
electronics

Article

Improved RTT Fairness of BBR Congestion Control Algorithm
Based on Adaptive Congestion Window

Wansu Pan 1,2, Haibo Tan 2, Xiru Li 2 and Xiaofeng Li 1,2,*

����������
�������

Citation: Pan, W.; Tan, H.; Li, X.; Li,

X. Improved RTT Fairness of BBR

Congestion Control Algorithm Based

on Adaptive Congestion Window.

Electronics 2021, 10, 615. https://

doi.org/10.3390/electronics10050615

Academic Editor: Christos J. Bouras

Received: 24 January 2021

Accepted: 2 March 2021

Published: 6 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
wansupan@mail.ustc.edu.cn

2 University of Science and Technology of China, Hefei 230026, China; hbtan@hfcas.ac.cn (H.T.);
xrli@hfcas.ac.cn (X.L.)

* Correspondence: xfli@hfcas.ac.cn; Tel.: +86-551-65591292

Abstract: To alleviate the lower performance of Transmission Control Protocol (TCP) congestion
control over complex network, especially the high latency and packet loss scenario, Google proposed
the Bottleneck Bandwidth and Round-trip propagation time (BBR) congestion control algorithm. In
contrast with other TCP congestion control algorithms, BBR adjusted transfer data by maximizing
delivery rate and minimizing delay. However, some evaluation experiments have shown that
the persistent queues formation and retransmissions in the bottleneck can lead to serious fairness
issues between BBR flows with different round-trip times (RTTs). They pointed out that small RTT
differences cause unfairness in the throughput of BBR flows and flows with longer RTT can obtain
higher bandwidth when competing with the shorter RTT flows. In order to solve this fairness
problem, an adaptive congestion window of BBR is proposed, which adjusts the congestion window
gain of each BBR flow in network load. The proposed algorithms alleviate the RTT fairness issue by
controlling the upper limit of congestion window according to the delivery rate and queue status. In
the Network Simulator 3 (NS3) simulation experiment, it shows that the adaptive congestion window
of BBR (BBR-ACW) congestion control algorithm improves the fairness by more than 50% and reduces
the queuing delay by 54%, compared with that of the original BBR in different buffer sizes.

Keywords: TCP congestion control; BBR; RTT fairness; congestion window

1. Introduction

After the observation of Internet congestion collapse in 1986, Jocobson [1] proposed a
method to adjust the transmission window of TCP flow by using the loss of packet. With
the development of Internet infrastructure, disadvantages of these loss-based congestion
control (loss-based CC) algorithms [2–4] are gradually revealed. Once packet loss occurs,
the traditional loss-based CC algorithms reduce the congestion window (CWND) and
then take a long time to recover. Moreover, the queuing delay and packet retransmissions
resulted in throughput degradation. Thus, new congestion control algorithms need to be
proposed to adapt maximum transmission speed in the current Internet.

In 2016, a congestion control algorithm based on Bottleneck Bandwidth and Round-
trip propagation time (BBR) [5,6] was proposed by Google. The algorithm adjusts its
sending rate according to the estimated bottleneck bandwidth (BtlBw) and Round-trip
propagation time (RTprop) in order to achieve the maximum delivery rate and minimum
delay. Different from the loss-based algorithm, the goal of BBR is to operate at Kleinrock’s
optimal operating point [7], at which the total data inflight is equal to one Bandwidth
Delay Product (BDP). The related experimental results showed that BBR can significantly
improve the throughput of TCP connection, compared with traditional CUBIC [8]. Some
scholars have made some modifications to the control parameters in BBR to obtain better
performance [9–11] and apply it to different network fields [12–14]. Moreover, Google is
actively upgrading BBR v2 by modifying some parts of the BBR algorithm [15,16].

Electronics 2021, 10, 615. https://doi.org/10.3390/electronics10050615 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics10050615
https://doi.org/10.3390/electronics10050615
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10050615
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/10/5/615?type=check_update&version=2

Electronics 2021, 10, 615 2 of 18

Since BBR is still under development, many issues have been reported when BBR
operates in different scenarios [17–24], including the fairness between the BBR algorithm
and the other algorithm [25–28] and the Intra-Protocol Round-trip time (RTT) fairness
problem of BBR [18,29–32]. One especially obvious problem is that the RTT fairness of
different BBR flows can lead to throughput imbalance. Ma et al. [18] and Kim et al. [30]
pointed out that, when multiple flows with different RTTs share a link, the longer RTT
flows are more favored by BBR algorithm. When the bottleneck buffer is small, the longer
RTT flow can achieve higher throughput and trigger higher sending rate than shorter
RTT flows. Furthermore, the shorter RTT flows will be starved when flows suffer severe
packet loss and high retransmission. Song et al. [28] pointed out the problem of BBR when
analyzing the Inter-Protocol Fairness of BBR: BBR only estimates the delivery rate based on
BDP and uses a fixed congestion window, without considering the impact of packet loss. It
can be seen from the above literature that if the amount of data sent by the BBR exceeds the
capacity of the link, it can lead to serious queuing delay and severe network congestion.
Therefore, applying the window control method to the BBR algorithm to find the optimal
node can alleviate the unfairness between different RTT flows and improve the throughput
of short RTT flows. This paper proposes an improved BBR algorithm based on adaptive
congestion window method.

