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Abstract: The use of a zonal structure for energy markets across the globe is expanding; however the
debate on how to effectively partition the grid into bidding zones is still open for discussion. One of
the factors that needs to be addressed in the process of bidding zones’ delimitation is the transmission
system operators control areas. Merging parts of different control areas into one bidding zone can
lead to multiple problems, ranging from political, through grid security concerns, to reserve control
issues. To address it, this paper presents a novel grid partitioning method aimed at bidding zones
delimitation that is based on clustering the power grid using an extended version of the standard
agglomerative clustering. The proposed solution adds additional clustering rules when constructing
the dendrogram in order to take into account the control areas. The algorithm is applied to the data
which represents the locational marginal prices obtained from optimal power flow analysis.

Keywords: agglomerative hierarchical clustering; bidding zones delimitation; control areas; energy
grid partitioning; locational marginal price; zonal energy market

1. Introduction

Currently, the zonal structure of the electricity market in Europe is undergoing a
process of transformation [1]. Generally, a zonal market for electricity assumes that a given
geographical region is divided into separate areas-bidding zones-across which the prices of
electricity might differ, while within any bidding zone the price is constant. In the current
organization of the European zonal market for electrical energy, the bidding zones follow
closely— with some exceptions—the national borders. This “default” configuration of
bidding zones is under dispute and is currently being reviewed [2], or even re-designed [3]
by the organizations governing the European electricity market. If the current bidding
zones configuration of the European market is to be changed, a reliable method to partition
the energy grid that takes into account the needs of the zonal market organization, must
be used.

The trading of energy on a zonal market is managed by an algorithm called Market
Coupling (MC) [4,5], which governs the energy exchanges between the bidding zones,
while the trade inside a bidding zone is assumed to be unconstrained (each bidding zone
constitutes a copper plate per definition). The MC is intended to exploit the capacities of
interconnections so that the energy flows optimally between bidding zones, i.e., ensure
that the lowest-cost generators operate not only for local needs, but serve to increase
the efficiency of the whole interconnected market. Still, how much efficiency could be
increased by introducing a zonal market depends on how the bidding zones are delimited,
and designing a robust bidding zone configuration constitutes one of the key issues in
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adopting this form of energy market. (For a discussion on how the market outcomes
depend on the bidding zones configurations see, for example, [6] or, in context of number
of bidding zones, [7].) To this end, the approach used in the literature is based on machine
learning methods-specifically, clustering-that is applied to some characteristics of the nodes
or transmission lines of the grid.

In general, clustering is a group of methods aimed at identification of similar groups
in the data [8,9]. The standard methods of clustering should however be modified in order
to address the two specific prerequisites necessary to assure manageability of the bidding
zones configuration by the zonal market.

The first, quite obvious prerequisite is that each bidding zone must constitute an elec-
trically connected subset of the energy grid, so that the assumption about a bidding zone
being a copper plate is plausible—we refer to this requirement as the topological constraints
on clustering. This issue was already addressed in the context of zonal market division
by [10], and most of the approaches to bidding zones delimitation discussed in Section 3
satisfy this requirement by design. The chosen approach to this requirement in the proposed
methodology will be described in Section 4.

The second prerequisite is related to the fact that usually, the international power
system in question is already divided either by country borders and/or by control areas
managed by different transmission system operators (TSOs). (The technique presented in
the paper can be easily adapted to take into account other geographical divisions, such as
country borders or load-frequency control blocks, as long as each of those areas constitute
a connected subset of the grid.) Neglecting the control areas’ borders while delimiting the
bidding zones might result in a division which is likely to include:

• bidding zones that are similar to control areas but include a subset of nodes from
another control area,

• bidding zones encompassing parts of two or more control areas.

Such divisions can cause many issues of different natures: political (related to countries’
energy policies), legal (related to contracts binding the energy producers, distributors and
TSOs), and-last but not least-technical(related to security of the power system). (Although
the assumption of each bidding zone being a copper plate is plausible from the market
perspective, in reality the safety limits of the transmission lines inside a bidding zone
must also be monitored and controlled by the corresponding TSO.) Attention has been
brought to this prerequisite after a pioneering take on re-designing European bidding
zones, conducted as the “First Edition of the Bidding Zone Review” by the European
Network of Transmission System Operators for Electricity (ENTSO-E). The Final Report [3]
from this endeavor mentioned that if the new bidding zones do not follow the borders of
control areas (or balancing areas), the adaptations to the new bidding zones configuration
may be more demanding ([3], pp. 83–84). Additionally, the Final Report cites that three
TSOs (Polish PSE, Slovakian SEPS and Hungarian MAVIR) performed alignments to the
proposed there bidding zone configuration justified by the notion that “the Single Control
Area (CA) may contain more than one bidding zone and bidding zones may be built up
from a few CAs but not parts of CAs” ([3], p. 181).

To the best of our best knowledge, the issue of taking into account control areas in the
bidding zones’ delimitation methodology has not been addressed so far in any publication
related to partitioning of the electrical grid for the needs of zonal energy market.

In this paper, we propose a method that extends the work of Burstedde [10], which in
addition to satisfying the topological constraints, also addresses the issue of partitioning
the network grid into bidding zones in such a way that the control areas are taken into
account-we refer to this requirement as the control area constraints on clustering.

