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Co-Simulation and Data-Driven

Based Procedure for Estimation of

Nodal Voltage Phasors in Power

Distribution Networks Using a

Limited Number of Measured Data.

Electronics 2021, 10, 522. https://

doi.org/10.3390/electronics10040522

Academic Editor: Luca Giaccone

Received: 20 January 2021

Accepted: 18 February 2021

Published: 23 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Electrical Engineering, Computer Science and Information Technology Osijek,
Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; toni.varga@ferit.hr (T.V.);
vedrana.jerkovic@ferit.hr (V.J.Š.); tin.bensic@ferit.hr (T.B.)
* Correspondence: marinko.barukcic@ferit.hr; Tel.: +385-31-224-6098
† Current address: Faculty of Electrical Engineering, Computer Science and Information Technology Osijek.
‡ These authors contributed equally to this work.

Abstract: The paper studies the framework for the application of computational intelligence methods
used for estimations in the distribution power system when a decreased number of measured data is
present. Due to the lack of all measured data, the estimation of the distribution power system state is
very challenging. The paper studies the application of the artificial neural network and metaheuristic
optimization in synergy to solve the voltage phasors estimation problem. The proposed method
uses a metaheuristic optimization technique to find virtual input data for the physical model of the
network. The presented framework is based on the usage of different computational tools in co-
simulation configuration. The research output is the proposed co-simulation setup for the estimation
in the distribution power system using a decreased and limited number of available measured data.
The estimation procedure was applied on four test distribution networks to validate the presented
approach. The maximal estimation errors in voltage magnitudes and angles, using the proposed
setup, are below 1.75% and 1◦, respectively, without considering the measurement errors. When the
measurement errors are taken into account, the proposed procedure estimates voltage magnitudes
and angles with errors below 2.5% and 1.4◦, respectively. In the scenario considering the consumers’
load shape, including the uncertainty range of 20%, the maximal estimation errors are below 1% for
magnitude and 0.45◦ for the angle taking the measurement errors in the range of 2% into account.

Keywords: artificial neural networks; co-simulation; computational intelligence techniques; distribu-
tion power system; estimation; metaheuristic optimization

1. Introduction

The development of the smart grid concept (in the last decades) set additional re-
quirements to obtain data related to the power network state. Such main data are the
voltage profile of the distribution network because it represents basic information for fur-
ther calculations used for the network management and control. In the power transmission
system, due to a smaller number of network nodes, measurement of all, or almost all,
nodal voltages is usually available. Unlike the power transmission network, in distribution
networks, due to a large number of network nodes, measuring of the whole voltage profile
is generally not provided. Because of no or limited measurement data, different estimation
techniques have been applied to solve the problem.

The estimation method, based on smart metering, used to estimate loads and voltage
profile is presented in [1]. In [2], the estimation procedure applied to the power trans-
mission system using Phasor Measurement Unit (PMU) data is presented. The Artificial
Neural Network (ANN) is used to obtain the pseudo measurements used in the estimation
procedure presented in [3]. The references apply mathematical procedures for solving
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the estimation problem using weighted least squares (WLS). With developing computa-
tional intelligence techniques, these methods have recently been more frequently used
in estimation procedures. The current magnitudes and PMU measurements are input
into the data driven and ANN-based estimator proposed in [4]. The most recent studies
applying the data driven procedures are presented in very interesting papers [5,6]. In [5], a
Deep Neural Network (DNN) estimation procedure is developed and presented. Menke
et al. [6] presented an ANN-based estimation technique using the standard multi-layered
perceptron (MLP) ANN. In [7], three MLP ANN are used to estimate state variables in the
distribution network using measured voltage phasors obtained by PMU. ANN outputs
are nodal voltage phasors and loadability limit of the power network. ANN is used in [8]
to obtain voltage profiles and losses for different combinations of distributed generation
(DG) sizes and locations. Here, the input in ANN is a DG size and location based on what
ANN gives to nodal voltage magnitudes. The authors of [9] used ANN to estimate the
voltage magnitude in the specific network node using node powers as ANN inputs. In [10],
ANN is used to estimate a voltage stability index based on PMU measurement data. The
load values are used in [11] as ANN inputs to obtain the magnitude of nodal voltages as
well as real and reactive losses in the power distribution network. In [12], ANN is used
to obtain pseudo measurements of network loads based on historical load data, weather
conditions and time of the day. An overview of different estimation techniques (classical
and computational intelligence) can be found in a review article [13]. As can be seen
from the aforementioned references, most studies use PMU meters (which are complex
measurements) as an input for the estimation method in the case when voltage phasors are
estimated. If such input data are not used for inputs, then only voltage magnitudes are
estimated. The literature review points to gaps regarding the determination of sufficient
measured quantities in distribution networks, complexity of estimation methods and volt-
age phasor estimations (based on basic measurements not using sophisticated measured
devices such are PMU). Despite the intensive research, there are some research challenges,
defined by the mentioned gaps, which need to be solved. The research presented here aims
to overcome this gap by trying to present the procedure to obtain nodal voltage phasor
based on a simple and limited number of measurements.

