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Abstract: A comprehensive analysis of two types of artificial neural networks (ANN) is performed to
assess the influence of quantization on the synaptic weights. Conventional multilayer-perceptron
(MLP) and convolutional neural networks (CNN) have been considered by changing their features
in the training and inference contexts, such as number of levels in the quantization process, the
number of hidden layers on the network topology, the number of neurons per hidden layer, the
image databases, the number of convolutional layers, etc. A reference technology based on 1T1R
structures with bipolar memristors including H f O2 dielectrics was employed, accounting for different
multilevel schemes and the corresponding conductance quantization algorithms. The accuracy of
the image recognition processes was studied in depth. This type of studies are essential prior to
hardware implementation of neural networks. The obtained results support the use of CNNs for
image domains. This is linked to the role played by convolutional layers at extracting image features
and reducing the data complexity. In this case, the number of synaptic weights can be reduced in
comparison to MLPs.

Keywords: memristor; multilevel operation; hardware neural network; deep neural network; convo-
lutional neural network; image recognition

1. Introduction

Resistive switching devices based on the conductivity modulation of a dielectric thin
layer are a variety of a broader class of electron devices known as memristors [1]. They
show great potential from the integration viewpoint since they can be easily scaled within
a CMOS compatible technology framework; besides, they show good endurance, retention
and low power operation [2–4]. These devices present an overwhelming potential for
applications linked to non-volatile memories, physical unclonable function implementation
and neuromorphic computing. The latter research field is gaining momentum due to the
limitations of current computing paradigms affected by the slowing down of Moore’s law
device scaling, the effects connected to the physical separation of data processing units and
memory (von Neumann bottleneck) and the steadily growing performance gap between
memory and processors (known as memory wall) [5].

Within the most promising alternatives in neuromorphic computing, memristors
constitute the key part of circuits designed to greatly accelerate the repetitive and energy
costly operation behind artificial neural networks training and inference. Memristor
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features allow to mimic biological synapses, a key component to build an efficient native
hardware platform for ANNs based on matrix-vector multiplication circuits [2]. The
implementation of these circuits can be easily performed by means of memristor crossbar
arrays, taking into consideration their non-volatility and scalability [2,3,5–10]. Matrix–
vector multiplication is very convenient when dealing with large-scale data processing, as
it is the case of deep neural networks (DNN).

It is known that, due to the intrinsic variability of resistive switching devices [2,11–15],
a well-conceived circuitry is needed for memristor multilevel operation. In this approach,
multilevel device operation is provided as the basis for hardware quantized ANNs; i.e.,
networks with quantized synaptic weights and biases. This is the key difference between
the ANN hardware implementation and their software counterparts. When using this
hardware approach to reduce the power consumption produced by the separation of
memory and processing units in CPUs and GPUs, quantized weights will come into
play and consequently new adapted ANN architectures and training strategies will be
needed [16]. In this context, at the device and circuit level, there have been contributions
that paved the way presenting technological alternatives, e.g., a row-by-row parallel
program-verify scheme on a fabricated 160-Kb RRAM array employing an incremental
gate voltage programming methodology [17], a binary synaptic learning scheme that
benefits from the set and reset voltage variability of CMOS integrated 1T1R structures [18],
a multilevel cell scheme in H f O2-based resistive memory (RRAM) arrays [19], etc.