The solution proposed in this paper uses hierarchical agglomerative clustering algo-
rithm with built-in constraints on both the grid topology and the control areas. We show
the validity of the proposed solution with an intuitive proof, and we present some clear
numerical experiments to compare the bidding zones configurations obtained with and
without the CA constraints.
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Additionally, although the theoretical description of the clustering method in
Sections 4 and 5 and the numerical examples given in Section 6 are presented from
the perspective of clustering on a basis of a specific characteristic of the grid nodes
(Location Marginal Price, LMP-described in more detail below), the proposed approach
is not limited to this choice of clustering feature. Namely, the proposed approach can
serve as a “meta-methodology” to bidding zones delineation, and can be applied to a
wide range of nodes’ (or, after adaptation, transmission lines’) features or sets thereof.

The paper is organized as follows. In the next section we provide a definition of the
control areas. The subsequent section provides a general review of clustering methods
applicable to the problem of division of the energy grid into bidding zones, as well as the
introduction of the metric space which is the input of a clustering algorithm. In Section 4
we briefly discuss standard agglomerative clustering and its modification addressing
the topological constraints. Section 5 presents our extension to agglomerative clustering
which supports the control area constraints, in the subsequent section we provide numer-
ical experiments, and finally in Section 7 we summarize the proposed solution and the
obtained results.

2. Control Area Constraints

As already introduced, the zonal energy market delimitation should answer the need
to enable the electrical energy flows between bidding zones, and assure higher use of
cheaper generators. However, an unconstrained delimitation can stand in conflict with
the security policies of individual TSOs, so that the biding zones should not divide TSOs’
control areas. Formally the control area is defined (as per [11], p. G-4) as “a coherent part
of the UCTE interconnected system (usually coincident with the territory of a company,
a country or a geographical area, physically demarcated by the position of points for
measurement of the interchanged power and energy to the remaining interconnected
network), operated by a single TSO, with physical loads and controllable generation units
connected within the control area.”

To cluster the energy market into bidding zones without violating the security aspects,
three rules have been developed that must be met. These rules are (see Figure 1):

1. it is allowed to split a given control area into smaller bidding zones (a single control
area can be divided into any number of zones),

2. it is allowed to combine two or more control areas into a bigger bidding zone (whole
control areas can be merged into a bidding zone, or a bidding zone consisting of two
or more whole control areas can be merged with another bidding zone consisting of
one or more whole control areas),

3. it is not allowed to combine parts of different control areas, or a part of a control area
with another whole control area.

As a consequence, the results of the clustering algorithm that will be used during the
delimitation must fulfill these rules.
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Figure 1. Allowed and forbidden bidding zones configurations with respect to control area constraints.

3. Energy Grid Clustering Methods

The problem of energy grid partitioning can be divided into two sub problems. The
first one is the selection of the proper algorithm which will be used for the input data
decomposition, and the second one is related to determining the feature space which will
be used as an input to the clustering algorithm. These two sub problems will be discussed
in the following subsections.

3.1. Grid Partitioning Methods

In general, partitioning of the interconnected energy grid can be perceived as a
problem from the general family of graph or network clustering, for which many methods
have been developed so far to address various contexts of the partitioning, also other
than designing a zonal energy market. A nice overview can be found in [12] where
the authors divide the methods into four groups: hierarchical clustering, partitioning
clustering, spectral clustering and divisive algorithms. Examples of applications for power
grid partitioning can be found in [13], where in chapter 6 network decomposition methods
based on community structure analysis are presented. Other attempts at network clustering
can be found in papers discussing vulnerability analysis and assessment such as [14]
where based on scale free network properties, the authors provide decomposition of
the European network. Many attempts at grid partitioning can be also found for the
purpose of intentional islanding to limit cascade power failures, an example can be found
in [15], where the authors used spectral methods to separate poorly connected parts of the
network. Namely, the method first partitions network grid based on classical methods, and
then applies simulating annealing Monte Carlo algorithm to optimize resulting clusters
for internal connectivity and power self-sufficiency as well as possible other properties.
(Although the method proposed by [15] is not designed particularly for zonal market
design problems, it seems it can be adapted to this challenge with limited effort).

Out of large group of network clustering method, one of the most commonly used are
hierarchical clustering methods, which has several advantages. It allows clustering input
data which can be described in any feature space, where the structure of the network is
used to define the neighbourhood in terms of nodes. It also allows visualizing the structure
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of the data by the dendrogram. Finally, it does not require to determine the number of
clusters beforehand, this value can be selected in a post-processing step.

3.2. The Feature Space of the Zonal Market

Still, the methods mentioned above were designed to perform the partitioning from a
different perspective than the needs of the zonal market. For example they identify weakly
connected nodes or subnets, but to be applicable to energy market design they need to take
into account economic- or market-based characteristic of the system.

An interesting early approach to bidding zone delimitation is the idea of using the
maximum spread of nodal prices within groups using the tabu search heuristic proposed
by [16], which addresses the specific needs of the British Electricity Trading and Transmission
Arrangements (BETTA). However, the current arrangement chosen for, among others, the
integrated market of EU countries takes on a different approach based on the Market Coupling
algorithm, which calls for yet another approach.

