronics 2021, 10, 3036 18 of 22

in Table 14 and Figures 7 and 8. All the solutions, except [23] when using authentication
with the AE cipher ASCON, utilize less than 10% of any kind of resources for the FPGA.
Therefore, these solutions are an adequate fit for resource constrained devices. When
E-LUKS is compared to [23], it is observed that E-LUKS presents a slight improvement.
Specially, when both designs are used to provide confidentiality, integrity, and authenti-
cation, whereas [23] takes up to four times more Slice LUTs. Regarding Atlas, it presents
better results in Slice LUTs, 0.7% against 1.8%. However, it has worse results in number
of Slices, 2.5% against 6.5%, and Slice Registers, 0.9% against 1.8%. Atlas provides confi-
dentiality, although it lacks integrity and authenticity. Lastly, there are Sancus and Soteria.
Both solutions have almost identical results, being the best suited, although it only shows
when 1 SM is on the device. The overhead for an additional SM is 0.13% of Slice LUTs,
and 0.013% of Slice Registers. E-LUKS takes about two times more Slice Registers and three
times more Slice LUTs. However, these values represent less than 2% of both resources.
With 10 SM, the Slice LUTs of E-LUKS and both solutions offer similar results. Therefore,
to fit a few programs, Sancus and Soteria are the best solutions. However, to accommodate
a large number of files, FDE is a better fit. Hence, to accommodate a large number of files,
enough memory is required. In these kinds of devices, the storage for large files is usually a
flash removable device, such as a microSD card. These memories are the target of E-LUKS,
instead of the RAM memory. This leads to the advantage of being independent of any
processor. It only needs to implement a bridge to the system bus, as well as [23].

Table 12. Time results for the XC7A100T FPGA.

File Size Count Value Unencrypted
(Time ms)

E-LUKS Encrypt
(Time ms)

E-LUKS Encrypt + HMAC
(Time ms)

4 KB

32 1.81 (+0.0%) 4.16 (+128.9%) 6.8 (+275.7%)

64 1.81 (+0.0%) 5.15 (+184.5%) 7.40 (+308.8%)

128 1.81 (+0.0%) 7.15 (+295.0%) 9.39 (+418.8%)

8 KB

32 3.41 (+0.0%) 6.75 (+97.9%) 10.77 (+215.8%)

64 3.41 (+0.0%) 7.75 (+127.3%) 11.76 (+244.9%)

128 3.41 (+0.0%) 9.74 (+185.6%) 13.99 (+310.3%)

16 KB

32 6.58 (+0.0%) 11.89 (+80.7%) 19.90 (+202.4%)

64 6.58 (+0.0%) 12.89 (+95.9%) 21.13 (+221.1%)

128 6.58 (+0.0%) 14.88 (+126.1%) 23.50 (+257.1%)

Table 13. Resources comparison with LUKS solutions for the XC7Z020 FPGA.

Core FPGA Slice LUTs Slice Registers BRAMs

E-LUKS XC7Z020 2672 2732 1

LUKS [18] XC7Z020 28068 29866 36

LUKS [19] XC7Z020 41656 66447 22

Electronics 2021, 10, 3036 19 of 22

Figure 6. Percentage resources of E-LUKS and LUKS solutions for the XC7Z020 FPGA.

Table 14. Resources comparison with resource-constraint solutions for the XC6VLX240T FPGA, and XC7Z020 FPGA. The -
values are not provided in the original papers.

Core FPGA Slice Slice LUTs Slice Registers BRAMs

E-LUKS XC7Z020 946 2672 2732 1

[23] without XC7Z020 - 4735 2447 4.5
Authentication

[23] with XC7Z020 - 10214 4682 4.5
Authentication

E-LUKS XC6VLX240T 936 2724 2691 1

Sancus [20] XC6VLX240T - 751 1166 -
with 1 SM

Soteria [22] XC6VLX240T - 792 1374 -
with 1 SM

Atlas [24] XC6VLX240T 2451 1025 5412 -

Figure 7. Percentage resources of E-LUKS and [23] solution for the XC7Z020 FPGA.

Electronics 2021, 10, 3036 20 of 22

Figure 8. Percentage resources of E-LUKS and Sancus, Soteria, and Atlas solutions for the XC6VLX240T
FPGA.

