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Abstract: The paper is devoted to the theoretical and experimental analysis of an electric circuit con-
sisting of two elements that are described by fractional derivatives of different orders. These elements
are designed and performed as RC ladders with properly selected values of resistances and ca-
pacitances. Different orders of differentiation lead to the state-space system model, in which each
state variable has a different order of fractional derivative. Solutions for such models are presented
for three cases of derivative operators: Classical (first-order differentiation), Caputo definition, and
Conformable Fractional Derivative (CFD). Using theoretical models, the step responses of the frac-
tional electrical circuit were computed and compared with the measurements of a real electrical
system.

Keywords: ladder element; fractional derivatives; fractional electric circuit; Conformable Fractional
Derivative (CFD) definition; Caputo definition; different orders

1. Introduction

Fractional order differential equations have found an important role in the analysis
and modelling of various processes. The fundamentals of fractional calculus and its most
interesting application areas can be found in [1–7]. In recent years, fractional calculus
has appeared to be a modern and prospective tool for modelling and analysis of different
processes of dynamic behaviour.

In control theory, one of the most useful methods of analysis and synthesis of control
systems is to express the problem under consideration in the state-space equations form.
The differential equations are transformed to a set of equations that can be written in the
form of a differential matrix equation. If the process has a fractional nature, we obtain the
state-space equations of a fractional order system. The most popular class of fractional
order systems has a common order of fractional derivative for all components of a state
vector. These systems are widely considered in the literature [1,5,8,9]. The case where the
orders of each component of the state vector are different is not that popular or developed
by researchers. The different order fractional systems were investigated in [1,10,11] and
applied to the analysis of transient states in electrical circuits in [5,12–14]. In the aforemen-
tioned papers, only Caputo or Riemann–Liouville definitions of fractional order derivatives
were used. In the literature, solutions of the state equations with different orders of dif-
ferentiation can be found in the case of the definition of the derivative expressed by the
Caputo definition in [1]. Theoretical analysis has not been verified in the experimental way.

The problem of time-domain analysis of a single fractional-order element has been
considered in [15], where analytical considerations for fractional order inductors and
fractional order capacitors based on Caputo definition and numerical simulations were
presented. Similar considerations were conducted for an electrical circuit consisting of two
fractional order electrical elements in [16]. Additionally, the problem of oscillations in such
systems based on the Routh table method was investigated.
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Recently, many new definitions of fractional order or so-called pseudo-fractional order
derivatives have appeared. Khalil et al. introduced in [17] a new operator of noninteger
order called Conformable Fractional Derivative (CFD). In [18], it was shown that the
properties of this new derivative are very similar to integer order (classical) derivatives.
Moreover, this new operator is numerically efficient in comparison with the older fractional
order derivatives of Caputo or Riemann–Liouville. The CFD fractional differentiation was
applied for the analysis of electrical circuits in state space in [19–21].

In this paper, the authors apply the theory of different order fractional continuous-
time systems to the theoretical and experimental analysis of an electrical circuit with two
fractional order elements of different orders. The fractional order element can be realized in
the form of a ladder circuit consisting of passive elements R, L, C. In theory, a ladder system
can behave as a fractional-order element only if it has an infinite number of components
(infinite number of meshes). In practice, this number is always finite, which results in
limitations related to the range of applications in which we could regard a ladder system
as an element of fractional order. For this reason, it is important to properly select the
resistance and capacitance—so that for a given number of elements we obtain a circuit
that behaves with the highest possible accuracy and in the broadest possible frequency
range as an element of fractional order [22–26].

During the analysis of the fractional order electrical circuit, we formed the state-space
model and analysed this system taking into account different types of derivative operators:
Caputo, conformable fractional derivative and classical first-order derivative. The results of
the numerical analysis are compared with the measurements of the voltages in the circuit.
It is shown that the accuracy of the model differs significantly if we change the operator of
derivation. The best modelling quality is achieved for the Caputo type model. It is shown
that the classical approach of the model with a standard integer-order derivative does not
allow one to obtain the precise description of the dynamic behaviour of the considered
process.