The main motivation for this study is to propose the estimation procedure for the
distribution network voltage profile using a limited and minimal number of measured
data. The research hypothesis is that voltage values and angles (the voltage phasor) can
be estimated by measuring only a decreased number of the nodal voltage amount and
input power in the slack (swing, reference) node. Furthermore, the problem can be solved
by using different computational intelligence techniques in the synergy application. The
proposed procedure is based on the computational intelligence techniques since there is
a lack of measuring data in the power distribution networks. The co-simulation setup
between a tool for power system analysis and computational intelligence methods is used
in the research. The presented paper aims to use the basic measured data (because of easily
available and cheap measuring devices) and as simple configurations of the computational
intelligence techniques used in the framework as possible. The proposed data driven and a
co-simulation-based procedure tries to contribute to decreasing the mentioned research
gaps.

The rest of the paper is organized as follows. In Section 2, the computational intelli-
gence techniques and simulation tools used in the study are briefly described. Section 3
gives an overview of the proposed estimation method. In Section 4, the application of the
estimation procedure on the test power distribution systems is presented. In this section,
the obtained results are commented on. At the end, the conclusion is made in Section 5.

2. A Brief Overview of the Used Computational Intelligence Techniques

Two different methods of computational intelligence were used in the study: a meta-
heuristic optimization method and a simple MLP ANN. Since one of the study motivations
is to apply the co-simulation approach, the existing tools for these two methods were
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used. Instead of detailed descriptions, a short overview of these computational intelligence
methods is given below because they are very well described in the literature and not
developed but only used here. The tool for power system analysis was applied to generate
training and testing datasets. The power system analysis tool uses a physically-based
mathematical model of the power system unlike ANN which implements a nonphysical
based model.

2.1. Metaheuristic Optimization Method and Computing Tool

MIDACO (Mixed Integer Distributed Ant Colony Optimization) solver [14] is an
optimization tool that has an interface related to different programming environments
(C/C++, Python, Julia, MATLAB, etc.). The MIDACO tool can be used for the general
type of an optimization problem, i.e., continuous (linear (LP) and nonlinear (NLP)), integer
(discrete) (IP) and mixed-integer (MINLP) problems. Optimization problems that can be
solved using MIDACO include unconstrained and constrained problems as well as single
objective (SOOP) and multi-objective optimization problems (MOOP). Owing to its interface
for different programming languages and applicability for a general type of an optimization
problem, the MIDACO tool is very suitable to be used in the co-simulation approach used
in the research. The MIDACO tool implements the metaheuristic optimization method Ant
Colony Optimization (ACO) [15]. In the MIDACO solver, the solution candidate from
the problem-solution space is generated using kernels with a radial basis function. The
function used for kernels is a Gaussian function and kernels correspond to the pheromones
in ACO. Using the kernel function, the pheromones intensity defining the probability to
move/keep ants (solution vector x) in the promising area in the solution space [15]:
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The kernel parameters w (weight), µ (mean) and σ (standard deviation) are updated
during the optimization process according to the procedure given in [15]. The MIDACO
solver has 12 parameters whose numbers of ants and kernels are tuned during the research.

2.2. ANN Configuration and Computing Tool

One simple and very basic MLP ANN configuration contains input, one hidden and
output layer (Figure 1).

Figure 1. Multi-layer perceptron ANN with one hidden layer (the figure is generated using an online
tool [16]).
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This is basic feedforward ANN whose training and calculation procedures are very
well developed and known. The ANN outputs from hidden and output layers are obtained
by multiplying input values vector of the layer and weighting matrix. ANN has also a
hyperparameter defining configuration and parameter values in the ANN structure. Some
of the most important parameters are activation functions for each layer, optimization
algorithm for training, learning rate and the number of neurons in the hidden layer. The
Tensorflow computational tool [17] was used to implement ANN in the voltage estima-
tion procedure. The Keras application programming interface (API) [18] for Tensorflow
(TensorFlow.Keras module in Tensorflow 2 version) tool was used to easily build ANN.