6. Conclusions

In this work, a hardware-solution able to perform FDE on resource constrained devices
is presented. In addition, E-LUKS can authenticate and verify the integrity of the user data.
The results presented show that E-LUKS takes few resources from the FPGA; less than
5%. However, there are other hardware-solutions, which provide security of the user data.
There are the LUKS solutions, which, due to its pipeline implementation and the use of
cryptographic algorithms, occupies ten times more resources, in the best of the scenarios,
than E-LUKS. The Sancus and Soteria solutions have a smaller footprint than E-LUKS when
working with few files. However, to handle a large amount of data, FDE could work better.
These solutions need to implement specific instructions to the processor. E-LUKS, on the
other hand, is processor agnostic, depending only on the bus system in order to create a
bridge module. Atlas solution and E-LUKS have similar resource results. However, while
Atlas only provides confidentiality, the work presented in [23], provides confidentiality,
authentication, and integrity. Nonetheless, when providing, all three of them have a cost in
terms of resources that is worse than E-LUKS, especially in Slice LUTs where it is almost
three times greater. Additionally, in this scenario, Reference [23] needs part of the memory
to store the TEC tree, which allows the authentication and integrity of the data. Hence, we
believe that E-LUKS is an excellent choice for providing security to IoT devices. In those
cases, the resources of the devices are the priority.

Our future work with E-LUKS involves Secure Boot, which we believe could be a
perfect fit for this solution. Due to its agnostic processor characteristic and lack of software,
it could be an excellent Secure Boot to IoT devices that take few resources and boot an
embedded Linux image.

Author Contributions: Conceptualization, G.C.-Q., P.R.-d.-c.-V. and M.J.B.; methodology, G.C.-Q.,
P.R.-d.-c.-V. and M.J.B.; software, G.C.-Q. and P.R.-d.-c.-V.; validation, G.C.-Q., P.R.-d.-c.-V., M.J.B.,
D.G.-M., J.V.-C., J.J.-C. and E.O.-A.; formal analysis, G.C.-Q. and P.R.-d.-c.-V.; investigation, G.C.-Q.,
M.J.B. and P.R.-d.-c.-V.; resources, J.V.-C., J.J.-C., D.G.-M. and E.O.-A.; data curation, G.C.-Q. and
P.R.-d.-c.-V.; writing—original draft preparation, G.C.-Q., P.R.-d.-c.-V. and M.J.B.; writing—review
and editing, G.C.-Q., J.V.-C., J.J.-C., M.J.B., P.R.-d.-c.-V., E.O.-A. and D.G.-M.; visualization, G.C.-Q.,
P.R.-d.-c.-V. and M.J.B.; supervision, P.R.-d.-c.-V. and M.J.B.; project administration, J.J.-C. and P.R.-d.-c.-V.;
and funding acquisition, J.J.-C. and P.R.-d.-c.-V. All authors have read and agreed to the published
version of the manuscript.

Electronics 2021, 10, 3036 21 of 22

Funding: This work was partially supported by the Ministerio de Industria y Competitividad of
Spain under project TIN2017-89951-P (BootTimeIoT) and by the European Regional Development
Fund (ERDF).The author G.C.-Q. is economically supported by the VI-PPITUS.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

References
1. Global Smart Shade Devices Market 2020–2024|Emergence of IOT and AI-Based Smart Shade Devices to Boost Market

Growth|Technavio|Business Wire. Available online: https://www.businesswire.com/news/home/20200131005322/en/
Global-Smart-Shade-Devices-Market-2020-2024-Emergence (accessed on 14 May 2021).

2. Roaming Data Traffic Generated by Consumer & IoT Devices Forecast to Reach 2000 Petabytes in 2024: Kaleido Intelli-
gence|Business Wire. Available online: https://www.businesswire.com/news/home/20200203005036/en/Roaming-Data-
Traffic-Generated-Consumer-IoT-Devices (accessed on 14 May 2021).

3. Condry, M.W.; Nelson, C.B. Using Smart Edge IoT Devices for Safer, Rapid Response with Industry IoT Control Operations. Proc.
IEEE 2016, 104, 938–946. [CrossRef]

4. IoT Medical Devices Market Growth Holds Strong; Key Players studied Medtronic, GE Healthcare, Philips Healthcare (Philips),
Siemens—MarketWatch. Available online: https://www.marketwatch.com/press-release/iot-medical-devices-market-
growth-holds-strong-key-players-studied-medtronic-ge-healthcare-philips-healthcare-philips-siemens-2020-01-30 (accessed
on 20 May 2021).