The rest of this article is organized as follows: Section 2 introduces some related work
on improving RTT fairness in BBR algorithm. The BBR algorithm is elaborated in Section 3.
Section 4 expounds the RTT fairness issue and introduces the adaptive congestion window
of BBR (BBR-ACW) algorithm details with a model. Section 5 evaluates the Network
Simulator 3 (NS3) experimental results of the BBR-ACW by comparing with BBR and BBQ.
Conclusions and discussions are carried out in Section 6.

2. Related Work

Some scholars have evaluated and improved RTT fairness in BBR congestion control
algorithm. When Ma et al. [18] deployed BBR algorithms on the Internet, they found
consistent bandwidth differences between competing flows, with long BBR flows inevitably
consuming more bandwidth than short BBR flows. A theoretical model to characterize
the dynamics of the BBR bandwidth is established by Tao et al. [29]. It is also proved
that the occupation of bandwidth between different RTT flows is mainly affected by the
RTT ratio. In this model, when the RTT ratio between the two flows is greater than 2,
serious unfairness may occur. Zhang et al. [31] evaluated BBR and its variants on NS3,
including RTT fairness, Inter-Protocol Fairness, packet loss rate, channel utilization, etc.
The experimental results show that the BBR algorithm has serious bandwidth unfairness
for different RTT flows.

To solve the fairness problem in the BBR algorithm, Ma et al. [18] proposed a BBQ
algorithm to reduce the bandwidth consumption of the long RTT flows by limiting the
detection period of long RTT flows. Yang et al. [32] proposed the Adaptive-BBR algorithm,
which used the bottleneck buffer information in the BBR framework to adjust the flows
sending rate and no longer used the fixed 8 cycles of pacing_gain in the BBR ProbeBW
stage. Sun et al. [33] proposed an RFBBR algorithm to improve the fairness of BBR flows
with different RTTs, and it is applied in the wireless network spindle topology scenarios.
According to Kim et al. [34], the inflight cap in the BBR ProbeBW state was restricted to
less than 2 BDP during the creation of queues. If the bottleneck link is not fully utilized, the
behavior of the modified BBR is close to that of the original BBR; otherwise, the inflight cap
was limited to 1 BDP. Then, Kim et al. [35] proposed the Enhanced BBR(BBR-E) algorithm
to improve RTT fairness and maintain better throughput. In a subsequent paper [30], a
Delay-Aware BBR (DA-BBR) algorithm was proposed to alleviate the RTT fairness problem,
which reduces the BDP according to the RTT. The above algorithms have mitigated the
RTT fairness problem to varying degrees. Obviously, in order to further improve the RTT
fairness, it is still necessary to study new improved algorithms to increase the performance
and practicability of the BBR algorithm.

Electronics 2021, 10, 615 3 of 18

For detailed study, we generated simple network connection in NS3 and tested op-
timization algorithm of BBR according to BBR implementation [36]. Through analysis of
influence factors, when too much data is poured in the process of bandwidth detection, a
persistent queue that is not fully released in the exhaustion time is generated. The same
bottleneck queue will be shared by all BBR flows, but the queuing delay will exceed the
BBR flow with smaller RTT first. With the increase of RTprop, the shorter RTT flow enters
CWND-bounded mode, so the longer RTT flow can occupy more bandwidth than the
shorter RTT flow. With the increase of RTT difference between different BBR flows, RTT
fairness will deteriorate. Thus, we can reduce the excessive data transmission of long RTT
flow by adjusting CWND, so the RTT fairness of BBR algorithm will be improved.

From what has been discussed above, a new method based on adaptive congestion
window of BBR (BBR-ACW) is proposed in this paper. BBR-ACW algorithm adjusts the
cwnd_gain of different RTT flows, so that the data of different BBR flows in the bottleneck
queue can keep approximately the same.

The BBR-ACW algorithm is implemented on the basis of BBR and evaluated by NS3
in the simulated network environment. BBR-ACW has been compared with BBR algorithm,
BBQ algorithm and DA-BBR algorithm when different RTT flows in different buffer sizes or
different bottleneck bandwidths. The emulation results indicate that BBR-ACW algorithm
has the better performance among the above algorithms. Compared with the original BBR,
it can increase the Jain’s fairness index [37] by at least 1.5 times and reduce the queuing
delay by up to 54%.

The main contributions of this paper are as follows:

• The fairness issue of BBR has been further analyzed and revealed the mismatch
between sending rate of different RTT flows and BtlBw. The impact of buffer size on
the BBR-RTT fairness is also discussed.

• BBR-ACW is proposed to solve the BBR fairness issue. The RTT fairness, retransmis-
sion and delay performance under different buffer sizes are improved by adaptively
adjusting CWND based on delivery rate and queue status in network congestion.

• The extensive experiments have been conducted on the NS3 platform to test the
performance of the BBR-ACW. Different bottleneck bandwidth or buffer size are
configured in the experiment. From the experimental results, it can be seen that
BBR-ACW improves the fairness and reduces the delay, which is better than BBR and
BBQ. In addition, compared with the latest DA-BBR congestion algorithm, the fairness
of BBR-ACW is slightly better, and the latency is greatly reduced.