The paper has the following structure. In Section 2, the fractional order derivative
definitions of Caputo and CFD are presented. Next, in Section 3, the different fractional
order state-space model is introduced and the general solution formulas of the model are
given for the classical case of the integer-order derivative and the aforementioned fractional
derivatives. Section 4 is devoted to the processes of designing and construction of electrical
elements composed of resistors and capacitors, which are used in Section 5 to build a two
fractional-order electrical circuit. Next, the theoretical considerations of the state-space
model of the circuit are verified by laboratory measurements. Conclusions that follow from
the theoretical and experimental analysis are in Section 6.

2. The Caputo and CFD Definitions

In this section, we present two definitions of fractional order derivatives which will
be used in further considerations.

Definition 1. The function defined by [1–5]

CDα
t f (t) =

1
Γ(n− α)

t∫
0

f (n)(τ)

(t− τ)α+1−n dτ, (1)

is called the Caputo fractional order derivative, where n− 1 < α < n, n = 1, 2, ...; Γ(·) is the Euler
gamma function and f (n)(t) = dn f (t)

dtn .

Definition 2. If n− 1 < β ≤ n, n = 1, 2, ..., then the Conformable Fractional Derivative (CFD)
of (n− 1), differentiable at t function f (t) (where t > 0), is defined by [17,18,27]

CFDDβ
t f (t) = lim

h→0

f (n−1)(t + htn−β)− f (n−1)(t)
h

. (2)
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Using Definition 2 for 0 < β ≤ 1 we get a simple rule [17,18]

CFDDβ
t f (t) = t1−β ḟ (t), (3)

where ḟ (t) = d f (t)
dt .

In the analysis of fractional electrical circuits, the most popular approach is to use the
Caputo definition. This is one of the oldest definitions of fractional-order differentiation,
and in the analysis of real-world problems we do not require additional initial conditions
as in the case of different definitions. Therefore, the Riemann–Liouville and Grunvald–
Letnikov definitions have not been considered in the paper. The CFD definition is a new
proposition of a fractional order derivative, which is very useful in theoretical analysis and
efficient in numerical analysis. The presented fractional operators are applied in the next
sections in the model of a fractional electrical circuit.

3. Fractional Order State-Space Equations

Consider a fractional linear system described by the equation [1][
Dγ1

t x1(t)
Dγ2

t x2(t)

]
=

[
a11 a12
a21 a22

][
x1(t)
x2(t)

]
+

[
b1
b2

]
u(t), (4)

where Dγi
t are the appropriate fractional order derivative operators: CDαi

t for the Caputo
type derivative (1), CFDDβi

t for CFD Definition (2), and first-order derivative operator d/dt
in the classic case. In our considerations, we will assume that the orders of derivatives are
0 < αi < 1 and 0 < βi ≤ 1. The state variables x1(t) and x2(t) and the input u(t) are scalar
functions of time, aij and bi are constant real coefficients, where i, j = 1, 2. Initial conditions
are defined by xi(0) = xi0.

The solution of the state Equation (4) can be written in the following form [1]

[
x1(t)
x2(t)

]
= F0(t)

[
x10
x20

]
+

t∫
0

[
F1(t, τ)

[
b1
0

]
+ F2(t, τ)

[
0
b2

]]
u(τ)dτ, (5)

where the functions F0(t), F1(t), F2(t) have different forms depending on the considered
derivative definition.

In the case where we use a Caputo definition of fractional order derivative in (4), the
functions take the form

F(Cap)
0 (t) =

∞

∑
k1=0

∞

∑
k2=0

Tk1,k2

tk1α1+k2α2

Γ(k1α1 + k2α2 + 1)
,

F(Cap)
1 (t, τ) =

∞

∑
k1=0

∞

∑
k2=0

Tk1,k2

(t− τ)(k1+1)α1+k2α2−1

Γ[(k1 + 1)α1 + k2α2]
,

F(Cap)
2 (t, τ) =

∞

∑
k1=0

∞

∑
k2=0

Tk1,k2

(t− τ)k1α1+(k2+1)α2−1

Γ[k1α1 + (k2 + 1)α2]
,

(6)

where the matrices Tk1,k2 are given in the following recursive form

Tk1,k2 =


I2 for k1 = k2 = 0,

Ã1Tk1−1,k2 + Ã2Tk1,k2−1 for k1, k2 ≥ 0 (k1 + k2 6= 0),

0 for k1 < 0 or k2 < 0

(7)

and I2 is the 2× 2 identity matrix and

Ã1 =

[
a11 a12
0 0

]
, Ã2 =

[
0 0

a21 a22

]
. (8)
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In the case of CFD definition, the functions F0, F1, F2 take the form [21]