5. Ferrer-Cid, P.; Barcelo-Ordinas, J.M.; Garcia-Vidal, J.; Ripoll, A.; Viana, M. Multi-sensor data fusion calibration in IoT air pollution
platforms. IEEE Internet Things J. 2020, 7, 3124–3132. [CrossRef]

6. Gutierrez-Madronal, L.; La Blunda, L.; Wagner, M.F.; Medina-Bulo, I. Test Event Generation for a Fall-Detection IoT System.
IEEE Internet Things J. 2019, 6, 6642–6651. [CrossRef]

7. Hamdan, O.; Shanableh, H.; Zaki, I.; Al-Ali, A.R.; Shanableh, T. IoT-Based Interactive Dual Mode Smart Home Automation.
In Proceedings of the 2019 IEEE International Conference on Consumer Electronics, Las Vegas, NV, USA, 11–13 January 2019;
pp. 1–2. [CrossRef]

8. Wazid, M.; Das, A.K.; Bhat K, V.; Vasilakos, A.V. LAM-CIoT: Lightweight authentication mechanism in cloud-based IoT
environment. J. Netw. Comput. Appl. 2020, 150, 102496. [CrossRef]

9. Bodei, C.; Chessa, S.; Galletta, L. Measuring security in IoT communications. Theor. Comput. Sci. 2019, 764, 100–124. [CrossRef]
10. Meneghello, F.; Calore, M.; Zucchetto, D.; Polese, M.; Zanella, A. IoT: Internet of Threats? A Survey of Practical Security

Vulnerabilities in Real IoT Devices. IEEE Internet Things J. 2019, 6, 8182–8201. [CrossRef]
11. binti Mohamad Noor, M.; Hassan, W.H. Current research on Internet of Things (IoT) security: A survey. Comput. Netw. 2019,

148, 283–294. [CrossRef]
12. Neshenko, N.; Bou-Harb, E.; Crichigno, J.; Kaddoum, G.; Ghani, N. Demystifying IoT Security: An Exhaustive Survey on IoT

Vulnerabilities and a First Empirical Look on Internet-Scale IoT Exploitations. IEEE Commun. Surv. Tutor. 2019, 21, 2702–2733.
[CrossRef]

13. Frustaci, M.; Pace, P.; Aloi, G.; Fortino, G. Evaluating critical security issues of the IoT world: Present and future challenges. IEEE
Internet Things J. 2018, 5, 2483–2495. [CrossRef]

14. Fruhwirth, C.; Broz, M. LUKS1 On-Disk Format Specification. 2018. Available online: https://gitlab.com/cryptsetup/cryptsetup/
-/wikis/LUKS-standard/on-disk-format.pdf (accessed on 10 March 2021).

15. Shwartz, O.; Mathov, Y.; Bohadana, M.; Elovici, Y.; Oren, Y. Reverse Engineering IoT Devices: Effective Techniques and Methods.
IEEE Internet Things J. 2018, 5, 4965–4976. [CrossRef]

16. Ling, Z.; Luo, J.; Xu, Y.; Gao, C.; Wu, K.; Fu, X. Security Vulnerabilities of Internet of Things: A Case Study of the Smart Plug
System. IEEE Internet Things J. 2017, 4, 1899–1909. [CrossRef]

17. Manos, A.; Tim, A.; Michael, B.; Matt, B. Understanding the mirai botnet. In Proceedings of the 26th USENIX Security Symposium
(USENIX Security 17), Vancouver, BC, Canada, 16–18 August 2017; pp. 1093–1110.

18. Li, X.; Cao, C.; Li, P.; Shen, S.; Chen, Y.; Li, L. Energy-efficient hardware implementation of LUKS PBKDF2 with AES on FPGA. In
Proceedings of the 2016 IEEE Trustcom/BigDataSE/ISPA, Tianjin, China, 23–26 August 2016; pp. 402–409. [CrossRef]

19. Li, X.; Wu, K.; Zhang, Q.; Lin, S.; Chen, Y.; Wong, S.Y. A High Throughput and Pipelined Implementation of the LUKS on FPGA.
J. Circuits Syst. Comput. 2020, 29, 2050075. [CrossRef]

20. Noorman, J.; Agten, P.; Daniels, W.; Strackx, R.; Van Herrewege, A.; Huygens, C.; Preneel, B.; Verbauwhede, I.; Piessens, F. Sancus:
Low-Cost Trustworthy Extensible Networked Devices with a Zero-Software Trusted Computing Base. In Proceedings of the 22nd
USENIX Conference on Security, Washington, DC, USA, 14–16 August 2013; pp. 479–494.