We thus focus on a bidding zone design for a Market Coupling-based energy market.
Classical graph partitioning methods as well as complex network analysis methods ignore
Kirhoff’s laws and other physical constraints such as lines’ thermal limits. They also
completely neglect the market layer in the clustering process. To design a delimitation of
bidding zones which would be most easily manageable by the MC algorithm, a method
of delimiting bidding zones should take into account both the physical flows over the
transmission lines and their capacity limits, as well as the spatial cost structure of the
energy generation in relation to the energy demand distribution. To address these factors,
two main methodologies were designed. (Other approaches apart from those general two
include, for example, a multilevel optimization problem for obtaining zone design which
aims at welfare optimum—see [17], or a clustering technique that focuses on decreasing
the costs of redispatching needed in the existing zonal partition—see [18].)

The first one is based on the Locational Marginal Prices (LMP-based) [10,19], and takes
directly into account the (nodal) market layer, the realizations of which include the physical
layer in an indirect way. An LMP, or nodal price, represents the local value of energy in a
given place in the network, i.e., how the overall delivery cost will change after supplying
an extra 1 MW of power to this particular node-physical point in the transmission system,
where energy can be injected by generators or withdrawn by loads. This price consists of
the cost of producing the energy used at this node and the cost of possible congestions
arising from delivering it, which may affect the overall system costs. Therefore, LMPs are
grid nodes’ features which allows us to separate locations into higher and lower price areas
if congestion occurs between them. The LMP-based approach to bidding zones delimitation
generally works in the following way. First, the LMPs are calculated by the Optimal Power
Flow (OPF) algorithm, in which they are represented by the Lagrange multipliers on real
power mismatch in the nodes. Next, on the nodes’ characteristics representing LMPs a
hierarchical clustering algorithm based on Ward’s minimum variance is used to aggregate
nodes of similar prices into biding zones with additional constraints applied to represent
the topological structure of the energy gird [20]. As a result, clustering should assign nodes
that span congested lines into different clusters, because congestion differentiates the LMP
values across the grid. Some more complex LMP-based techniques include, for example,
weighting the nodes with respect to their relevance in energy infeed or demand (see [21]),
or providing an insight into the optimal number of bidding zones (see [22]).

The second approach is based on Power Transfer Distribution Factors (PTDF-based),
which directly take into account the physical flows over the network structure which are a
result of market operations. A detailed description of the PTDF methodology can be found
in [23,24]. A comparison of various clustering methods applied to both approaches can be
found in [25].

Both the LMP- and PTDF-based methodologies take into account the topological
constraints of the network but does not currently address the control area constraints.
Below we provide a way in which the control area constraints can be added to the LMP-
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based bidding zones delimitation, although the PTDF-based method can be extended in an
analogous manner as well.

To present formally the clustering method, in what follows we assume that the data
of the energy grid are represented as an n-element dataset X = [x1, x2, . . . xn] where each
element is an m dimensional vector xi = (x1

i , . . . , xm
i ) ∈ K ⊂ <m of the object’s m numerical

features. We assume that the feature space K is metric, and we denote the distance function
as ρ(xi, xj). In the application to energy network, the objects are the nodes (buses), with
their features space being one- or multi-dimensional LMP space, or multi-dimensional
PTDF space, and ρ the Euclidean distance on <m. (A multi-dimensional LMP space can
be obtained by collecting LMPs values for different grid conditions ex. peak/off-peak
conditions, winter/summer demand patterns etc.)

In the next section, we will provide a brief description including the topological
constraints into agglomerative hierarchical clustering, which will be further extended to
the control area constraints in the following section.

4. Agglomerative Hierarchical Clustering

Agglomerative hierarchical clustering, which will be discussed here was developed in
the 1960s by J. H. Ward [20]. Its name is based on two characteristics of how the method
works. Firstly, it starts by representing each object xi as a single-element cluster, and then
recursively merges (agglomerates) the two closest clusters into one, up to the point when
a single cluster encompassing all of the objects is achieved. Secondly, in the process the
method builds a tree hierarchy of clusters’ mergers, where each node of the tree has exactly
two child nodes (a binary tree).

The basic algorithm is widely known and is explained in almost every textbook on
machine learning or clustering (cf., for example, [8,9,26]), therefore we will present it only
to the extent that is necessary to highlight the differences between the standard method
and our modified algorithm. For those who are interested in implementation details we
refer to [27].

The sketch of the algorithm is provided in Algorithm 1, where:

• D is the matrix of inter-cluster distances; at the beginning it is the distance matrix
between all of the objects, Di,j = ρ(xi, xj), in later steps the distances are derived
for the objects the clusters consist of using some linkage function (described below),
namely Di,j = linkage(Ci, Cj),

• GETCLOSESTCLUSTERS() is the function which determines the closest pair of clusters
(denoted Ca and Cb) to link into a single cluster in the current step, with their distance
denoted by da,b = linkage(Ca, Cb),

• tree is a table representation of a binary tree with the history of cluster mergers. A k-th
row of the table consists of two cluster id’s (Ca and Cb) which are being grouped at
the step k and the distance between these linked clusters, da,b.