F(CFD)
0 (t) = exp

(
Ã1tβ1

β1
+

Ã2tβ2

β2

)
,

F(CFD)
1 (t, τ) = exp

(
Ã1
(
tβ1 − τβ1

)
β1

+
Ã2
(
tβ2 − τβ2

)
β2

)
τβ1−1,

F(CFD)
2 (t, τ) = exp

(
Ã1
(
tβ1 − τβ1

)
β1

+
Ã2
(
tβ2 − τβ2

)
β2

)
τβ2−1,

(9)

where matrices Ã1 and Ã2 are defined by Formula (8).
The classical case is obtained by substituting in Formula (9) β1 = β2 = 1. Then we

have

F(cl)
0 (t) = exp(At),

F(cl)
1 (t, τ) =F(cl)

2 (t, τ) = exp[A(t− τ)],
(10)

where

A = Ã1 + Ã2 =

[
a11 a12
a21 a22

]
. (11)

Now, let us consider state Equation (4) with zero initial conditions x10 = x20 = 0, a
constant control u(t) = U0, and a nonsingular matrix A.

In the considered case, the solution that describes the step response of the system is
given by the formula [

u1(t)
u2(t)

]
= [F0(t)− I2]A−1BU0. (12)

In this section, the fractional different order state-space equations were presented. The
solutions to the model were considered for three cases of derivative operators: Classical
integer-order derivative, Caputo, and CFD fractional derivatives.

4. Design and Construction of Fractional Elements

To validate the results shown in the previous section, we designed and constructed
an electrical circuit consisting of two RC ladder elements which may be modelled with
fractional order derivatives. Each element has a different order.

There are many papers where the practical realization problem of a fractional order
element (device) has been described [22–24,28–30]. A fractional device is implemented
as a tree, chain or net grid type connection of resistances, inductors and capacitors with
appropriate values for its rated parameters.

In this paper, we focus on the Cauer I type network shown in Figure 1. This ladder
structure requires proper selection of passive components R and C [22–24] in order to
obtain the desired order.

In many articles, different methods of fractional-order ladder realization are consid-
ered and compared. Most of them assume that the order of the fractional power of s is 0.5
or a multiple of this value. The comparison of different approaches is given in [31].

In our research, we are interested in the electrical circuit with at least two different
order fractional elements of the values from the interval α ∈ [0.6, 0.8]. The second important
issue is to choose the frequency interval in which the phase characteristic of a ladder
element is constant. In our case, we assume that the designed elements will have a constant
phase angle for frequencies from 1 Hz to 10 kHz.

In the choice of a Cauer I type structure of the RC ladder, we took into account the
simplicity of physical implementation and the availability of the electrical elements of
the parameters required by the project. Moreover, in this complex optimization problem



Electronics 2021, 10, 475 5 of 13

of parameter (values of resistances and capacitances) choice, the Cauer I type structure
appears as the most numerically efficient.

Figure 1. A ladder circuit with a Cauer I type network structure.

The impedance of the ladder circuit shown in Figure 1 is given by the formula [22–24]

Zn(s) = R0 +
1

C1s + 1
R1+

1
C2s+ 1

R2+···
1

Cns+ 1
Rn

, (13)

where Rk and Ck for k = 1, ..., n are the resistances and capacitances of the circuit.
The fraction of the chain (13) may be expressed in the equivalent form of the following

rational transfer function

Zn(s) =
N(s)
D(s)

=
nnsn + nn−1sn−1 + ... + n1s + n0

dnsn + dn−1sn−1 + ... + d1s + d0
, (14)

where N(s) and D(s) are the n-th degree polynomials and n is the length of the practical
realization.