2.3. A Computational Tool for Analysis of the Distribution Network

Similar to the two above tools, it is required to have a programming environment
for this tool. One of such tools used here is OpenDSS (Open Distribution system Simula-
tor) [19] which can be interfaced to Matlab, Python, C++, VBA, etc. The power network
representation in OpenDSS is made by a simple textual script (OpenDSS script), and it
is very easy to get, change and set properties of OpenDSS objects from outside the tool.
The tool provides different types of calculations such as unbalanced power flow, fault
analysis, harmonic analysis in the power system. OpenDSS simulates the power system in
the phasor (frequency) domain.

3. The Proposed Framework for the Voltage Phasor Profile Estimation

The proposed framework for the voltage phasor profile estimation is divided into two
stages, denoted here as Stage A and Stage B (Figure 2).

Figure 2. The workflow of the proposed framework for the voltage phasor profile estimation.

The first stage (Stage A) deals with data preparation and ANN configuration for
estimating network quantities. Stage A consists of three steps. The first step (A1) is
preparation of data required for ANN training and testing as well as input data used in
Stage B. The procedure for defining measured and estimated quantities is included in the
second step (A2). The third step (A3) performs the ANN building, training and testing,
thus resulting in prepared ANN (configured, trained and tested) to be applied in Stage
B. Stage B has two steps. The first one (B1) performs the metaheuristic optimization to
obtain adequate load combinations in the network. Step B2 estimates the network voltage
profile based on the results obtained in Step B1 using the physical-based model of the
distribution network. The overview of the framework steps is given in Figure 2 showing
the interactions between the used simulation tools in the co-simulation setup.
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3.1. Data Preparation—Step A1

ANN performance highly depends on the type of input and output data (among other
things). For the generation of relevant dataset, mathematical formulation of the physical
network model was used. The set was generated by making different combinations of the
loads in the network. The samples of input data for the estimation procedure are obtained
for the randomly generated network loads. Each load (active power Pi and reactive power
Qi) is independently generated (as a fraction of the nominal powers Pi,N and Qi,N) to map
a more general case of loads change in the real situation:

ci = rand(0, 1), Pi = ciPi,N , Qi = ciQi,N , (2)

This generation of load combinations is more general than using the load factor on the
network level or the load shapes, consequently reflecting a more realistic scenario, which
can occur in real situations. Thanks to the usage of the network simulation tool (OpenDSS
software in this case), different datasets such as nodal voltages (the network voltage profile),
total network losses, input power in the slack node, currents in the network line segments
and power flows in network line segments (one and three phases) can be obtained. Based
on these datasets, different quantities can be used as inputs/outputs for ANN. During
the estimation procedure, four independent datasets are generated: one as input for Step
A2, two (for training and testing) as input for Step A3 and one as input for Step B1. The
number of different load combinations (obtained according to (2)) was determined by
applying the next rule (the rule is experimentally defined during the research) based on
the number of the one-phase network node (N1 f ): input for Step A2 is 50× N1 f , input for
Step A3 is training 100× N1 f , input for Step A3 is testing 500× N1 f and input for Step B1
is 500× N1 f .