3. BBR Overview

In the Section 3, a detailed description of the operating points of TCP congestion
control is given. A brief introduction about four states of the BBR algorithm are also given.

3.1. Algorithm Principle of BBR

TCP congestion control aims to maximize the use of bottleneck link bandwidth in the
network, which determines the maximum transmission rate. The amount of data inflight
matches the BDP and determines the maximum delivery rate and the minimum delay
simultaneously, shown in Figure 1. The loss-based CC algorithm gradually increases the
CWND by slow detection and quickly reduces the CWND once the packet loss is found.
When the buffer overflows, a large number of packet losses will occur, and point B is exactly
where the packet loss occurs. This way can guarantee the maximum bandwidth but not
the minimum transmission delay.

Electronics 2021, 10, 615 4 of 18
Electronics 2021, 10, x FOR PEER REVIEW 4 of 18

R
o

u
n

d
-T

ri
p

 T
im

e
D

e
li

v
e
ry

 r
a

te

Operating point B （Loss based CC）

Operating point A

BDP
BDP+buffersize

Bandwith limited

Buffer limited

RTprop

BtlBW

Figure 1. Delivery rate based on the amount of data inflight.

Compared with the operating point based on the loss-based CC algorithm, the point

on the left edge of the bandwidth limitation area achieves the lower delay throughout the

process. The optimum operating point is the operating point A in Figure 1 and is proved

by Leonard Kleinrock [7]. The optimal throughput and transmission delay can be obtained

at point A, whereas the distributed algorithm cannot reach the Kleinrock’s point, which

is proved in [38].

BBR solves the problem of finding the optimal operating point (point A) by alter-

nately measuring the maximum delivery rate and minimum RTT in the bottleneck link.

In the BBR algorithm, the TCP link can be regarded as a "pipe." The "pipe" diameter is

BtlBw, the length of this "pipe" is RTprop and the volume of the "pipe" is BDP. When the

amount of data in the "pipe" is BDP, this means that the sending window is equal to BDP.

Then, the throughput can reach the maximum, that is, working at Kleinrock’s optimum

operating point (operating point A). BBR sets the maximum bandwidth (delivery rate) in

the recent 10 round-trips as the current BtlBw and obtains current RTprop by detecting

the minimum RTT measurement (RTTmin) in the past 10 s.

BBR controls its sending behavior by pacing rate and CWND: the pacing rate (send-

ing rate) is adjusted by different pacing_gain to explore more bandwidth, and the CWND

is set to a small multiple of BDP to limit the amount of inflight data.

When the inflight data is smaller than 1BDP, the RTT will be a fixed value, because

the bottleneck link is not queuing and the buffer is not occupied at this time, and the

throughput will increase with the increase of the sending rate. When the inflight data ex-

ceeds the 1BDP, the buffer will start to be occupied, and then the RTT will increase with

sending rate, but the throughput will not increase after reaching the maximum value

(2BDP). Once the buffer is full, the excess data packets will be discarded. The BBR algo-

rithm always maintains the sending rate near the Operating point A, which can ensure

higher throughput (filling up the pipeline) and lower transmission delay.

3.2. Four States of BBR

There are four control states in the BBR congestion control algorithm: StartUp, Drain,

ProbeBW and ProbeRTT (Figure 2).

Figure 1. Delivery rate based on the amount of data inflight.

Compared with the operating point based on the loss-based CC algorithm, the point
on the left edge of the bandwidth limitation area achieves the lower delay throughout the
process. The optimum operating point is the operating point A in Figure 1 and is proved
by Leonard Kleinrock [7]. The optimal throughput and transmission delay can be obtained
at point A, whereas the distributed algorithm cannot reach the Kleinrock’s point, which is
proved in [38].

BBR solves the problem of finding the optimal operating point (point A) by alternately
measuring the maximum delivery rate and minimum RTT in the bottleneck link. In the
BBR algorithm, the TCP link can be regarded as a “pipe.” The “pipe” diameter is BtlBw,
the length of this “pipe” is RTprop and the volume of the “pipe” is BDP. When the amount
of data in the “pipe” is BDP, this means that the sending window is equal to BDP. Then, the
throughput can reach the maximum, that is, working at Kleinrock’s optimum operating
point (operating point A). BBR sets the maximum bandwidth (delivery rate) in the recent
10 round-trips as the current BtlBw and obtains current RTprop by detecting the minimum
RTT measurement (RTTmin) in the past 10 s.

BBR controls its sending behavior by pacing rate and CWND: the pacing rate (sending
rate) is adjusted by different pacing_gain to explore more bandwidth, and the CWND is set
to a small multiple of BDP to limit the amount of inflight data.

When the inflight data is smaller than 1BDP, the RTT will be a fixed value, because
the bottleneck link is not queuing and the buffer is not occupied at this time, and the
throughput will increase with the increase of the sending rate. When the inflight data
exceeds the 1BDP, the buffer will start to be occupied, and then the RTT will increase
with sending rate, but the throughput will not increase after reaching the maximum value
(2BDP). Once the buffer is full, the excess data packets will be discarded. The BBR algorithm
always maintains the sending rate near the Operating point A, which can ensure higher
throughput (filling up the pipeline) and lower transmission delay.