The perfect element (infinite ladder) of fractional order 0 < α < 1 with pseudocapacity
Cα has an impedance

Z∞(s) =
s−α

Cα
. (15)

Therefore, the proper design process of ladder circuits with fractional order properties
requires an approximation of the power function s−α by the rational Function (14), i.e., we
should choose the values of resistances and capacitances such that

Zn(s) ≈ Z∞(s) (16)

for the desired range of frequency.
One of the approximation methods is based on the development of the expression

(1 + x)−α with the Continuous Fractional Expansion (CFE) method [28–30].
Due to the finite degrees of polynomials appearing in the numerator and denominator

of (14), the continued fraction should be terminated at a certain moment, allowing for an
approximation of the n-th order of the expression (1 + x)−α

Aα
n(x) = 1− αx

1 + (1+α)x
2+ (1−α)x

...
2+ (n−1+α)

2n−1+ (n+α)x
2

(17)

We substitute into Formula (17) x = ω−1
0 s − 1, and then we reduce the resulting

continued fraction to the form of a rational function

s−α

ω−α
0
≈ Aα

n

(
s

ω0
− 1
)
=

n

∑
i=0

pi

ωi
0

si

n

∑
i=0

qi

ωi
0

si
, (18)
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where ω0 is called the central angular frequency, and the corresponding coefficients are
given by the following relations [28,29,32]

pi = qn−1 = (−1)i
(

n
i

)
(α + i + 1)(n−i)(α− n)(i), (19)

where (
n
i

)
=

n!
i!(n− i)!

, (20)

is the Newton binomial coefficient, and

ρ(k) =

{
1 for k = 0

ρ(ρ− 1) · · · (ρ + k− 1) for k ∈ N (21)

is the Pochhammer symbol.
We apply approximation (18) in Formula (15) and we get

Z∞(s) =
ωα

0 s−α

ωα
0 Cα

≈ ω−α
0 C−1

α Aα
n

(
s

ω0
− 1
)

. (22)

We take the right side of the Equation (22) as the rational function, being the approxi-
mation of the impedance (14)

Zn(s) = ω−1
0 C−1

α Aα
n

(
s

ω0
− 1
)

. (23)

Knowing the form (23) of the impedance of the ladder circuit shown in Figure 1, we
may calculate the value of resistances and capacitors required for its proper implementa-
tion.

The described CFE method allows the design of two ladder systems that have different
orders concerning the differential operator. The parameters of these elements are presented
in Table 1.

Table 1. Parameters of the designed ladder circuits.

Parameters Values

α1 0.60
α2 0.75

Cα1 [µF/s0.40] 39.7
Cα2 [µF/s0.25] 45.1

n1 35
n2 25

ω0 [rad/s] 20π

In this section, we briefly describe the synthesis process of the fractional order elements
with desired parameters. Two electrical ladders were designed with fractional orders
α1 = 0.6 and α2 = 0.75, which are used in the analysis of the different order fractional
electrical circuit. The ladders have a constant phase angle in the desired frequency interval
from 1 Hz to 10 kHz with a relative error less than 1%.

5. Fractional Order Electrical Circuit

Consider an electrical circuit that consists of five resistors and two RC ladder elements
of different fractional orders described in the previous section and denoted by triangles in
the diagram shown Figure 2. The input voltage is a step signal with magnitude U0. The
initial voltages across the capacitors are assumed to be zero, i.e., u1(0) = 0 and u2(0) = 0.
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Figure 2. Diagram of the fractional order electrical circuit.

We will measure the voltages across the fractional order elements, i.e., the outputs of
our system will be voltages u1 and u2.

The current in the element of the fractional order is expressed by the formula

ik = Cγk Dγk
t uk, for k = 1, 2, (24)

where Cγk are pseudo-capacities (capacity in the classical case, Cβk in the case of CFDs, and
Cαk in the Caputo definition case), while Dγk

t are the appropriate fractional operators—the
first derivative operator in the classical case, the operator Dβk

t defined in the case of CFD
definition and operator Dαk

t in the Caputo definition case.
Based on the diagram shown in Figure 2, we may write the state-space equation for

the electrical circuit [
Dγ1

t u1

Dγ2
t u1

]
= A

[
u1
u2

]
+ BU0, (25)

where

A =


p11

Cγ1

p12

Cγ1
p21

Cγ2

p22

Cγ2

, B =


q1

Cγ1
q2

Cγ2

 (26)

and the elements of the matrix are as follows

p11 =− (R2 + R4)(R3 + R5) + R2R4

R3 , p12 = p21 = −R4R5

R3 ,

p22 =− (R1 + R5)(R3 + R4) + R1R5

R3 ,
(27)

while the components of the vector are given by

q1 =
R2(R3 + R4) + R4(R3 + R5)

R3 , q2 =
R5(R3 + R4) + R1(R3 + R5)

R3 , (28)

where
R3 = R5(R1R2 + R3R4) + R2(R3 + R4)(R1 + R5) + R1R4(R3 + R5). (29)

Note that the matrix A is a nonsingular matrix, since

det A =
R3 + R4 + R5

R3Cγ1 Cγ2

> 0. (30)

Therefore, the solution of the Equation (25) will be similar to the solution (12)[
u1(t)
u2(t)

]
= [I2 − F0(t)]x∞, (31)
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where

x∞ = −A−1BU0 =
U0

R3 + R4 + R5

[
R3 + R4
R3 + R5

]
(32)

is a vector independent of pseudocapacity, i.e., also of the applied definition of a fractional
order derivative.