3.2. Determination of Measured and Estimated Quantities—Step A2

The analysis of different input/output combinations was done during the research
aiming to meet the predefined requirements of decreasing the number of simple mea-
surements and conducting simple ANN configuration. The process of determining the
dominant input data for ANN was performed as an important factor for ANN applica-
tion [20]. The input/output combinations investigated during the research were the section
currents/section currents, section currents/loads, section currents/nodal voltages, nodal
voltages/loads and nodal voltages/nodal voltages. Based on the analysis of the researched
ANN input/output combinations, the conclusion is that the nodal voltages/nodal voltages
case best meets the defined research goals. Upon defining a suitable type of physical
network quantities for ANN input/output, the procedure for determining the dominant
input data was performed. The procedure outcomes are network nodes with voltage
measurements (ANN inputs) and voltage estimations (ANN outputs). The goal is to find
the lowest possible number of measured nodal voltages that are highly correlated to the
rest of nodal voltages in the distribution network. This procedure is based on the statistical
technique to obtain the correlation between ANN inputs and outputs. The input data
generated according to (2) have no Gaussian distribution due to the usage of uniform
distribution for random number generation. Because of this and nonlinear dependence
between ANN inputs and outputs, non-parametric correlation techniques need to be used
instead of parametric (Pearson’s correlation) correlation methods [21]. One of the rank
correlation methods, namely Kendall’s rank correlation [22], is used here. According to
Corder and Foreman [21], the relationship strength of variables is strong/large and direct
if the correlation coefficient is above 0.5. Upon calculating correlation coefficients between
every two nodal voltages, the measured voltages are chosen on the criterion of strongly
correlating with as many other nodal voltages as possible. In this procedure, network
nodes are sorted in descending order according to the value of the correlation coefficients
corresponding to the nodal voltage/nodal voltage relationship. There are two lists of
network nodes generated in this procedure—the list of nodes with and without voltage
measurements. The list of network nodes with voltage measurements is first completed
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with the highest correlation coefficient nodes. The list of nodes without measurements
is populated with nodes correlating to nodes in the node list with measurements. At
the end of this process, network nodes with voltage measurements and voltage estima-
tions (without measurements) will be determined. The process in this step is performed
simultaneously with the next step (Step A3) as described below.

3.3. Building, Training and Testing of ANN—Step A3

One of the research goals is to simplify the used computational intelligence method,
as mentioned in the Introduction. In this sense, a very simple (basic) configuration of ANN
consists of input, one hidden and output layer (Figure 1). The numbers of input and output
neurons are defined by the numbers of network nodes with and without measurements,
respectively. The hidden layer has the same number of neurons as the input layer. The
error of estimated voltage values by ANN is highly impacted by the number of measured
voltages. On the other hand, there is a request for a decreased number of measured values
(one of the defined research goals). The limitation of the estimation error was defined
to find the trade-off between these two conflicting requirements. This limitation can be
expressed as the requirement that the maximum estimation error ∆Vmax is below the given
error limit ε:

∆Vmax ≤ ε, (3)

The process of ANN building and determination of network nodes with and without
voltage measurement partly includes Step A2, as presented in Figure 3.

Figure 3. The procedure for determining the number of ANN inputs and outputs—Step A2 in a
closed loop with Step A3.

Owing to the proposed approach, the network observability has been kept low (which
is one of the research goals) with a satisfying low estimation error. The observability factor
can be defined as the ratio of the number of voltage measurements (Nm) and all nodal
voltages (Nall) in the network [5]:

O =
Nm + 3

Nall
, (4)

The addition of the number 3 in (4) represents the measurement of total power per
phase in the network slack node as explained in the next section. The observability factor
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defined by (4) is related only to the measured quantity. However, the whole procedure
estimates the nodal voltage phasors, and, since the two data (magnitude and angle) need
to be measured to get the phasor, the observability factor can be defined in that case as:

Oph =
Nm + 3
2Nall

, (5)

The outcome of the first stage (Stage A) is trained ANN for estimating nodal voltage
magnitudes in the network node without measurements using the measured nodal voltage
magnitudes for decreased observability of the distribution network. If there are voltage
regulators or on load tap changer transformers, their tap positions are assumed to be
known or measured as well.

3.4. Obtaining the Virtual Loads for Voltage Phasor Estimation—Step B1

With trained ANN obtained in the previous procedure stage, the network voltage
profile can be estimated for voltage magnitudes. The next procedure stage has the role of es-
timating the whole voltage phasor. The first step in this stage does the optimization process
to obtain the network load values, which are further used in the estimation procedure. The
optimization problem was defined with network loads as optimization decision variables.
The nodal voltage magnitudes and total power are used to formulate the optimization
objective function. The mathematical formulation of the optimization problem is given by:

F(x) =
Nall

∑
i=1
|(Vi,m −Vi,e)|+

3

∑
j=1
|(Pj,m − Pj,e)|

xopt−−→ min

subject to box constraints:x ∈ {xlb, xub}
subject to inequality constraints:

Vmin ≤ Vi,e ≤ Vmax, Ik,e ≤ Ik,max, |Vi,e −Vi,m| ≤ ε

with decision variables:

x = [P1, Q1, · · · , Pi, Qi, · · · , Pn, Qn],

(6)

where Vi,m, Vi,e, Pj,m and Pj,e are measured and estimated (by Step A3) voltage magnitudes
and power (in the slack network node), respectively, Ik,e is calculated current in the network
line sections and Pi and Qi are load values in the network nodes with loads. The simulation
tool (Section 2.3) was used to calculate the objective function and constraint values in (6).
The metaheuristic optimization method described in Section 2.1 was used to solve the
optimization problem (6). The outcome of this procedure step are the values of the loads
making the nodal voltage magnitude close to their measured and values estimated in Step
A3. As shown below, this procedure can find load combinations different from the real
one; however, that gives not only nodal voltage magnitudes but also nodal voltage phasors
very close to their real values. Based on this research outcome, the load values obtained in
this procedure step are called virtual load values. During the research, the next interesting
cognition was reached. Different load combinations can give very close nodal voltage
values. This implicates that the optimization problem (6) has many local optimums close
to the global optimum.

3.5. Estimation of Nodal Voltage Phasors—Step B2

This is the final step of the proposed procedure. In this step, the simulation tool
(Section 2.3) is applied by using virtual load values obtained in the previous step. The
usage of the physically-based network model and obtained virtual load values complete
power flow calculation. Consequently, the values of different quantities (network losses,
line currents, etc.) in the network can be obtained, although the estimation procedure was
designed to estimate only nodal voltage phasors.
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4. Obtained Results for Test Distribution Networks

The proposed framework was applied to four very common IEEE test distribution
networks, namely 13, 34, 37 and 123 bus systems [23]. Since IEEE test networks are very
well known, a detailed description is omitted here. A brief overview of the main features
of each test network is given. The IEEE 13 node feeder is a fully unbalanced network
with 1, 2 and 3 phase lines and loads (different load models: constant power, impedance
and current). The feeder has several laterals. The IEEE 34 node system balances spot
three-phase and distributed one-phase loads with three- and one-phase lines. The IEEE 37
and 123 node feeders are the unbalanced systems with spot loads modeled by different load
models. The overview of the numbers of one-phase network nodes and loads (balanced
three-phase loads are counted as one load) is given in Table 1 and configurations of the
tested networks in Figure 4.

Table 1. Numbers of the network nodes and loads for the tested networks.

Test Network IEEE 13 IEEE 34 IEEE 37 IEEE 123

number of 1-phase nodes 41 91 111 278
number of loads 15 52 47 98

Figure 4. Configuration of test distribution feeders according to Distribution Test Feeder Working
Group - IEEE PES Distribution System Analysis Subcommittee [23].

Since the used computational intelligence techniques in the proposed procedure are
not deterministic but have stochastic character, many different load combinations are
required to test and validate the framework. The sizes of the input data for the specific
procedure step are shown in Table 2 based on the rule defined at the end of Section 3.1.

Table 2. Input dataset sizes used in the simulations.

Test Network N1 f Input in A2 Input in A2
Training

Input in A2
Testing

Input in
B1 and B2

IEEE 13 35 1750 3500 17,500 17,500
IEEE 34 89 4450 8900 44,500 44,500
IEEE 37 111 5000 11,100 55,500 55,500

IEEE 123 272 5000 27,200 136,000 136,000



Electronics 2021, 10, 522 9 of 18

The numbers of network nodes with and without measurements (determine the num-
ber of neurons in hidden and output ANN layers, respectively) of the voltage amplitude as
well as the observability factors ((4) and (5)), are given in Table 3.

Table 3. Number of measured (Nm) and estimated (Ne) one-phase voltages and observability factors
for tested networks.

Test Network N1 f Nm Ne O Oph

IEEE 13 35 17 18 0.57 0.29
IEEE 34 89 18 71 0.24 0.12
IEEE 37 111 17 94 0.18 0.09

IEEE 123 272 26 246 0.11 0.05

After performing Step A3, where the nodal voltage magnitudes were estimated by
ANN. The obtained estimation errors are presented in Table 4.

Table 4. Maximum and average percentage errors (absolute amounts) for estimated nodal voltage
magnitudes (Step A2).

Test Network errmax in % errmean in %

IEEE 13 1.34 0.95
IEEE 34 0.92 0.57
IEEE 37 1.06 0.71

IEEE 123 1.16 0.72

In Figure 5, the distributions of errors for tested networks in nodes with the highest
errors are shown.

Figure 5. Box plot of the error distributions in the network nodes for the tested systems (nodal
voltage magnitudes estimated by Step A3).