It is important to state that a determinant breakthrough in the field of machine learning
took place in the 2000–2010 decade due to a step forward in the efficiency and generalized
use of ANNs [16]. ANNs have been successfully used recently in many fields, such
as smart cities [20–22], biology [23–25] and medicine [26–28]. The CPU performance
increase, the GPU massive use in artificial intelligence and the availability of well-structured
data for training and testing helped ANNs to take over in the machine learning realm.
The power-hungry GPUs and the need for intensive use of on-chip buffers and off-chip
DRAM in conventional ANN operation presents a high energy cost. In particular, on-chip
buffers (×6) and external DRAM cells (×200) consume more energy than processors register
files (×1, normalized energy cost in a typical neural network accelerator [16]). The von
Neumann limitations reported above and this energy consumption problem pose important
difficulties for the ANN medium- and long-term development. Neuromorphic computing
can provide solutions, that is why great efforts are going on to provide hardware platforms
to enhance ANNs [3,6,16,29,30] and develop the technology for edge computing linked to
the Internet of Things era that will come with the deployment of 5G networks. In order to
shed light on some of the issues raised above, we have analyzed the role of quantization
on different types of hardware ANNs. For this purpose, we have considered resistive
switching devices based on H f O2 dielectrics as the reference technology. The devices
show filamentary charge conduction and bipolar operation. We have employed several
strategies to implement multilevel conductance modulation, accounting for different sets of
conductance levels (2, 3, 4, 5 and 8 levels). The viability of this multilevel implementation
led us to study quantization at the ANN level in order to assess the possibilities of this
technology in the neuromorphic circuit context (we employed from 2 to 8 levels for the
sake of completeness). We did so by studying different DNN architectures (by changing
the number of hidden layers and neurons in each layer), both conventional multilayer
perceptron and convolutional neural networks were employed. The influence of the
number of quantized levels, the dataset employed under a supervised learning scheme,
etc., on the ANN recognition accuracy, was analyzed. We worked at the inference level; i.e.,
quantization was taken into consideration after a conventional training process without
synaptic weight discretization. In this context, it is important to highlight that it has been
proven that only a 3-bit precision was needed to encode state-of-the-art networks [16],
this corresponds to the higher number of levels analyzed here. From another viewpoint,
quantization could be beneficial to deal with common problems in the ANN realm, such as
overfitting.
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2. Device Fabrication and Measurement Set-Up, a Multilevel Approach

The devices used to define experimentally the different sets of conductance levels (2,
3, 4, 5, and 8), in order to implement the quantized weight values for the artificial synapses
included in the ANN architectures considered here, are 1T1R RRAM cells integrated in
4-kbit arrays [31]. These resistive switching cells are constituted by a NMOS transistor
(manufactured in 0.25 µm CMOS technology) connected in series to a metal–insulator–
metal (MIM) structure placed on the metal line 2 of the CMOS process (Figure 1). Such a
MIM structure consists of a TiN/H f O2/Ti/TiN stack with 150 nm TiN top and bottom
electrode layers deposited by magnetron sputtering, a 7 nm Ti layer (under the TiN top
electrode) and a 8 nm H f O2 layer grown by atomic layer deposition (ALD) [32]. The MIM
structures have an area of about 0.4 µm2. The endurance and retention of these devices
has been studied in order to show the viability of this technology both for memory and
neuromorphic applications [11,33,34].

Figure 1. Circuit schematic of the 1T1R cells (G: gate terminal; S: source terminal; and TE: top
electrode terminal) and cross-sectional TEM image of the metal–insulator–metal (MIM) stack.

The algorithms employed to program the conductive levels on the devices are write-
verify approaches. The cost in time of such approaches is justified due to the fact that the
ANNs implemented aim to perform just the inference phase, where an accurate definition
of the conductive levels is crucial. Most of the sets of conductive levels considered (in
particular, 2, 3, 4, and 5) were defined by using the well-known Multilevel Incremental
Step Pulse with Verify Algorithm (M-ISPVA) [35], which tunes the current target (Itrg) and
gate voltage (Vg) parameters during set operations to achieve each conductive level within
a specific set of conductive levels. To do so, we employ different pairs of parameters that
allow the control of the redox chemical reaction kinetics that lead to the device conductance
variation produced by the growth and destruction of conductive filaments that bridge the
electrodes through the device dielectric. During the M-ISPVA programming, a sequence
of increasing voltage amplitude pulses are applied either on the terminal connected to
the top electrode of the MIM structure, during set operations, or on the source terminal
of the transistor, during reset operations. In contrast, placing eight conductive levels
in a read-out current range of about 50 µA requires a more advanced implementation.
This algorithm, already tested in [36] and known as Incremental Gate Voltage and Verify
Algorithm (IGVVA), keeps constant the pulse amplitude applied on the terminal connected
to the top electrode of the MIM structure during set operations and increases step by step
the Vg value until Itrg is achieved. The cumulative distribution functions (CDFs) of the read-
out currents measured on 128 RRAM devices for different sets of conductive levels, namely:
2, 3, 4, and 5; are shown in Figure 2. We perform the study of read-out current distributions
since it directly characterizes the device conductance, which is the key magnitude to
quantize in order to mimic biological synapses plasticity in neuromorphic circuits. Notice
that the separation between the distributions is essential to avoid overlapping in the
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quantized levels. As it will be shown below, we will study the quantization in the synaptic
weights of different neural networks to assess its influence on the network performance.
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Figure 2. Cumulative distribution functions (CDFs) of the read-out currents measured for each set of
conductive levels, namely, 2 levels (a), 3 levels (b), 4 levels (c), and 5 levels (d). The conductance levels
were obtained by means of the Multilevel Incremental Step Pulse with Verify Algorithm (M-ISPVA)
algorithm [35]. LRS stands for low resistance state, this means that the memristors have a low internal
resistance value, and HRS stands for high resistance state. These current levels, and therefore, the
device conductance, are obtained by means of different sets of algorithm parameters. In this respect,
the corresponding neural network weight quantization strategies can be linked to the algorithms
chosen to electrically operate the devices.