21. Strackx, R.; Piessens, F.; Preneel, B. Efficient Isolation of Trusted Subsystems in Embedded Systems. In Proceedings of the Security
and Privacy in Communication Networks, Singapore, 7–9 September 2010; Volume 50, pp. 344–361. [CrossRef]

22. Götzfried, J.; Müller, T.; De Clercq, R.; Maene, P.; Freiling, F.; Verbauwhede, I. Soteria: Offline software protection within low-cost
embedded devices. ACM Int. Conf. Proc.Ser. 2015, 7, 241–250. [CrossRef]

https://www.businesswire.com/news/home/20200131005322/en/Global-Smart-Shade-Devices-Market-2020-2024-Emergence
https://www.businesswire.com/news/home/20200131005322/en/Global-Smart-Shade-Devices-Market-2020-2024-Emergence
https://www.businesswire.com/news/home/20200203005036/en/Roaming-Data-Traffic-Generated-Consumer-IoT-Devices
https://www.businesswire.com/news/home/20200203005036/en/Roaming-Data-Traffic-Generated-Consumer-IoT-Devices
http://doi.org/10.1109/JPROC.2015.2513672
https://www.marketwatch.com/press-release/iot-medical-devices-market-growth-holds-strong-key-players-studied-medtronic-ge-healthcare-philips-healthcare-philips-siemens-2020-01-30
https://www.marketwatch.com/press-release/iot-medical-devices-market-growth-holds-strong-key-players-studied-medtronic-ge-healthcare-philips-healthcare-philips-siemens-2020-01-30
http://dx.doi.org/10.1109/JIOT.2020.2965283
http://dx.doi.org/10.1109/JIOT.2019.2909434
http://dx.doi.org/10.1109/ICCE.2019.8661935
http://dx.doi.org/10.1016/j.jnca.2019.102496
http://dx.doi.org/10.1016/j.tcs.2018.12.002
http://dx.doi.org/10.1109/JIOT.2019.2935189
http://dx.doi.org/10.1016/j.comnet.2018.11.025
http://dx.doi.org/10.1109/COMST.2019.2910750
http://dx.doi.org/10.1109/JIOT.2017.2767291
https://gitlab.com/cryptsetup/cryptsetup/-/wikis/LUKS-standard/on-disk-format.pdf
https://gitlab.com/cryptsetup/cryptsetup/-/wikis/LUKS-standard/on-disk-format.pdf
http://dx.doi.org/10.1109/JIOT.2018.2875240
http://dx.doi.org/10.1109/JIOT.2017.2707465
http://dx.doi.org/10.1109/TrustCom.2016.0090
http://dx.doi.org/10.1142/S0218126620500759
http://dx.doi.org/10.1007/978-3-642-16161-2_20
http://dx.doi.org/10.1145/2818000.2856129

Electronics 2021, 10, 3036 22 of 22

23. Werner, M.; Unterluggauer, T.; Schilling, R.; Schaffenrath, D.; Mangard, S. Transparent memory encryption and authentication.
In Proceedings of the 2017 27th International Conference on Field Programmable Logic and Applications (FPL), Ghent, Belgium,
4–8 September 2017; pp. 1–6. [CrossRef]

24. Maene, P.; Götzfried, J.; Müller, T.; de Clercq, R.; Freiling, F.; Verbauwhede, I. Atlas: Application Confidentiality in Compromised
Embedded Systems. IEEE Trans. Dependable Secur. Comput. 2019, 16, 415–423. [CrossRef]

25. Brož, M. LUKS2 On-Disk Format Specification Version 1.0.0 Document History; LUKS: Hong Kong, China, 2018; pp. 1–16.
26. rfc8018. PKCS #5: Password-Based Cryptography Standard v2.1; RSA Laboratories: Hebron, CT, USA, 2017.
27. Dworkin, M.; Barker, E.; Nechvatal, J.; Foti, J.; Bassham, L.; Roback, E.; Dray, J. Advanced Encryption Standard (AES); NIST:

Gaithersburg, MD, USA, 2001. [CrossRef]
28. Schneier, B.; Kelsey, J.; Whiting, D.; Wagner, D.; Hall, C. Twofish: A 128-Bit Block Cipher. NIST AES Propos. 1998, 15, 1–27.