After the nodal voltage magnitudes estimated in Step A3, Stage B started. The esti-
mated voltage magnitudes from the previous step were involved in the objective function
(6) and the virtual loads were obtained by performing Step B1. In this step, very inter-
esting and unexpected results were achieved. During the research, it was noted that the
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optimization procedure can find different load combinations that move nodal voltage mag-
nitudes very close to the given values. This indicates that the optimization problem (6) has
more local optimums close to objective function values. This means that the optimization
problem is difficult to solve because there is a high possibility the algorithm is stuck in the
local optima. Upon analysis, it was noted that the loads found by the optimization are
different from the real ones. However, the voltage profile produced by estimated loads is
very close to the one produced by real loads. This is a more interesting finding since there
are more different load combinations that voltage profiles very close to each other can give.
This incidental and unexpected conclusion was drawn from the research. To visualize this
conclusion, the examples of the estimated and real load values as well as corresponding
voltage profiles for the IEEE 13 node test network are shown in Figure 6. Similar results are
obtained for all tested networks.

Figure 6. (a) Different load combinations resulting in (b) close voltage profiles. Example for IEEE 13
node test feeder.

In the final step of the proposed procedure, Step B2, the virtual load combination
obtained in the previous step (Step B1) was used as input resulting in a complete power
flow solution. Thanks to the usage of the physically-based network model and power flow
calculations, not only nodal voltage phasors (which was the main research goal) but other
quantities, such as network losses and currents in the lines, can be obtained.

In Figure 7, the distribution of relative errors (absolute amounts) for nodes with the
biggest errors (for each tested network) is shown. As shown in the figure, the highest errors
do not exceed 1.7% of the voltage phasor magnitude for all used distribution test networks.
A very high number of different load combinations (last column in Table 2) was used, and
it is interesting to see error distribution in Figure 7. For all tested networks, the mean of
the errors is below 0.5% and, for 75% (the third quartile) of data, the error is below 0.7%.
Consequently, in the majority of cases, the magnitude voltage error is below 0.7%, 0.5%,
0.6% and 0.6% for IEEE 13, 34, 37 and 123 node test feeders, respectively. This applies to
nodes with the highest errors while other nodes have even lower errors.
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Figure 7. Distribution of relative errors of nodal voltage phasor magnitudes for nodes with the
highest errors.

The absolute angle errors are given in Figure 8. In this case, the absolute values are
shown instead of the percentage error since the referent phase has a phase angle of 0◦. Due
to this, even a small absolute error will result in a high percentage error. For two other
phases (with phase shift angles of 120◦ and −120◦) there is no such numerical problem,
e.g., the absolute error of 0.2◦ will result in a percentage error of about 20% for the referent
phase and about 0.17% for the two other phases. The maximum phasor angle error is below
1.15◦ (IEEE 37 node test feeder) and below 0.4◦ in 75% of tested cases.

Figure 8. Distribution of absolute errors of nodal voltage phasor angles for nodes with the highest errors.

The procedure was performed on the desktop PC equipped with i7-10700 CPU, 16 GB
RAM and SSD storage. Python version 3.8.5, Tensorflow version 2.3.1. for CPU and
MIDACO version 5 were used. The computational times for the ANN training (for the
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number of data given in Table 2) in Step A3 and the optimization in Step B1 are presented
in Table 5. The ANN training was performed using 2500 epochs and optimization by
MIDACO with 100 ants, 10 kernels and 5000 maximum number of function evaluation.
The time spent for the optimization process is given per one input data pattern because in
the procedure implementation one sample of input values is used.

Table 5. Computational times of ANN training and optimization.

Test Network t in s, ANN Training t in s, Optimization

IEEE 13 26.88 1.07
IEEE 34 37.07 2.65
IEEE 37 53.32 1.92

IEEE 123 159.07 5.27

4.1. The Procedure Robustness

Since measurement devices work with some accuracy, robustness of estimation algo-
rithms is usually investigated. Randomly generated errors were added to the real voltage
magnitude values to simulate the measurement errors. The errors were generated by using
random numbers in the range from −2% to 2% applying the uniform distribution. Usually,
in practice, the accuracy of measurement devices is 1% and lower. However, such a high
measurement error limit was intentionally set here to investigate the algorithm robustness
for a very unfavorable case. The obtained errors were added to the input data for the
procedure of Step A2 after which Steps A3 and B2 were performed. It is interesting to
compare errors in estimated voltage magnitudes by Steps A3 and B2 for cases with and
without considering measurement errors. Without considering the measurement accuracy,
the maximal estimation errors of Step A3 (Table 4) are lower than those obtained by Step
B2 (Figure 7). The obtained nodal voltage magnitude considering the measurement errors
is given in Figures 9 and 10 in the form of box plots showing error distributions. As
can be noted, the voltage magnitude estimation by ANN (Step A3) has lower accuracy
comparing the estimation not considering measurement errors (comparison of Table 4
and Figure 9). However, Step B1 (the optimization procedure) significantly improves the
estimation quality giving slightly higher estimation errors (in Step B2) than in the case
when measurement accuracy is considered (comparison of Figures 7 and 10).