3.2. Four States of BBR

There are four control states in the BBR congestion control algorithm: StartUp, Drain,
ProbeBW and ProbeRTT (Figure 2).

The StartUp is like the slow start in TCP. The sender can detect the maximum available
bandwidth by making pacing_gain = 2/ln2 (approximately 2.85) to increase its sending
rate. The redundant queues about 2BDP can be created at this stage. When the newly
estimated bandwidth has not exceeded 1.25 times of the last maximum bandwidth for
three consecutive times, the algorithm considers that the link is completely filled, and then
the state turns Drain. Drain’s pacing_gain changes to ln2/2 to decrease the sending rate
until the packets in the link match the BDP, and then state changes from Drain to ProbeBW.
After the StartUp and Drain, the BBR obtains the maximum delivery rate and the RTTmin.

Electronics 2021, 10, 615 5 of 18
Electronics 2021, 10, x FOR PEER REVIEW 5 of 18

StartUp

Drain

ProbeBW

ProbeRTT

stable state

RTT dose not updated
for 10s

inflight <= BDP

Bandwidth is
maximum

Bandwidth is not maximum

Bandwidth growth does not exceed 25%
for three consecutive times

Figure 2. BBR operational state.

The StartUp is like the slow start in TCP. The sender can detect the maximum avail-

able bandwidth by making pacing_gain = 2 / ln2 (approximately 2.85) to increase its send-

ing rate. The redundant queues about 2BDP can be created at this stage. When the newly

estimated bandwidth has not exceeded 1.25 times of the last maximum bandwidth for

three consecutive times, the algorithm considers that the link is completely filled, and then

the state turns Drain. Drain's pacing_gain changes to ln2 / 2 to decrease the sending rate

until the packets in the link match the BDP, and then state changes from Drain to

ProbeBW. After the StartUp and Drain, the BBR obtains the maximum delivery rate and

the RTTmin.

During the ProbeBW, the pacing_gain in eight cycles with different values

= [1.25; 0.75; 1; 1; 1; 1; 1; 1]pacing_gain , and each cycle lasts for RTTmin. The probe up

phase with pacing_gain of 1.25 is to increase the sending rate to probe more available band-

width, and the probe down phase with pacing_gain of 0.75 is to eliminate the excess

queues, which accumulated in the previous probing. Then, the pacing_gain is 1 for the

remaining six cycles to stabilize the sending rate. Furthermore, the cwnd_gain in the

ProbeBW is set to a fixed value of 2, so that enough data packets can be sent during the

probe up phase. If new RTTmin is not sampled again within 10 s, the link will be consid-

ered falling into congested and enters the ProbeRTT. In ProbeRTT, CWND is set to a very

small value (4 × MSS) to remove all possible queues, and this state lasts for 200 ms to

ensure the new value RTTmin to be sampled. After this process, the transition to ProbeBW

or StartUp depends on whether the network bandwidth is full.

4. BBR-ACW: Adaptive Congestion Window of BBR

Here, we discuss the RTT fairness of BBR and analyze the reasons why the long RTT

flows has the advantage. BBR-ACW is proposed to improve RTT fairness and reduce la-

tency by adjusting the cwnd_gain according to the delivery rate and RTT of BBR flows.

4.1. Analysis of BBR’s RTT Fairness

When BBR flows with different RTT flows traversing through the bottleneck link,

BBR flows will obtain the maximum delivery rate and RTTmin after StartUp and Drain.

In the ProbeBW stage, BBR will periodically deliver more flow to the bottleneck link at a

rate of pacing_gain = 1.25; the delivery rate increases with the increase of inflight, resulting

in the total sending rate being greater than the bottleneck bandwidth and forming a per-

sistent queue on the bottleneck. This process is looped until some flows are restricted by

Figure 2. BBR operational state.

During the ProbeBW, the pacing_gain in eight cycles with different values pacing_gain=
[1 .25; 0 .75; 1; 1; 1; 1; 1; 1], and each cycle lasts for RTTmin. The probe up phase with

pacing_gain of 1.25 is to increase the sending rate to probe more available bandwidth, and
the probe down phase with pacing_gain of 0.75 is to eliminate the excess queues, which
accumulated in the previous probing. Then, the pacing_gain is 1 for the remaining six cycles
to stabilize the sending rate. Furthermore, the cwnd_gain in the ProbeBW is set to a fixed
value of 2, so that enough data packets can be sent during the probe up phase. If new
RTTmin is not sampled again within 10 s, the link will be considered falling into congested
and enters the ProbeRTT. In ProbeRTT, CWND is set to a very small value (4 ×MSS) to
remove all possible queues, and this state lasts for 200 ms to ensure the new value RTTmin
to be sampled. After this process, the transition to ProbeBW or StartUp depends on whether
the network bandwidth is full.

4. BBR-ACW: Adaptive Congestion Window of BBR

Here, we discuss the RTT fairness of BBR and analyze the reasons why the long RTT
flows has the advantage. BBR-ACW is proposed to improve RTT fairness and reduce
latency by adjusting the cwnd_gain according to the delivery rate and RTT of BBR flows.