[CrossRef]
29. Anderson, R.; Biham, E.; Knudsen, L. Serpent: A proposal for the advanced encryption standard. NIST AES Propos. 1998,

174, 1–23.
30. Adams, D.C. The CAST-128 Encryption Algorithm; RFC 2144; Network Working Group. 1997. Available online: https://www.rfc-

editor.org/rfc/rfc2144.txt (accessed on 15 April 2021).
31. Adams, D.C.; Gilchrist, J. The CAST-256 Encryption Algorithm; RFC 2612; Network Working Group. 1999. Available online:

https://www.rfc-editor.org/rfc/rfc2612.txt (accessed on 15 April 2021).
32. Eastlake, D., 3rd; Jones, P. US Secure Hash Algorithm 1 (SHA1); RFC 3174; Network Working Group. 2001. Available online:

https://www.rfc-editor.org/rfc/rfc3174.txt (accessed on 15 April 2021).
33. Dang, Q. Secure Hash Standard (SHS); NIST: Gaithersburg, MD, USA, 2012. [CrossRef]
34. Dobbertin, H.; Bosselaers, A.; Preneel, B. RIPEMD-160: A strengthened version of RIPEMD. In Fast Software Encryption;

Gollmann, D., Ed.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 71–82.
35. Pandey, J.G.; Goel, T.; Karmakar, A. Hardware architectures for PRESENT block cipher and their FPGA implementations. IET

Circuits Devices Syst. 2019, 13, 958–969. [CrossRef]
36. Bogdanov, A.; Knudsen, L.R.; Leander, G.; Paar, C.; Poschmann, A.; Robshaw, M.J.B.; Seurin, Y.; Vikkelsoe, C. PRESENT: An

Ultra-Lightweight Block Cipher. In Proceedings of the Cryptographic Hardware and Embedded Systems—CHES 2007, Vienna,
Austria, 10–13 September 2007; Paillier, P., Verbauwhede, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 450–466.

37. Bogdanov, A.; Knežević, M.; Leander, G.; Toz, D.; Varıcı, K.; Verbauwhede, I. SPONGENT: A Lightweight Hash Function. In
Proceedings of the Cryptographic Hardware and Embedded Systems—CHES 2011, Nara, Japan, 28 September–1 October 2011;
Preneel, B., Takagi, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 312–325.

38. Bellare, M.; Canetti, R.; Krawczyk, H. Keying Hash Functions for Message Authentication. In Proceedings of the Advances in
Cryptology — CRYPTO ’96, Santa Barbara, CA, USA, 18–22 August 1996; Koblitz, N., Ed.; Springer: Berlin/Heidelberg, Germany,
1996; pp. 1–15.

39. Yao, F.F.; Yin, Y.L. Design and Analysis of Password-Based Key Derivation Functions. In Proceedings of the Topics in Cryptology—
CT-RSA 2005, San Francisco, CA, USA, 14–18 February 2005; Menezes, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2005;
pp. 245–261.

40. Xilinx. 7 Series FPGAs Data Sheet: Overview (DS180); Xilinx Inc.: San Jose, CA, USA, 2010.
41. Xilinx Inc. Vivado Design Suite User Guide: UG973; Xilinx Inc.: San Jose, CA, USA, 2020.
42. GitHub—Germancq/ELUKS. Available online: https://github.com/germancq/ELUKS (accessed on 25 October 2021).
43. GitHub—olofk/Fusesoc: Package Manager and Build Abstraction Tool for FPGA/ASIC Development. Available online:

https://github.com/olofk/fusesoc (accessed on 8 October 2021).
44. Xilinx Inc. Zynq-7000 AP SoC Technical Reference Manual; Xilinx Inc.: San Jose, CA, USA, 2021.
45. Xilinx Inc. Virtex-6 Family Overview Summary of Virtex-6 FPGA Features; Xilinx Inc.: San Jose, CA, USA, 2015.

http://dx.doi.org/10.23919/FPL.2017.8056797
http://dx.doi.org/10.1109/TDSC.2018.2858257
http://dx.doi.org/10.6028/NIST.FIPS.197
http://dx.doi.org/10.1.1.35.1273
https://www.rfc-editor.org/rfc/rfc2144.txt
https://www.rfc-editor.org/rfc/rfc2144.txt
https://www.rfc-editor.org/rfc/rfc2612.txt
https://www.rfc-editor.org/rfc/rfc3174.txt
http://dx.doi.org/10.6028/NIST.FIPS.180-4
http://dx.doi.org/10.1049/iet-cds.2018.5273
https://github.com/germancq/ELUKS
https://github.com/olofk/fusesoc

	Introduction
	Related Work
	Linux Unified Key Setup LUKS
	Cryptography
	Linux Unified Key Setup LUKS Internal Layout
	Operations
	Initialisation
	Add New Password
	Master Key Recovery
	Password Revocation

	Embedded LUKS E-LUKS
	E-LUKS Internal Layout
	Cryptographic Algorithms
	PRESENT
	SPONGENT
	KDF

	Operations
	Initialisation
	Add New Password
	Master Key Recovery
	HMAC Verification
	Password Revocation

	Comparison between LUKS and E-LUKS
	Hardware Implementation

	Results
	Conclusions
	References