• UPDATECLUSTERSDISTANCE() is the function which recalculates the distances be-
tween clusters after the merging of Ca with Cb-as there will be one cluster less after
merging, the updated distance matrix D∗ will be of one dimension less than the
matrix D.The update of the clusters’ distances is usually done using Lance-Williams
algorithm [28], which speeds up the calculations.

After performing n− 1 steps, where n is the number of objects, we obtain a tree which
on each level (row) keeps track of the two nearest clusters being merged at a given step.
The tree can be simply visualized using a dendrogram plot as presented in Figure 2, where
the height of tree branches represents the distance between the clusters being merged. In
the standard agglomerative clustering the tree is usually monotonic (the distance between
merged clusters increases along the steps of the procedure), which is represented on a
dendrogram by the branches not crossing each-other (a link between two merged clusters
is placed higher than the links which represent previous mergers). Interestingly, after
incorporating the topological constraints or the control area constraints this property might
not hold anymore, which will be discussed later.
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Algorithm 1 Agglomerative clustering algorithm
function BUILDTREE( tree, D)

if ‖tree‖ == n− 1 then
return tree

end if{
Ca, Cb, da,b

}
=GETCLOSESTCLUSTERS(D)

tree = tree ∪ [Ca, Cb, da,b]

D∗ = UPDATEDISTANCEMATRIX(D, Ca, Cb)
tree = BUILDTREE(tree, D∗)
return tree

end function

1 8 6 7 2 3 4 5

Node Id
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0.6

0.8
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e

Figure 2. Example dendrogram tree plot.

The key element of agglomerative clustering is the choice of the linkage function,
namely the function which translates (or aggregates) the distances between individual
objects belonging to two clusters into the distance measure between these clusters. A broad
set of linkage functions was developed, each preserving different properties of the distances
between objects. The most popular linkage functions, presented in Table 1, are: single linkage
based on the smallest distance between every pair of objects in the two clusters, complete
linkage based on a minimum of the two furthest objects in the two clusters, average linkage
(perhaps the most intuitive) based on the average distance between every pair of objects in
the two clusters, centroid linkage in which each cluster is represented by its centre (prototype
or centroid) and the clusters’ distance is measured as the distance between their centres.
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Table 1. Comparison of the most popular linkage functions.

Linkage Function Name

d(Ca, Cb) = min
xi∈Ca ,xj∈Cb

(
ρ(xi, xj)

)
single linkage

d(Ca, Cb) = max
xi∈Ca ,xj∈Cb

(
ρ(xi, xj)

)
complete linkage

d(Ca, Cb) = mean
xi∈Ca ,xj∈Cb

(
ρ(xi, xj)

)
average linkage

d(Ca, Cb) = ρ
(
xCa , xCb

)
centroid linkage, where:
xCa =

1
‖Ca‖ ∑

xi∈Ca

xi centroid of cluster Ca

xCb =
1
‖Cb‖ ∑

xj∈Cb

xj centroid of cluster Cb

d(Ca, Cb) =
‖Ca‖·‖Cb‖
‖Ca‖+‖Cb‖

ρ
(
xCa , xCb

)
Ward linkage

Finally, the Ward linkage function is similar to the centroid linkage but with an extra
normalization factor. As discussed in [29], using the Ward linkage results in clusters
which are more similar in size, while for other linkage functions it often happens that the
cardinalities of the final clusters varies such that very large clusters appear next to very
small ones.

Agglomerative hierarchical clustering has one disadvantage which is high computa-
tional complexity reaching O(n3) and high space complexity (O(n2)). So far many methods
have been developed to boost these limits, for example: the previously mentioned distance
update formula [28], more efficient nearest-neighbour search [30] reaching the O(n2 log(n))
complexity, or applications of so-called local sensitive hashing [31] for large scale single
linkage hierarchical clustering [32]. Still, the computational and / or space complexity of
those variants of agglomerative clustering is not comparable with many of the so-called
model-based clustering methods, which can have linear time and space complexity [33].
Apart from these drawbacks, hierarchical clustering possess many important advantages
over model-based clustering algorithms:

• it doesn’t require a predetermined number of clusters as an input of the algorithm-this
number can be derived afterwards, moreover,

• it provides a nice visualization of the structure and relations between the clusters’
distances, and plotting the dendrogram allows us to determine the plausible number
of clusters post-ante,

• by changing the linkage function it allows us to influence the shape and properties of
the resulting clusters.

An additional advantage of agglomerative hierarchical clustering -and the rea-
son this clustering method was chosen in the approach to bidding zones delimitation
presented in this paper- is the possibility to incorporate external constraints into the
merging process [34], among which the topology constraints are crucial in designing the
energy bidding zones, and will be briefly discussed now.

4.1. Preserving Topology Constraints

We assume that apart from the objects’ (grid nodes’) features space, the input data in-
cludes a graph which represents the topology of the energy network. Namely, let G =< X, E >
be an undirected connected graph with nodes being the objects from set X and where E are
the edges representing the transmission lines between the nodes in the grid.