By tuning the M-ISPVA parameters, the definition of several non-overlapping conduc-
tive levels, up to five, can be effectively performed, see Figure 2. In addition, Figure 3 shows
the current CDFs corresponding to eight conductive levels defined by using the IGVVA.

0 1 0 2 0 3 0 4 0 5 0
0 . 5

2
1 0
3 0
5 0
7 0
9 0
9 8

9 9 . 5 L R S 7

L R S 6

L R S 5

CD
F (

%)

R e a d - o u t  C u r r e n t  ( µA )

L R S 4

L R S 3L R S 1

L R S 2

H R S

Figure 3. CDFs of the read-out currents measured for eight levels. The conductance levels were
obtained by means of the Incremental Gate Voltage and Verify Algorithm (IGVVA) algorithm [36].
LRS stands for low resistance state, this means that the memristors has a low internal resistance
value, and HRS stands for high resistance state.

A strong reduction of the device-to-device variability allows to define extremely
narrow distributions and, therefore, eight non-overlapping conductive levels in a current
range of less than 50 µA, see Figure 3. The exact determination of the device conductivity
would require the detailed calculation of the current for a determined bias, this can be
performed following different simulation schemes [37,38].
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3. ANN Architecture Analysis, the Role of Quantization

As pointed out above, ANN have resurfaced and gained prominence due to several
factors; among them, the emergence and fast development of DNNs. Because of this,
the main features of DNN architectures have been characterized in-depth in the last few
years [39–42]. Convolutional Neural Networks (CNN) are an alternative type of DNNs
widely employed to tackle image recognition problems. Image recognition is a key activity
in what we call perception; at this task, efficiency implies a fast and highly parallel data
processing [43].

3.1. Convolutional Neural Networks

CNNs are based on the application of convolution functions: a mathematical operation
on two functions ( f1 and f2) that produces a third function ( f1 × f2) expressing how the
shape of one of them is modified by the other. It is defined as the integral of the product of
the two functions after one is reversed and shifted. Then, the integral is evaluated for all
the possible values of the shift producing the convolution function [44].

A CNN (Figure 4) starts with a convolutional layer which requires a minimum of three
parameters: stride, kernel and filter. Stride is the number of pixels shifts over the input
matrix (e.g., when the stride is 2, then, we move the filters 2 pixel at a time). The kernel is
a shared small weight matrix often used for pre-processing operations such as blurring,
sharpening, embossing, or edge detection. Finally, several different filters can be used, thus
having a multidimensional layer. Each filter is initialized differently, and can, therefore,
find better or worse image features. After a convolutional layer, a pooling layer is generally
applied to reduce the size of the image combining neighboring pixels of a certain image
area into a single representative value. In our case, we used the maximum value of all the
considered neighboring pixels, constructing a max-pooling layer. The backpropagation
algorithm used in the CNN is in charge of reducing the value of inefficient filters while
promoting those that are useful for the classification task [45]. As a final step in the CNN, a
MLP is attached. To do this, the pooled features of the last pooling layer are flattened. The
MLP can have its own architecture with various hidden layers.

…

Fl
at

te
ne

d

Convolution 1 Convolution kPooling 1 Pooling k

Figure 4. CNN architecture. The input data are introduced into a convolutional layer (accounting for different convolutional filters to
generate feature maps, that accentuate the unique features of the original image) followed by a pooling layer (that reduces the size of
the image combining neighboring pixels of a certain image area into a single representative value). Multiple sets of convolutional +
pooling layers can be applied as pre-processing. Finally, all outputs of the last pooling layer are flattened (from a matrix to an array)
and used as inputs of a MLP.