Depending on the considered fractional definition, the function F0(t) will have a
different form. In the case of the Caputo definition, we obtain a functional series on the
basis of (6)

F(Cap)
0 (t) =

∞

∑
k1=0

∞

∑
k2=0

Wk1,k2 tk1α1+k2α2

Γ(k1α1 + k2α2 + 1)Ck1
α1 Ck2

α2

, (33)

except that instead of a matrix Tk1,k2 we use matrices Wk1,k2 , which are related by a relation-
ship Wk1,k2 = Tk1,k2 Ck1

α1 Ck2
α2 , which leads to the following recursive relationship

Wk1,k2 =


I2 for k1 = k2 = 0,

P̃1Wk1−1,k2 + P̃2Wk1,k2−1 for k1, k2 > 0 and k1 + k2 > 0,
0 for k1 < 0 and/or k2 < 0,

(34)

where

P̃1 =

[
p11 p12
0 0

]
, P̃2 =

[
0 0

p21 p22

]
. (35)

If we choose a CFD derivative definition, the function F0(t) may be calculated using
Formulas (9), (26), and (35)

F(CFD)
0 (t) = exp

(
P̃1

tβ1

β1Cβ1

+ P̃2
tβ2

β2Cβ2

)
. (36)

We treat the classical case as a special variant of Formula (36), for β1 = 1 and β2 = 1,
i.e.,

F(cl)
0 (t) = exp

[(
P̃1

C1
+

P̃2

C2

)
t
]

. (37)

Table 2 shows the values of resistances of the resistors Rk in the circuit shown in
Figure 2.

Table 2. Values of the resistances of the electrical circuit.

Parameters Values [Ω]

R1 1760
R2 1293
R3 2933
R4 1092
R5 603

Based on the data from Table 2 and Formula (27) and matrices (35) we calculated the
matrices

P̃1 =

[
−434 −29.4

0 0

]
1

MΩ
, P̃2 =

[
0 0
−29.4 −472

]
1

MΩ
. (38)

The circuit was supplied by the step voltage with magnitude U0 = 9.88 V.
Substituting the values of the resistance into Equation (32) we may compute a voltage

vector in a steady state

x∞ =

[
8.70 V
7.64 V

]
. (39)
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The electrical circuit was based on the diagram shown in Figure 2 and was supplied
with a step voltage signal from a functional generator NI PXI–5402. The experimental
data for the performed ladder systems were obtained during measurement of time-voltage
characteristics and have the form of a set

{
(tk, û1,k, û2,k), k = 0, 1, . . . , n

}
, where ûj,k are the

voltages measured across the fractional order ladder systems at time instants tk = k∆t,
wherein ∆t = 1 ms is the sampling period, while the number of measurements was selected
experimentally in such way that n = 3000.

For the circuit under consideration, we know the general form of the solution of
state equation (31) and we take into account steady-state voltage vector (39) as well as
matrices P̃1 and P̃2 in (38). We may also assign an appropriate function F0(t) for the Caputo
definition case (33), for CFD derivative (36) and for the classical first-order derivative
case (37).

We shall find the parameters of the fractional order elements depending on the
differential operator used in each model (orders of the derivative, values of pseudo-capacity
or capacity). In the case of the Caputo model, we may take the values from Table 1. For
the remaining cases of the models with CFD and classical derivatives, the appropriate
parameters should be estimated. To find an optimal value of the parameters, we use a
series of measurement data with the cost function of the form

J =
2

∑
j=1

n

∑
k=0

(
uj,k − ûj,k

)2

ûj,k
, (40)

where uj,k = uj(tk) are the values taken from the state equation models.
A set of acceptable values of the parameter vector Θ varies depending on the model

that is currently considered. In the classical case of the first-order derivative, we have
Θ = {(C1, C2) : C1, C2 > 0}, while in the case of CFD definition we have a set:

Θ =
{(

β1, β2, Cβ1 , Cβ2

)
: 0 < β j < 1, Cβ j > 0, for j = 1, 2

}
.