We include the topological constraints into the agglomerative hierarchical clustering
in a manner akin to [10]. Specifically, we modify the linkage function so that if there
does not exist a direct link between clusters Ca and Cb (no pair of nodes from each of the
clusters is connected by an edge of the graph G), the distance between Ca and Cb is equal
to infinity. With the distances between unconnected clusters being converted to infinity,
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such clusters would not be merged (at least under the assumption that the whole graph is
a connected one).

Namely, instead of distance d(Ca, Cb) we use

d′(Ca, Cb) =

{
d(Ca, Cb) if ∃E(xi, xj) for xi ∈ Ca, xj ∈ Cb

+∞ otherwise.
(1)

A straight extension of topological constraints to standard algorithm (Algorithm 1),
presented in Algorithm 2, requires only (i) a modification of the cluster distance function
from d(., .) to d′(Ca, Cb) in the UpdateConnectedClustersDistance function, which is analo-
gous to UpdateClustersDistance in Algorithm 1, and (ii) passing a data structure holding
the representation of the edges of the graph, E. (A very efficient implementation of this
algorithm which we used in our experiments can be found in Python scikit-learn package:
http://scikit-learn.org/stable/modules/clustering.html#hierarchical-clustering, accessed
on 11 February 2021).

Algorithm 2 Agglomerative clustering algorithm with topology constraints
function BUILDTREETOP( tree, D, E)

if ‖tree‖ == n− 1 then
return tree

end if{
Ca, Cb, da,b

}
=GETCLOSESTCLUSTERS(D)

tree = tree ∪ [Ca, Cb, da,b]

D∗ = UPDATECONNECTEDCLUSTERSDISTANCE(D, Ca, Cb, E)
tree = BUILDTREETOP(tree, D∗,E)
return tree

end function

It is worth noting that including topology constraints has a positive influence on
the algorithm by radically reducing computational complexity-instead of calculating all
inter-cluster distances, only distances between connected clusters need to be calculated.
This issue is especially important in clustering very large energy grids, such as the
pan-European network.

Interestingly, including topology constraints can cause non-monotonicity of the den-
drogram tree. Namely, it may happen that at a later stage of the clustering process
two clusters are merged which have a lower distance between them than the clusters
merged previously.

For an example, see Figure 3, where an example input data is shown together with
the graph topology, and two dendrograms. Dendrogram (b) was obtained without any
constraints during clustering, while the second dendrogram (c) was obtained during clus-
tering with the constraints representing the graph topology. The red line on dendrogram
(c) indicates the non-monotonicity.

http://scikit-learn.org/stable/modules/clustering.html#hierarchical-clustering
http://scikit-learn.org/stable/modules/clustering.html#hierarchical-clustering
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(a) Example data
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(b) Monotonic
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(c) Non monotonic

Figure 3. Example showing the effect of constraints influencing monotonicity of the dendrogram.
(a) Example data with links defining the constraints; (b) dendrogram obtained without any constraints
on graph topology; (c) dendrogram obtained when clustering preserving graph structure.
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Interpretation of this phenomenon is rather simple. Consider two nodes of the network
which lie next to each other in the feature space (nodes N1 and N8 in Figure 3), but do
not have a direct link (line) connecting them. The only path connecting nodes N1 and N8
goes through nodes N4 and N5, so firstly these two nodes have to be connected to one of
the clusters (on the dendrogram they are first connected to cluster {N1, N2, N3}), which
allows us to merge cluster {N1, N2, N3, N4, N5} with the cluster {N6, N7, N8} in the next
step. Considering the Ward linkage function, this can be interpreted as follows: merging
cluster {N4, N5} with {N1, N2, N3} increases inter cluster variance (as nodes {N4, N5}
lie far from the rest), while finally joining cluster {N6, N7, N8} to the already connected
nodes decreases the total variance of the new cluster. In general, the lack of monotonicity of
the dendrogram is quite common and, for example, it also appears when centroid linkage
is applied even without any topological constraints. In the case of Ward linkage without
constraints the algorithm is sure to generate monotonic dendrograms, but constraints may
result in a lack of monotonicity. This lack of monotonicity indicates that usually one of the
clusters before the merge has a relatively large variance caused by the extreme features’
values of the nodes (in our case, large spread of LMPs) inside it like in the example above,
and after the merge the distribution of a new cluster is less affected by the extreme values.

Summing up, the problem of lack of monotonic growth of the dendrogram may pro-
vide an important insight into the interpretation of relations between groups of buses and
their connectivity as described above, but it does not question the validity of hierarchical
clustering methodology. Here the hierarchy of the tree remains unchanged, because for-
mally the algorithm returns a binary tree, and only the interpretation of the dendrogram
requires more careful analysis.

5. Applying Control Area Constraints

As before, we represent the energy grid as a graph G =< X, E >. We assume that
a control area, denoted G(CAi) where i ∈ {1, 2, . . . , c} and c is the number of control
areas, is a connected subgraph of G, and that the set of all control areas-treated as subsets
of X-constitute a disjoint cover of X. In real life the assumption on control area being
a connected subset of G may not hold, but it is very rare. In Europe there exists one
control area (Amprion (RWE) in Germany) which is composed of two regions which are
not connected by a direct transmission line. For the needs of the study, such control area
needs to be treated as two separate control areas, each constituting a connected subgraph
of the grid.