3.2. Quantization Process

ANN synaptic weights were quantized to a fixed number of levels during inference.
The quantization process is based on a quantile-based discretization function. All weights
belonging to the same bin will have the same value: the average for the given bin. This
process is coherent with the experimental multilevel scheme we have presented for the
reference technology we are considering. The quantization process is used locally in each
layer, that is, for the set of weights used as input in a given layer.
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4. Experiments and Results

We designed several experiments divided into two main groups: fully dense multi-
layer perceptron, called MLP, and convolutional neural networks, called CNN, as detailed
in Section 3. The neural networks used in this manuscript were trained using the default
parameter values of the keras/tensorflow implementation (see Table 1 for a summary of the
parameters used) without any regulation techniques or dropout method [44]. We selected
categorical accuracy as the comparison metric between approaches. This metric calculates
the frequency in which the prediction matches the labeled data [46,47]. For both sets of
experiments, input data (both training and test) were first binarized, being 0 those values
lower than a threshold of 0.1, and 1 otherwise.

Table 1. Parameters used in the experiments.

Parameter Name Value

Optimizer Stochastic Gradient Descent (SGD)
Learning rate 0.1
Momentum 0.9
Number of epochs 30
Batch Size 32
Validation set 10%

Although the experimental multilevel approach consisted of quantization on 2, 3, 4, 5,
and 8 levels, we have considered all the possibilities in the 2–8 interval at the simulation
level to sweep all the possibilities and enhance our study. We have interpolated the distance
between levels accounting for the data we have for the multilevel schemes experimentally
fulfilled.

4.1. MLP Architecture

We studied both deep and shallow fully dense architectures. The final dense layer of
all neural networks has a so f tmax activation layer attached, while the hidden layers have a
relu activation layer after each of them. We experimented with the customization of two
parameters to create different architectures: the number of hidden layers (ranging from 1
to 4) and the number of neurons per layer (ranging from 8 to 128).

4.2. CNN Architecture

For the CNN experiments, we customized the CNN explained in Section 3.1: (1) num-
ber of convolutional layers (ranging from 1 to 3), (2) the number of filters used (ranging
from 8 to 32), (3) size of the pooling matrix (ranging from 2 × 2 to 8 × 8), and (4) number of
neurons in the hidden layer (ranging from 8 to 128). All convolutional layers are followed
by an activation layer using the relu function. Only one hidden layer is explored in the MLP
within the CNN since the previous layers are built to cope with the data set complexity.
For all the experiments in this set we used a 3 × 3 kernel matrix. The CNN also uses a SGD
optimizer with the same configuration mentioned for the MLP experiments.

The total number of synapses is, in general, higher for MLP architectures compared to
CNN architectures, as seen in Figure 5. This is due to the convolutional and pooling layers
incorporated in the architecture that preprocess the input data, reducing the complexity
before the subsequent application of the dense layer, thus reducing the overall number
of synapses.
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Figure 5. Distribution of total number of synapses for each type of artificial neural network (ANN).
The boxplots show a rectangle where its bottom line corresponds to the 25th percentile (or first
quartile), the top line to the 75th percentile (or third quartile) and the middle line to 50th percentile or
median (the middle value). The vertical line below the box extends until the 0th percentile (the lowest
data point excluding outliers), while the vertical line above the box extends until 100th percentile
(the largest data point excluding outliers). In this figure, outliers were removed for visualization
enhancement.

4.3. Datasets

We used two datasets for our quantization study: MNIST [48] and Fashion MNIST [49].
The MNIST image dataset [48] is composed of 28 × 28 grayscale pixel images of 70,000
handwritten digits (labeled in the interval [0, 9]), divided into a training set (60,000 images)
and a test set (10,000 images), see Figure 6.

Figure 6. Four examples the 28 × 28 pixel images of the MNIST dataset, labelled as “4”, “1”, “9” and “2” from left to right.

The Fashion MNIST image dataset [49] also consists of 70,000 28 × 28 grayscale images
in 10 classes (T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag and
Ankle boot), divided into a training set (60,000 images) and a test set (10,000 images), see
Figure 7. We chose to use the Fashion MNIST dataset since their authors claim that this
dataset is more complex to learn than the original MNIST and better represent real-world
tasks [49].
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Figure 7. Five examples the 28 × 28 grayscale pixel images of the Fashion MNIST dataset, labelled as
“Ankle boot”, “T-shirt/top”, “T-shirt/top”, “Dress” and “Dress” from left to right.