Figure 9. Distribution of percentage errors (absolute amounts) of nodal voltage phasor magnitudes
for nodes with the highest errors obtained in Step A3.
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Figure 10. Distribution of percentage errors (absolute amounts) of nodal voltage phasor magnitudes
for nodes with the highest errors obtained in Step B2.

In Figure 11, the voltage phasor angles of estimated nodal voltages are presented.

Figure 11. Distribution of absolute errors of nodal voltage phasor angles for nodes with the high-
est errors.

4.2. Scenario Using Consumers’ Load Shape

The consumers’ load shapes are very often known (with more or less uncertainty) in
the distribution power network. The load shapes are usually characterized by a consumer
type and day/season type. The application of the proposed method was applied to the
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scenario when the distribution network operator had a load shape of the customers. The
load shape, given in Figure 12, was used in the simulations.

Figure 12. Consumers’ load shapes with the uncertainty range of 20%.

In this scenario, the uncertainty in the hourly load values in the range of ±20% was
applied and load combinations were generated according to:

ci = rand(−0.2, 0.2), Pi = ciPi,t, Qi = ciQi,t, (7)

where Pi,t and Qi,t are active and reactive load powers of ith load in hour t. The lower and
upper box constraint limits in (6) are defined in the range of the given hourly load xt with
the uncertainty (20% in this case) as:

x ∈ {xt − 0.2, xt + 0.2}. (8)

This scenario considers the measurement errors as presented in the previous section.
It is important to emphasize that there is no need to repeat the estimation procedure (Stage
A, i.e., it is not required to build and train ANN again) before a generated/trained ANN is
used. Only a new dataset denoted as Test Data 2 (in Figure 2) was generated according to (7)
and Stage B was performed. The highest estimation errors obtained for voltage magnitudes
by ANN are in the same ranges as those given in Figure 9 (for generally generated load
combinations without applying the load shape).

The results in the box plot related to the estimation error distributions for nodes with
the highest error values are presented in Figures 13 and 14 for nodal voltage magnitudes
and angles, respectively.

The results in Figures 13 and 14 show that voltage phasor estimation errors are lower
when the consumers’ load shapes are known compared to the scenario with the unknown
load shape (Figures 10 and 11). The magnitude errors are below 1%, 0.85%, 0.6% and 0.45%
of magnitudes and below 0.45◦, 0.35◦, 0.35◦ and 0.25◦ for voltage angles in the case of
tested IEEE 13, 34, 37, and 123 node feeders, respectively. The maximal estimation error in
voltage magnitudes and angles, in this case, is lower than the measurement error range
and inside the first three quartiles of the simulated data the error is very low (below 0.5%,
0.15%, 0.1% and 0.2% for magnitudes and 0.25◦, 0.1◦, 0.1◦ and 0.15◦ for angles for IEEE 13,
34, 37 and 123 node test feeders, respectively).

The data (with explanations) used in the simulations are available on: https://drive.
google.com/drive/folders/1b4Lx4LJBdNk9vQFBQASMrB3R9HTUeV6i?usp=sharing, ac-
cessed on 17 February 2021.

https://drive.google.com/drive/folders/1b4Lx4LJBdNk9vQFBQASMrB3R9HTUeV6i?usp=sharing
https://drive.google.com/drive/folders/1b4Lx4LJBdNk9vQFBQASMrB3R9HTUeV6i?usp=sharing
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Figure 13. Distribution of absolute errors of nodal voltage phasor magnitudes for nodes with the
highest errors (scenario considering the load shape).

Figure 14. Distribution of absolute errors of nodal voltage phasor angles for nodes with the highest
errors (scenario considering the load shape).