It is now important to analyze the relation between the three control area constraints
(cf. Section 2) and the dendrogram tree (denoted as tree) produced by clustering of the
energy grid. The third constraint states that it is not allowed to combine parts of different
control areas-from that and from the assumption on control areas being disjoint sets, we
induce that each control area should be represented as a single subtree, denoted treeCAi,
of the dendrogram tree, which can be denoted as (treeCAi ∈ tree) and that the subtrees
treeCAi do not overlap ∀

i,j;i 6=j
treeCAi ∩ treeCAj = ∅.

Control area constraints number 1 and 2 are also supported by the dendrogram
tree if each control area is represented by single dendrogram tree treeCAi. When cutting
(flattening) the tree to determine clusters from the dendrogram, each subtree treeSi fulfills
one of the two following cases:

Case 1 If a subtree treeSj is a part of treeCAi (treeSj ∈ treeCAi), then we obtain another
subtree treeSk which would complement treeCAi, such that treeSk = treeCAi \ treeSj.
This fulfills condition 1 of control area constraints, namely a single control being
divided into smaller parts.

Case 2 If subtree treeSj includes treeCAi (treeCAi ∈ treeSj), then, from the fact that each
control area is represented by a single tree, we obtain that the remaining tree treeSk =
treeSj \ treeCAi (complement of treeCAi) must include one or more other control areas
treeCAk ∈ treeSk, namely we fulfill condition 2 of control area constraints.
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Above, we showed that the algorithm satisfying control area constraints needs to have
a separate tree for each CA, thus we build a separate dendrogram tree for each control area,
and then combine them, following the tree growing process. This can be expressed as in
Algorithm 3.

Algorithm 3 Agglomerative clustering algorithm with control area constraints
function BUILDTREECA( X, E, CAs)

tree = ∅
for i = 1 to c do

D∗ =DISTANCEMATRIX(X(CAi))
E∗ = E(CAi)

treeCAi =BUILDTREETOP(∅, D∗, E∗)
tree = tree ∪ treeCAi

end for
D# = DISTANCEMATRIX(X, CA)
tree = BUILDTREETOP(tree, D#, E)
tree =REORDERTREENODES(tree)
return tree

end function

Here we assume that the input of the buildTreeCA method is the input space X (for
example, the LMPs characterization of grid nodes); E is a representation of the edges in
graph G (for example, in a form of an adjacency matrix), and the last argument CAs is the
collection of sets of objects (nodes) associated with each of the c control areas (for example,
in the form of c lists with numbers of nodes that belong to each of the control areas). At
the beginning, the tree structure is empty. The algorithm starts by iterating over control
areas, and for each control area CAi it builds a distance matrix D∗ for nodes within this
control area (using the distance with topology constraints, d′(., .)), and receives a subset of
the connections E which represents links within given CA, E∗. These arguments are used
as an in input to the buildTreeTop method described above in Algorithm 2. This method
returns a dendrogram tree treeCAi which will be a subtree of the final dendrogram tree,
so all subtrees treeCAi are collected together within the tree variable. After the loop the
algorithm once again calculates the distance matrix D# but this time it represents distances
between control areas each treated as a cluster. Next, the function buildTreeTop is called on
again to merge subsequently the most similar pairs of CAs into clusters. The very last step
of the algorithm reorders the nodes of the tree.

This procedure does not change the shape of the tree but changes the enumeration
of tree nodes. This step is important from the tree cropping perspective as the algorithm
starts from the root tree node and recursively evaluates tree nodes in the order they were
created. In our algorithm this order is violated because the final tree which “glues” all the
control area subtrees creates tree nodes after the subtrees were created. In other words,
considering the dendrogram presented in Figure 4, the links (tree nodes) plotted black
would be created after the top most green tree nodes. After the reordering routine, the
lower black link is pushed down such that the top-most green links would appear higher in
the tree, and the tree cropping algorithm would be able to split the green control area into
two bidding zones before disconnection of the remaining control areas. An implementation
of this algorithm is shown in Algorithm 4 where a single node of the tree is represented by a
triple node =< a, b, da,b > where a and b are references to the child tree nodes being merged
and da,b describes the distance between these tree nodes, and the final tree is represented
by a list of tree nodes [node1, node2, . . . , noden−1].
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Figure 4. An example dendrogram where colours represent subtrees obtained for three control areas
and the top part of the tree (marked black) merges all subtrees. Note that the bottom links of the
black subtree start earlier than the top links of the green subtree.

Algorithm 4 Pseudo-code of the function used to reorder nodes of the tree
function REORDERTREENODES( tree)

sortedTree =SORTACCORDINGTODISTANCE(tree)
newTree = ∅
for node : tree.lea f Nodes do

newTree = newTree ∪ node
sortedTree = newTree \ node

end for
i = 1
while !isempty(sortedTree) do

node = sortedTree(i)
if newTree.CONTAINS(node.a) &

newTree.CONTAINS(node.b) then
sortedTree = sortedTree \ node
newTree = newTree ∪ node
i = 0

end if
i = i + 1

end while
return newTree

end function

In this algorithm, we first sort nodes of the tree according to the distance da,b, then
a new empty tree is created, and all the leaf nodes are added to the newTree structure as
well as removed from the sortedTree. Then starts the main loop, in which we read i-th tree
node from sortedTree and check if its child tree nodes already appear in the newTree. If
the condition is valid, we remove this tree node from the sortedTree and we add it to the
newTree. If the condition is not valid, we take the following tree node. The algorithm ends
when sortedTree does not contain any nodes.