4.1. Analysis of BBR’s RTT Fairness

When BBR flows with different RTT flows traversing through the bottleneck link, BBR
flows will obtain the maximum delivery rate and RTTmin after StartUp and Drain. In the
ProbeBW stage, BBR will periodically deliver more flow to the bottleneck link at a rate of
pacing_gain = 1.25; the delivery rate increases with the increase of inflight, resulting in the
total sending rate being greater than the bottleneck bandwidth and forming a persistent
queue on the bottleneck. This process is looped until some flows are restricted by CWND
and their sending rates are reduced. Even if some flows in the probe up process are
terminated, the conclusion above is still true, because other flows will quickly preempt the
spare bandwidth. Once a persistent queue is formed at the bottleneck, the throughput of
the flow is determined by its queue share, which eventually leads to RTT fairness issue.

On the one hand, when the BBR detects the larger bandwidth, the estimated BDP
value of the shorter RTT flow will be smaller than that of the longer RTT flow. Therefore,
the shorter RTT flow injects less packet into pipe, which will reduce delivery rate. The con-
tinuous low delivery rate will lead to a smaller value to be obtained in the next bandwidth

Electronics 2021, 10, 615 6 of 18

measurement, and then to a lower sending rate again, which will further reduce its queue
sharing and eventually lead to a serious decrease in bandwidth.

On the other hand, the cwnd_gain of BBR is set to 2. When BBR flows run on a
link, sending excessive packets results in the generation of queues and the increase of
measured RTT. When the buffer is not enough, the queuing delay will increase with queue
development. Once the queuing delay is greater than RTTmin (inflight > 2BDP), the flows
will be restricted by CWND. When the shorter RTT flow and the longer RTT flow share
the same bottleneck queue, the queuing delay will exceed the smaller RTTmin first. With
the increase of RTTmin, the shorter RTT flow enters CWND-bounded mode, while the
CWND-bounded flow cannot obtain additional bandwidth, even if more detections are
carried out. After that, the queuing delay will not increase, and the longer RTT flow will
never be restricted by CWND.

It can be seen from the analysis above that, when multiple BBR flows share the
bottleneck link, the bottleneck link will be overloaded. Then the excess data packets are
injected into the buffer, and a persistent queue is formed. The larger the BDP, the more
packets can be sent to the buffer. The BDP of the long RTT flow is greater than that of
the shorter flow, so the long RTT flow is dominant in the bottleneck queue and causes
high latency [18]. According to the queuing theory, the increased queue share allows it to
operate at a higher delivery rate than its competitor, so the longer RTT flow can occupy
more bandwidth than the shorter RTT flow. With the increase of RTT difference of BBR
flows, the fairness will deteriorate, and some users may take advantage of this vulnerability
to deliberately increase latency in order to gain high bandwidth. Therefore, it is necessary
to solve the problem of the longer RTT flow preference in BBR.

4.2. Model Analysis of BBR-ACW

In the ProbeBW phase, this loop detection will cause the total sending rate of multiple
BBR flows to exceed the bottleneck capacity, then forming queuing delay. In addition, the
buffer conditions on the bottleneck link should be considered. When the buffer is less than
1 BDP, the fixed cwnd_gain will make the packets sent by the BBR exceed the capacity of the
link, and the packets will be lost due to buffer overflow.

Like BBR, BBQ and DA-BBR use a constant cwnd_gain to limit the transmission of each
flow to 2 BDP. The CWND of the shorter flow is smaller than that of the longer flow. Thus,
the shorter RTT flow will be constrained in advance and will gradually provide bandwidth
for the longer RTT flow.

On the basis of simple experiments, the relationship between CWND and RTT fairness
issue of BBR is analyzed. It is observed that the performance of different RTT flows increases
with the increase of CWND. The shorter RTT flow is found to have higher bandwidth
sharing, while the queuing delay is also increasing. The RTT fairness needs to be balanced
against queuing delay.

Therefore, on the basis of original BBR, the cwnd_gain of different RTT flows is adap-
tively adjusted according to the delivery rate and RTT. Moreover, the impact of different
buffer sizes is considered to avoid increased queuing delay or a large number of packet
losses. This paper provides another way, which adaptively adjusts the upper limit of the
CWND of each RTT flow and moves the operating point of BBR to the position where the
buffer is not full.

Assume that the bandwidth of the bottleneck link L is C, and n flows are passing.
Let flowi i ∈ [1, n] denote flow i and di denote the delivery rate of flowi. In an ideal state,
d1 + d2 + . . . + dn = C. Di represents the maximal delivery rate within 10 RTTs. Let Ti = qi + pi
denote the round-trip time of flowi, where qi is the queuing delay of flowi and pi is RTTmin
of flowi. Let Ii = di × (qi + pi) denote the inflight of flowi, which is the upper bound of the
bottleneck link. Let Qi = di × pi represent the delivery capacity in the bottleneck link. The
balance of the bottleneck link is determined by di and qi. If Ii > Qi, the inflight data in the
bottleneck link will gradually fill up the buffer; if Ii > 1.25 Qi, the bottleneck link will be
under high load, and packet loss may occur.