5. Discussion

Based on the presented results, the main features of the proposed method are described
here. In the scenario without the measured errors (or with very low errors), Step A3 (ANN)
estimates the nodal voltage magnitudes with even lower errors (Figures 5 and 7) than Step
B2 (power flow using virtual load values). This is a very interesting outcome because a
very simple ANN (with one hidden layer) was used compared to the recent application
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of a more complex DNN in [5] or MLP ANN with more hidden layers in [6]. The main
step that enables using such simple ANN is procedure Step A2, i.e., the procedure step for
determining the ANN input and output quantities (Figure 3). However, a more realistic
scenario including the measurement errors in the input data shows the requirement for
applying procedure Stage B to a more accurate estimation of the voltage magnitudes
(high errors for ANN estimation (Figure 9) are significantly decreased by the optimization
(Figure 10)) as well as voltage angles. Comparing Figures 7, 8, 10 and 11 leads to the
conclusion that the estimation procedure estimates voltage phasors with lower accuracy
in the case with measurement errors in comparison to the case without measurement
errors. Based on this analysis, it can be stated that the proposed estimation procedure is
robust with a low impact of measurement accuracy on it. The additional decreasing of
the estimation errors is obtained by using load shapes (but also with a wider range of
uncertainty). These improvements in the nodal voltage phasor estimation are caused by
defining the narrower decision variable ranges in (8) which is possible by knowing the load
shape and its uncertainty. Consequently, the optimization algorithm is directed in the part
of the solution space that contains the global optimum solutions and done intensification
of the interesting part of the solution space. In other words, the optimization algorithm
will find virtual values of the load closer to their real values. Virtual load values will be
closer to their real values the narrower is the uncertainty range of the load shape.

The presented results indicate that estimation accuracy depends on the network
configuration. The estimation accuracy is comparable to those in the references. In [6],
the estimation error of nodal voltage magnitudes (for balanced tested power networks)
was below 1% in the case of all load scaled with the same load factor and below 0.43%
when time-series input data were e used (this method was not applied to voltage angle
estimation). Using the proposed procedure for a more general case (for each load different
load factors, highly unbalanced power networks and load shapes with 20% of uncertainty),
the voltage phasor magnitude errors were from below 0.5% (IEEE 123) to below 1% (IEEE
13) and the angle errors were from below 0.25◦ (IEEE 123) to below 0.5◦ (IEEE 13).

Based on the performed research and presented results, the proposed estimation
procedure is as follows:

• The proposed procedure for determining network nodes with and without voltage
measurements based on the correlation analysis can keep the required observability
level very low (for a more general type of unbalanced power networks).

• Co-simulation and synergy of more computational intelligence methods approach
enables estimation of the voltage phasors profile based on very basic measurements
and with a limited number of measurements.

• Using the co-simulation setup of different purpose computational tool makes it possi-
ble to model the distribution power network more realistically by decreasing the level
of assumptions, approximations and neglects in the model.

• The required number of nodal voltage magnitude measurements in the proposed
method is not highly dependent on the network size. As shown in Table 3, for three
networks (IEEE 13, 34 and 37 nodes) with a very different number of nodes, the
number of measurements is almost the same. In addition, with a significant increase in
the number of network nodes, the number of measurements increased slightly (IEEE
123 nodes).

• There are more different load combinations in the network giving very close voltage
profiles—this is a very interesting and unexpected conclusion. This conclusion makes
it possible to involve the concept of virtual loads. Even though there are significant
differences between the values of real and virtual loads, the virtual load concept
ensures a quality estimation of the nodal voltage phasor profile.

• Besides achieving the main goal of the nodal voltage phasor estimation, thanks to the
physically-based network model and the virtual load concept, other quantities in the
network can also be estimated.
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• The proposed procedure cannot be applied to the estimation of the real load values in
the general case of load changes, i.e., without knowing the consumers’ load shape.

Further research will be directed to investigation procedures for the estimation of real
load values to additionally decrease the voltage estimation errors.

6. Conclusions

Based on the presented results, it can be stated that the proposed procedure is able
to estimate the nodal voltage phasors with a satisfactory accuracy level by using very
limited input data. The applicability of the estimation procedure in the case of decreased
measurement data arises from the application of two computational intelligence techniques
in synergistic operation. Owing to such an approach, it is possible to estimate the nodal
voltage phasors in the distribution network with low observability. Applying the proposed
procedure enables the estimation of the nodal voltage phasors with the observability factor
in the range from 0.05 to 0.29 depending on the network configuration, lines, loads, etc. It
is very interesting to notice that, according to Table 3, the observability factor values are not
directly correlated with the network size. The presented framework for the nodal voltage
phasor estimation is especially promising in cases with known consumers’ load shapes.
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