Compared to the standard agglomerative hierarchical clustering (cf. Section 4), the
agglomerative clustering algorithm with control area constraints described above has lower
computational and space complexity, as the subset of objects that can be connected in each
step is greatly reduced: to nodes/clusters that are parts of one control area only, or to
clusters representing whole control areas (or their aggregation). Thus, the complexity
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depends not on the overall number of nodes in the grid (n), but on (n∗ + c), which is the
highest number of nodes in a control areas, denoted n∗ = max{n1, . . . , nc}, where ni is the
number of nodes in a control area i, plus the number of control areas, c. This allows the
application of this algorithm to fairly large networks.

6. Numerical Experiments

To show properties of the described algorithm we performed a series of experiments
on a well known IEEE39 case for which we manually defined control areas. This case
consists of 39 nodes (among them 10 are generators) and 46 are branches (Figure 5).

Figure 5. IEEE Case 39 with congested lines marked in red.

We introduced four control areas, each marked with a different background colour.
Since one of the determinants of the zonal market (as described in Section 1) is the separa-
tion of areas influenced by congestions, we manually overloaded some of the lines. This
was achieved by reducing line limits or modifying the consumption of active power in some
of the nodes compared to the original IEEE39 case. All dataset containing MatPower solved
cases, with all modifications are available on http://prules.org/materials/ca/ accessed
on 11 February 2021. Then, the MatPower [35] software was used to perform optimal
power flow analysis resulting in LMPs values (as was mentioned above, also other bus
descriptors, e.g. based on PTDFs can be used to form the clustering feature space). LMPs
were then clustered using two approaches, one without control area constraints and the
second one preserving control area constraints. Obtained dendrograms are shown in Figure
6, where to increase comprehensibility subtrees obtained for each control area are coloured
with basic colours such as green, red, cyan and magenta and background colours which
correspond to the colours used in Figure 5 to indicate control areas, while the final subtree
of the dendrogram is plotted black (see Figure 6b). For dendrogram obtained without CA
constrains, the entire dendrogram is blue.

http://prules.org/materials/ca/
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(a) Without control area constraints

(b) With control area constraints

Figure 6. Comparison of the dendrograms obtained without (a) and with (b) control area constraints. Colours in figure (b)
represent dendrograms obtained for each control area.

The bidding zones delimitations are visualized in the two-column Figure 7: the left
column shows the output of the algorithm which did not preserve control area constraints,
and the right column with. The rows represent divisions into 2 (top), 3 (middle) and 6
(bottom) bidding zones, with the bidding zones being marked by different node colours.
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Two clusters

Three clusters

Six clusters

(a) Without control area constraints (b) With control area constraints

Figure 7. Comparison of bidding zones delimitation without (a) and with (b) control area constraints for 2 (top figures), 3 (middle fig-
ures) and 6 (bottom figure) clusters. In the plot background colour represents control areas and node colour indicates obtained bidding
zones delimitation.
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The CA at the bottom, which subtree is marked in green, constitutes a good example
of differences between the two approaches. It is characterized by the largest value of the
linkage metric (the green sub-tree is the highest), reflecting relatively large variety among
LMP prices inside this CA. Compared to the dendrogram without constraints (a), one can
see that an analogous sub-tree only exists partially. It indicates that some of the nodes
from green CA are closer in terms of the linkage metric to nodes in other CAs than to
each other. However, the third control area constraint does not allow the connecting of
parts of different control areas into a bidding zone. This forces the algorithm to group all
the nodes from this CA together before merging with other CAs is possible. Due to the
high heterogeneity of LMPs in the bottom CA and much stronger similarities between
nodes in other CAs, the nodes are merged with other clusters in the very latest iteration
of the algorithm which controls the CA constraints. It means that if we require a division
into two bidding zones, then one bidding zone is constituted by green CA (the bottom
one in Figure 5) and another bidding zone by all other CAs grouped together. This is
shown in the first row of Figure 7 where the two obtained clusters are marked with blue
and cyan nodes. On the left column of the figure, we can see that for the two clusters
which neglect CA constraints, the cyan cluster spans across all CA’s, while on the right
the blue nodes correspond to the entire CA. An increase of the number of bidding zones
leads to separation of the biggest outlier from the bottom bidding zone which is node 24
(middle row in the right column in Figure 7). Placing the outlier in a separate bidding zone
diminishes the Ward’s variance significantly enough that requesting a larger number of
bidding zones influences other CAs but not the green one. In comparison, the left column
in Figure 7 shows the results of clustering into an equivalent number of bidding zones
but without implemented control area constraints. If the constraints are relaxed and the
two bidding zones are required (top row), we end up with the bottom CA being split into
two parts.