Electronics 2021, 10, 615 7 of 18

As shown in Algorithm 1, BBR-ACW updates Ii and Qi through each probe and obtains
the latest state of the bottleneck link, according to different RTT flows, to adjust the upper
bound of CWND in the original BBR. When the link status becomes Ii > Qi with the link
increasing, the inflight data will exceed the bottleneck delivery capacity. When it happens,
the bottleneck link locks of additional capacity to transmit more data packets and forms a
queue in the bottleneck buffer. Here, we let min_rtt indicate whether the lower RTTmin
is measured within 3 RTTs. If no smaller RTTmin is obtained, cwnd_gain will adaptively
adjust based on the Di of different RTT flows, which will make the upper CWND be limited
to reduce the inflight data in the probe up phase. When link status becomes Ii >1.25 × Qi
and packet loss occurs (has_loss indicates), the network will be in an overload situation.
Therefore, the cwnd_gain is reduced, according to the relationship between qi and pi, to
adjust the number of packets sent in next cycle, and the CWND of the longer RTT flows
should be reduced more to provide bandwidth for the shorter RTT flows. Otherwise,
BBR-ACW will continue use the default cwnd_gain in the original BRR’s bbr_target_cwnd.

Algorithm 1 Improvement of RTT Fairness:

1: INPUT: di, qi, pi, has_loss
2: BDP = Di × pi
3: CWND = cwnd_gain × BDP
4: min_rtt = windowed_min(RTTmin,3RTTs)
5: if Ii <= 1.25 Qi then
6: if min_rtt > RTTmin
7: cwnd_gain = 2 × α

8: else
9: cwnd_gain = 2
10: end if
11: else if Ii > 1.25 × Qi and has_loss then
12: cwnd_gain = 2 × β

13: else
14: cwnd_gain = 2
15: end if
16: return cwnd_gain

At the bottleneck link, all the BBR flows tend to send more data than expected, while
some studies found that the longer RTT flow would inhibit the shorter RTT flow; thus, the
cwnd_gain should be adjusted according to the RTT of each flow. Based on the original
BBR algorithm, BBR-ACW takes the buffer constraints into account. According to di and
Ti, the cwnd_gain is multiplied by the scale factor α or β to monitor the excess flow and to
limit the inflight of different RTT flows within an adaptive multiple of CWND (the default
is 2) to prevent BBR flows from injecting excessive data to the pipeline and increase the
queuing delay.

If Ii > Qi, the inflight data in the bottleneck link will gradually fill up the buffer.
In order to improve the bandwidth utilization and prevent short RTT flows from being
limited by CWND early, we add the scale factor α to increase the CWND. The scale factor
α makes the nondominant flow to ensure at twice the original cwnd_gain (α is at least 1);
The dominant flow can get 1–2 times the cwnd_gain (α is 1~2). Obviously, if the CWND is
too large, it will lead to the increase of queuing delay, so that the value of α cannot be too
large. The α value is set as Equation (1):

α = max
[

1,
di − dmin

dmax − dmin
× 2

]
(1)

where dmax and dmin are the maximum and minimum of delivery rate estimated observing
under high load. We use the di to control α, and the di of the dominant flow is greater than
that of the nondominant flow. It can be seen from the Equation (1) that the dominant flow

Electronics 2021, 10, 615 8 of 18

has a range of α from 1 to 2 and the nondominant flow has at least 1. It ensures that the
nondominant flow will not be starved to death, and then the fairness between RTT flows is
guaranteed. At the same time, it ensures the faster occupation of the available bandwidth
and the convergence speed of BBR-ACW.

On the premise of ensuring RTT fairness, the speed of convergence fairness and link
utilization are balanced. If Ii > 1.25Qi, the bottleneck link will be under high load, and
packet loss may occur. We hope to reduce the size of CWND and limit BBR flows. The scale
factor β is introduced to appropriately reduce the CWND. The scale factor β can make the
CWND of long RTT flow smaller than that of short RTT flow, and the bandwidth decreases
faster. According to the queue backlog, the queue delay of long RTT flow is large, so we
use Ti and pi to control β. The value of β is set as Equation (2):

β =
Ti

Ti + pi
(2)

It can be seen from the Equation (2) that the cwnd_gain of the long RTT flow is smaller
than that of the shorter RTT flow, which makes the difference between of the CWND sizes
smaller than before. Due to the limitation of CWND, BBR-ACW can restrict different RTT
flows to narrow the gap of data volume in bottleneck queue.

By the scale factor α and β, RTT unfairness can be alleviated, and bandwidth utilization
can be improved. At the same time, the queuing delay caused by multiple data in the
original BBR is reduced, and the queuing delay and retransmission are greatly reduced.
This is obviously different from the previous approach to solving this problem by adjusting
the BDP [30].

5. Experimental Evaluation and Analysis

In this section, BBR, BBQ, DA-BBR and BBR-ACW algorithms are implemented on
NS3 platform, and simulation network topology is shown in Figure 3. We used BBR [2],
BBQ [18] and DA-BBR [30] as benchmark algorithms and compared them with the BBR-
ACW algorithm. The default active queue management (AQM) was DropTail policy, and
every packet size was 1 kb. Different senders sent data to their corresponding receivers,
and the bottleneck links between the routers they pass through were all the same.