The architectures of both MNIST and Fashion MNIST networks are the same as they
have the same input and output shapes.

4.4. MLP Experimental Results

As introduced in Section 4.1, we experimented with different network configurations.
For each configuration, we trained and tested with full floating-point precision. We also
tested the neural network reducing the precision in the inference phase from 2 to 8 levels,
to test its accuracy. Results are shown in Figure 8 for the MNIST dataset and in Figure 9 for
the Fashion MNIST dataset.
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Figure 8. Categorical accuracy for the MNIST dataset. Experiments using 1 to 4 hidden layers, shown
in each of the boxes, were used. For each hidden layer, hidden units ranging from 8 to 128 were
tested (x axis). Each dashed line in the plots shows the accuracy for different quantization levels,
while solid lines indicate no quantization.
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Figure 9. Categorical accuracy for the Fashion MNIST dataset. Experiments using 1 to 4 hidden
layers, shown in each of the boxes, were used. For each hidden layer, hidden units ranging from 8 to
128 were tested (x axis). Each dashed line in the plots shows the accuracy for different quantization
levels, while solid lines indicate no quantization.
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Analyzing the experimentation results, we can infer that reducing the precision from
float32 to low levels of precision (2 or 3 levels) highly impacts the overall accuracy in
both datasets. When the number of quantization levels is higher (from 4 to 8 levels), the
difference from the accuracy obtained using full float precision is reduced, particularly
when the number of hidden units (neurons) used in each hidden layer is increased. It also
seems that the minimum number of hidden units per hidden layer needs to be at least 64
in order to let a quantized MLP be comparable to the float32 precision accuracy in both
training and test data.

4.5. CNN Experimental Results

As introduced in Section 4.2, we also experimented using convolutional neural net-
works. The results show in Figure 10 the 1-CNN (one set of convolutional layer + pooling
layer) using the MNIST dataset, in Figure 11 the 2-CNN is shown (two sequential sets of
convolutional layers + pooling layer) using the MNIST, in Figure 12 the 1-CNN is shown
again making use of the Fashion MNIST dataset and in Figure 13, the 2-CNN results are
shown using the Fashion MNIST dataset.
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Figure 10. Categorical accuracy for the MNIST dataset using 1-CNN (i.e., one convolutional layer + one pooling layer).
Only one hidden layer was used, with hidden units ranging from 8 to 128 (x axis). Each dashed line in the plots shows
the accuracy for different quantization levels, while solid lines indicate no quantization. Each box in the figure shows a
particular experiment: convolutional layer with 8, 16 and 32 filters (top number of the box) and pooling with 2 × 2, 3 × 3
and 4 × 4 matrices (bottom number of the box).
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Figure 11. Categorical accuracy for the MNIST dataset using 2-CNN (i.e., one convolutional layer, one intermediate pooling
layer, another convolutional layer and a final pooling layer). Only one hidden layer was used, with hidden units ranging
from 8 to 128 (x axis). Each dashed line in the plots shows the accuracy for different quantization levels, while solid lines
indicate no quantization. Each box in the figure shows a particular experiment: convolutional layer with 8, 16 and 32 filters
(the top number of the box) and pooling with 2 × 2, 3 × 3 and 4 × 4 matrices (the bottom number of the box).
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Figure 12. Categorical accuracy for the Fashion MNIST dataset using 1-CNN (i.e., one convolutional layer + one pooling
layer). Only one hidden layer was used, with hidden units ranging from 8 to 128 (x axis). Each dashed line in the plots
shows the accuracy for different quantization levels, while solid lines indicate no quantization. Each box in the figure shows
a particular experiment: convolutional layer with 8, 16 and 32 filters (top number of the box) and pooling with 2 × 2, 3 × 3
and 4 × 4 matrices (bottom number of the box).
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Figure 13. Categorical accuracy for the Fashion MNIST dataset using 2-CNN (i.e., one convolutional layer, one intermediate
pooling layer, another convolutional layer and a final pooling layer). Only one hidden layer was used, with hidden units
ranging from 8 to 128 (x axis). Each dashed line in the plots shows the accuracy for different quantization levels, while solid
lines indicate no quantization. Each box in the figure shows a particular experiment: convolutional layer with 8, 16 and 32
filters (the top number of the box) and pooling with 2 × 2, 3 × 3 and 4 × 4 matrices (the bottom number of the box).