5.1. CFD Model

The estimated values for the CFD model are presented in Table 3.

Table 3. Parameters of the ladder circuit in the Conformable Fractional Derivative (CFD) model.

Parameters Values

β1 0.31
β2 0.51

Cβ1 [µF/s0.69] 434.7
Cβ2 [µF/s0.49] 202.0

Substituting the estimated parameters of the fractional and pseudocapacitance from
Table 3 and matrices (38) concerning Formula (36), we obtain the form of the function used
in solution (31)

F(CFD)
0 (t) = exp

([
−3.29t0.31 −0.22t0.31

−0.284t0.51 −4.56t0.51

])
. (41)

5.2. Classical Case Model

The values estimated in the classical case model are presented in Table 4.

Table 4. Parameters of the ladder circuit in the classic case model.

Parameters Values

C1 [µF] 14.8
C2 [µF] 27.9
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Substituting the estimated parameters from Table 4 and matrix (38) into Formula (37),
we obtain the form of the function used in solution (31)

F(cl)
0 (t) = exp

([
−29.6t −1.98t
−1.05t −16.9t

])
. (42)

5.3. Caputo Model

Substituting the given parameters of the fractional order pseudocapacitance from
Table 1 into formula (33), we obtain the form of the function used in solution (31)

F(Cap)
0 (t) =

∞

∑
k1=0

∞

∑
k2=0

Wk1,k2 t0.60k1+0.75k2

Γ(0.60k1 + 0.75k2 + 1)(0.000397)k1(0.000451)k2
. (43)

The matrix coefficients appearing in the function series (43) have been defined by (34)
and the respective matrices and have the form (38).

Figures 3 and 4 show the time characteristics of voltages across the fractional order
ladder elements with α1 = 0.60 and α2 = 0.75 in an electrical circuit supplied by a step
voltage signal U0 = 9.88 V. Additionally, based on solution (31) and taking into account
Functions (41), (42), and (43) theoretical characteristics are simulated for each type of
model.

Figure 3. Time-voltage characteristics of a ladder element with α1 = 0.60 and the theoretical responses
of the models.

Figure 4. Time-voltage characteristics of a ladder system with α2 = 0.75 and the theoretical responses
of the models.

Comparing the real and theoretical time-voltage characteristics, we computed the
relative errors, which are shown in Figures 5 and 6.
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Figure 5. Relative error of the time-voltage characteristics of the ladder element depending on the
model for α1 = 0.60.

Figure 6. Relative error of the time-voltage characteristics of the ladder element depending on the
model for α2 = 0.75.

Analysis of the characteristics shown in Figures 3–6 implies that the model with
classic integer-order derivative is highly inaccurate. This model is not able to reflect the
dynamic behaviour of the process, especially the initial stage of charging, when the voltage
changes across the fractional order ladder element are very rapid. The relative error of the
time-voltage characteristics of the ladder systems reach a value exceeding 28.5%.

The model with the CFD derivative allows for greater precision of description, espe-
cially in the initial stage of loading. The maximum relative error is over three times smaller
than in the classical case model and is no more than 8.5%. The time interval in which the
response of the CFD model significantly differs from the experimental data is shorter than
in the classical case model, which is reflected in the mean values of the relative errors.

The model based on the Caputo definition describes the dynamics of the voltage at
the terminals of ladder circuits with the highest precision. The maximum relative error
reaches 1.8%. The voltage characteristic of the Caputo model over longer periods of time is
correct with a small value of the mean relative error, not more than 0.3%.

6. Conclusions

The experiments and theoretical analyses conducted in this paper showed significant
limitations related to the application of the classical integer order model to describe the
dynamic behaviour of the RC ladder circuits. The model based on the conformable frac-
tional derivative definition improves the accuracy of the description of the time-voltage
characteristics of charging of the ladder circuit. It is worth noting that the CFD type model,
despite this inaccuracy, is very efficient in numerical computations; therefore such a model
type is useful in the analysis of electrical circuits with more than one fractional order.
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The state-space equations with fractional order operator of Caputo type ensure the best
precision in comparison to the other derivatives considered in this paper.
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