Electronics 2021, 10, x FOR PEER REVIEW 9 of 18

Bottleneck link

Sender Receiver

... ...

Figure 3. Experimental network topology.

The channel utilization, RTT fairness, retransmission and latency of the four algo-

rithms were evaluated. To get more credible answers, the experiment was repeated 10

times for each test case and lasts 300 s.

5.1. Channel Utilization

In order to validate the performance of BBR-ACW, a channel utilization experiment

was performed on a link with random packet loss. The buffer backlog configuration was

set as 1BDP or 5BDP; in both cases, the random packet loss rate was 0%, 1%, 3% and 6%,

respectively. The channel utilization of all flows is calculated as Equation (3):

ii
bytes

=
cap* duration

(3)

where bytesi is the length of all received data packets on the application layer of flowi. Cap

is the bandwidth, and duration is the continuous simulation running time (300 s). The

final result is shown in Figure 4.

Figure 4. Channel utilization with random loss of different congestion control algorithms: (a) Bottleneck buffer size as 5

BDP (b) Bottleneck buffer size as 1 BDP.

When the random packet loss was 0%, these algorithms could get more than 94%

channel bandwidth utilization with different buffer backlog. The BBR-ACW achieved the

highest channel utilization, reaching about 97% in 5 BDP buffer and about 96% in 1 BDP

buffer. The link utilization decreased as the random packet loss rate increased, but BBR-

ACW was less affected by random packet loss. When the random packet loss rate was 6%,

the channel utilization of BBR decreased significantly, while that of BBR-ACW, BBQ and

DA-BBR decreased slightly. Moreover, BBR-ACW still maintained more than 90% channel

utilization in different buffer sizes.

5.2. RTT Fairness

Figure 3. Experimental network topology.

The channel utilization, RTT fairness, retransmission and latency of the four algorithms
were evaluated. To get more credible answers, the experiment was repeated 10 times for
each test case and lasts 300 s.

5.1. Channel Utilization

In order to validate the performance of BBR-ACW, a channel utilization experiment
was performed on a link with random packet loss. The buffer backlog configuration was

Electronics 2021, 10, 615 9 of 18

set as 1BDP or 5BDP; in both cases, the random packet loss rate was 0%, 1%, 3% and 6%,
respectively. The channel utilization of all flows is calculated as Equation (3):

η =
∑i bytesi

cap ∗ duration
(3)

where bytesi is the length of all received data packets on the application layer of flowi. Cap
is the bandwidth, and duration is the continuous simulation running time (300 s). The final
result is shown in Figure 4.

Electronics 2021, 10, x FOR PEER REVIEW 9 of 18

Bottleneck link

Sender Receiver

... ...

Figure 3. Experimental network topology.

The channel utilization, RTT fairness, retransmission and latency of the four algo-

rithms were evaluated. To get more credible answers, the experiment was repeated 10

times for each test case and lasts 300 s.

5.1. Channel Utilization

In order to validate the performance of BBR-ACW, a channel utilization experiment

was performed on a link with random packet loss. The buffer backlog configuration was

set as 1BDP or 5BDP; in both cases, the random packet loss rate was 0%, 1%, 3% and 6%,

respectively. The channel utilization of all flows is calculated as Equation (3):

ii
bytes

=
cap* duration

(3)

where bytesi is the length of all received data packets on the application layer of flowi. Cap

is the bandwidth, and duration is the continuous simulation running time (300 s). The

final result is shown in Figure 4.

Figure 4. Channel utilization with random loss of different congestion control algorithms: (a) Bottleneck buffer size as 5

BDP (b) Bottleneck buffer size as 1 BDP.

When the random packet loss was 0%, these algorithms could get more than 94%

channel bandwidth utilization with different buffer backlog. The BBR-ACW achieved the

highest channel utilization, reaching about 97% in 5 BDP buffer and about 96% in 1 BDP

buffer. The link utilization decreased as the random packet loss rate increased, but BBR-

ACW was less affected by random packet loss. When the random packet loss rate was 6%,

the channel utilization of BBR decreased significantly, while that of BBR-ACW, BBQ and

DA-BBR decreased slightly. Moreover, BBR-ACW still maintained more than 90% channel

utilization in different buffer sizes.

5.2. RTT Fairness

Figure 4. Channel utilization with random loss of different congestion control algorithms: (a) Bottleneck buffer size as 5
BDP (b) Bottleneck buffer size as 1 BDP.

When the random packet loss was 0%, these algorithms could get more than 94%
channel bandwidth utilization with different buffer backlog. The BBR-ACW achieved
the highest channel utilization, reaching about 97% in 5 BDP buffer and about 96% in
1 BDP buffer. The link utilization decreased as the random packet loss rate increased, but
BBR-ACW was less affected by random packet loss. When the random packet loss rate
was 6%, the channel utilization of BBR decreased significantly, while that of BBR-ACW,
BBQ and DA-BBR decreased slightly. Moreover, BBR-ACW still maintained more than 90%
channel utilization in different buffer sizes.