The obtained results suggest that when the number of conductance levels used is
above 5, the CNNs share a common trend with the float 32 approach, but with a slight
reduction in categorical accuracy. MNIST dataset, as opposed to the Fashion MNIST
dataset, is greatly affected by the CNN architecture, particularly before the flattened and
fully dense layers.

The Fashion MNIST dataset is harder to predict (Figure 14) than the simpler MNIST
dataset, as suggested by their authors [49]. Performing a Kruskal–Wallis rank-sum test to
these data, we obtained a statistically significant difference (p-value = 1.02 × 10−5) between
the MLP and the CNN results in the test data for MNIST, supporting the idea that CNNs
perform better in image domains. The significance obtained for its counterpart in the
Fashion MNIST dataset (p-value = 0.147) is low, but not low enough to be statistically
significant.

It is remarkable that for both databases, and in the two types of neural networks under
consideration, reasonably similar results are obtained for quantizations with 6, 7 and 8
levels. This is not a minor issue since the reduction of the number of levels allows a less
complex electronic circuitry to manage memristor quantization, and also permits a greater
separation of the average values in the conductance interval employed to implement the
synaptic weights. This latter consideration can lead to less overlapping of the conductance
levels, and therefore, to a more precise network operation. It is also important to highlight
that there is a long way to go in the study and optimization of the network size, since it is
clear that for a low number of neurons in the hidden layers, and for quantization strategies
with very few levels, the accuracy drops off significantly. All these considerations are
reflected upon the size of crossbar arrays and the consequent matrix-vector multiplication
circuits needed for the hardware implementation of these neural networks. As it is usual, a
trade-off has to be considered.

Overfitting is a common problem in the field of neural networks and it is spotted
also in our results (Figure 14). Since our main goal is to compare the neural network
behavior with different precision levels, we did not use any regulation techniques or
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dropout methods [44] to avoid it. However, due to the intrinsic variability of memristors
linked in their stochastic operation, overfitting could be reduced significantly in comparison
with software-based networks with continuous synaptic weights.

In the CNN realm, an efficient design of the convolutional layers might be the way
to go to optimize the network hardware. The silicon area could be reduced if the hidden
dense neural layer is optimized, due to the implications in the number of synapses that a
shortening in the number of neurons can produce. In this case, even for the lower number
of neurons in the hidden layer, the accuracy difference between the quantized and non-
quantized cases is lower than in the other network type. Therefore, a quantized CNN
approach to image recognition seems to be more appropriate (at least more flexible) from
the hardware design viewpoint. Future work on this subject could be linked, among other
issues, to the effects of variability on the memristive devices on the performance of the
neural networks under study here.

Fashion MNIST MNIST

Convolutional MLP Convolutional MLP

0.00

0.25

0.50

0.75

1.00

ANN

M
ea

n Subset

Train
Test

Figure 14. Mean categorical accuracy for MNIST and Fashion MNIST datasets using MLP and CNN,
including error bars using one standard deviation.

5. Conclusions

An in-depth study of the influence of the number of conductance levels in quantized
neural networks based on memristors has been performed. Different types of networks
(multilayer-perceptron and convolutional) have been considered under a variety of features,
such as the number of levels in the synaptic weight quantization process, the number of
neurons in the hidden layers of the network topology, the image databases, the number of
convolutional layers, etc. An exhaustive analysis was performed that led us to know that
neural networks using a low number of synaptic weight levels require deeper and wider
network architectures than those using higher precision programming algorithms. Different
variables have to be taken into account in the network optimization since the number of
quantized levels, the number of hidden layers and the number of neurons per hidden
layers are closely related in determining the accuracy; therefore, a deep characterization
is needed in each particular case prior to step in a hardware implementation process.
The obtained results support the use of CNN for image domains, since convolutional
layers perform a feature extraction process that reduces the complexity and the number
of synaptic weights needed to achieve a neural network full potential. Thus, by reducing
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the number of synaptic weights needed, we can reach a comparable accuracy to their
conventional multilayered-perceptron counterparts.
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