7. Summary

There are LMP and PTDF-based algorithms that can help in the process of bidding
zones delimitation by taking into account economic and technical information about
grid topology and generation units. These algorithms can be modified to address the
governments’ and TSOs’ needs related to CAs consistencies. In this paper we showed that
(i) an agglomerative algorithm based on LMPs can be adapted towards CA constraints, (ii)
the outcomes with and without constraints become closer to each other if the number of
bidding zones is increasing, (iii) the CA constraints decrease the computational and space
complexities of the agglomerative algorithm, and (vi) including CA constraints leads to a
greater non-monotonicity of dendrograms compared to including topological constraints
only. Nevertheless, the latter effect is explained and does not influence the consistency of
the result of the grid partitioning.

Additionally, as was already mentioned, the proposed adaptation of the clustering
algorithm to the CA constraints is not contingent on the choice of LMPs as the clustering
feature, and can be used as a general (or “meta”) solution in approaches that take into
account different characteristics of the grid model to perform bidding zones delimitation.

An intriguing area for future research is to apply the CA constraints algorithm on
real-world data of an electrical grid-preferably on the model of the European continental
grid-and compare the outcomes obtained from partitioning on different clustering features
of grid nodes (LMPs, PTDFs etc.). Additionally, adaptation of the CA constraints algorithm
for clustering based on features of grid interconnections (rather than nodes), such as
congestion frequencies or dual variables on transmission constraints in Market Coupling
solution, is another research task that is seemingly worth pursuing.
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6. Oryńczak, G.; Jakubek, M.; Wawrzyniak, K.; Kłos, M. Market coupling as the universal algorithm to assess zonal divisions.
In Proceedings of the 11th International Conference on the European Energy Market (EEM14), Krakow, Poland, 28–30 May 2014;
pp. 1–5.

7. Van den Bergh, K.; Wijsen, C.; Delarue, E.; D’haeseleer, W. The impact of bidding zone configurations on electricity market
outcomes. In Proceedings of the 2016 IEEE International Energy Conference (ENERGYCON), Leuven, Belgium, 4–8 April 2016;
pp. 1–6.

8. Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2005.
9. Jain, A.K.; Dubes, R.C. Algorithms for Clustering Data; Prentice-Hall: Englewood Cliffs, NJ, USA, 1988.
10. Burstedde, B. From nodal to zonal pricing: A bottom-up approach to the second-best. In Proceedings of the 2012 9th International

Conference on the European Energy Market, Florence, Italy, 10–12 May 2012; pp. 885–892.
11. Glossary to the UCTE Operational Handbook, Union for the Coordination of Transmission of Electricity, 2004. Available online:

https://www.ucte.org/_library/ohb/glossary_v22.pdf (accessed on 11 February 2021).
12. Fortunato, S. Community detection in graphs. Phys. Rep. 2010, 486, 75–174. [CrossRef]
13. Mei, S.; Zhang, X.; Cao, M. Power Grid Complexity, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2011.
14. Rosas-Casals, M.; Valverde, S.; Solé, R.V. Topological vulnerability of the European power grid under errors and attacks. Int. J.

Bifurc. Chaos 2007, 17, 2465–2475. [CrossRef]
15. Abou Hamad, I.; Israels, B.; Rikvold, P.A.; Poroseva, S.V. Spectral matrix methods for partitioning power grids: Applications to

the Italian and Floridian high-voltage networks. Phys. Procedia 2010, 4, 125–129. [CrossRef]
16. Zhang, R.; Han, S.; Zhang, J.; Wang, D. Zone division models and algorithms in zonal pricing power market. Eur. Trans. Electr.

Power 2009, 19, 140–149. [CrossRef]
17. Grimm, V.; Kleinert, T.; Liers, F.; Schmidt, M.; Zöttl, G. Optimal price zones of electricity markets: a mixed-integer multilevel

model and global solution approaches. Optim. Methods Softw. 2019, 34, 406–436. [CrossRef]
18. Marinho, N.; Phulpin, Y.; Folliot, D.; Hennebel, M. Redispatch index for assessing bidding zone delineation. IET Gener. Transm.

Distrib. 2017, 11, 4248–4255. [CrossRef]

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32015R1222
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32015R1222
https://www.acer.europa.eu/official_documents/acts_of_the_agency/publication/acer%20market%20report%20on%20bidding%20zones%202014.pdf
https://www.acer.europa.eu/official_documents/acts_of_the_agency/publication/acer%20market%20report%20on%20bidding%20zones%202014.pdf
https://eepublicdownloads.entsoe.eu/clean-documents/news/bz-review/2018-03_First_Edition_of_the_Bidding_Zone_Review.pdf
https://eepublicdownloads.entsoe.eu/clean-documents/news/bz-review/2018-03_First_Edition_of_the_Bidding_Zone_Review.pdf
http://doi.org/10.5547/ISSN0195-6574-EJ-Vol26-No4-5
http://dx.doi.org/10.1016/j.energy.2008.04.013
https://www.ucte.org/_library/ohb/glossary_v22.pdf
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1142/S0218127407018531
http://dx.doi.org/10.1016/j.phpro.2010.08.016
http://dx.doi.org/10.1002/etep.236
http://dx.doi.org/10.1080/10556788.2017.1401069
http://dx.doi.org/10.1049/iet-gtd.2016.1334


Electronics 2021, 10, 610 19 of 19
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