5.2. RTT Fairness

When the performance of the three algorithms, with respect to the RTT changes, was
evaluated, flows with different RTTs preempted the 100 Mbps bottleneck bandwidth under
the bottleneck buffer of 1 BDP or 5 BDP. The delay of flows were 10 ms and 50 ms flow,
respectively, and both flows were running throughout the simulation time.

In the 5 BDP buffer, the throughput of different RTT flows of the four algorithms
is shown in Figure 5. For BBR algorithm, although the 10-ms flow can quickly obtain
bandwidth in the StartUp phase, as shown in Figure 5a, it is immediately suppressed by
the 50 ms flow. After bandwidth stabilization, the average bandwidth of the 10 ms flow is
only 8.9 Mbps, while the average bandwidth of the 50 ms flow is 85.2 Mbps. In Figure 5b, BBQ
increases the average bandwidth occupied by the 10 ms flow, but the 50-ms flow still plays
a dominant role, and the bandwidth of the 50 ms flow is twice larger than that of 10 ms
flow. Figure 5c shows that, compared with the former two algorithms, DA-BBR improves
the RTT fairness and reduces the throughput difference between 10 ms flow and 50 ms flow.
In Figure 5d, BBR-ACW further improves the throughput of 10 ms flow. The bandwidth of
50 ms RTT flow is only 1.2 times that of 10 ms RTT flow, and the two flows can share the
bandwidth equally.

Electronics 2021, 10, 615 10 of 18

Electronics 2021, 10, x FOR PEER REVIEW 10 of 18

When the performance of the three algorithms, with respect to the RTT changes, was

evaluated, flows with different RTTs preempted the 100 Mbps bottleneck bandwidth un-

der the bottleneck buffer of 1 BDP or 5 BDP. The delay of flows were 10 ms and 50 ms

flow, respectively, and both flows were running throughout the simulation time.

In the 5 BDP buffer, the throughput of different RTT flows of the four algorithms is

shown in Figure 5. For BBR algorithm, although the 10-ms flow can quickly obtain band-

width in the StartUp phase, as shown in Figure 5a, it is immediately suppressed by the 50

ms flow. After bandwidth stabilization, the average bandwidth of the 10 ms flow is only

8.9 Mbps, while the average bandwidth of the 50 ms flow is 85.2 Mbps. In Figure 5b, BBQ

increases the average bandwidth occupied by the 10 ms flow, but the 50-ms flow still plays

a dominant role, and the bandwidth of the 50 ms flow is twice larger than that of 10 ms

flow. Figure 5c shows that, compared with the former two algorithms, DA-BBR improves

the RTT fairness and reduces the throughput difference between 10 ms flow and 50 ms

flow. In Figure 5d, BBR-ACW further improves the throughput of 10 ms flow. The band-

width of 50 ms RTT flow is only 1.2 times that of 10 ms RTT flow, and the two flows can

share the bandwidth equally.

Figure 5. Throughput comparison with 5 BDP buffer: (a) BBR (b) BBQ (c) DA-BBR (d) BBR-ACW.

The above experiment was repeated again by us when the bottleneck buffer was re-

duced to 1 BDP, the result of which is shown in Figure 6. In Figure 6a, the throughput

difference due to the BBR-RTT difference is still evident. The fairness of the BBQ algorithm

is improved relative to that of BBR; as shown in Figure 6b, the improvement performance

Figure 5. Throughput comparison with 5 BDP buffer: (a) BBR (b) BBQ (c) DA-BBR (d) BBR-ACW.

The above experiment was repeated again by us when the bottleneck buffer was
reduced to 1 BDP, the result of which is shown in Figure 6. In Figure 6a, the throughput
difference due to the BBR-RTT difference is still evident. The fairness of the BBQ algorithm
is improved relative to that of BBR; as shown in Figure 6b, the improvement performance is
reduced when compared with the large buffer (5BDP), and the difference between the two
RTT flows is close to 3 times. In Figure 6c, compared with the other two algorithms above,
the DA-BBR improve the bandwidth share of 10 ms RTT flow, but the 50 ms RTT flow
still has the advantage. Figure 6d illustrates that the BBR-ACW provides more available
bandwidth for 10 ms RTT flow than DA-BBR algorithm.

The extensive experiments were conducted under different conditions to quantify
the improvement of RTT fairness by BBR-ACW, of which the impact of RTT disparity and
buffer size on throughput bias were studied. The reference value of the average throughput
is introduced for auxiliary analysis, and the calculation equation is shown in Equation (4).

x =
bytes

duration
(4)

Electronics 2021, 10, 615 11 of 18

Electronics 2021, 10, x FOR PEER REVIEW 11 of 18

is reduced when compared with the large buffer (5BDP), and the difference between the

two RTT flows is close to 3 times. In Figure 6c, compared with the other two algorithms

above, the DA-BBR improve the bandwidth share of 10 ms RTT flow, but the 50 ms RTT

flow still has the advantage. Figure 6d illustrates that the BBR-ACW provides more avail-

able bandwidth for 10 ms RTT flow than DA-BBR algorithm.

Figure 6. Throughput comparison with 1 BDP buffer: (a) BBR (b) BBQ (c) DA-BBR (d) BBR-ACW.

The extensive experiments were conducted under different conditions to quantify

the improvement of RTT fairness by BBR-ACW, of which the impact of RTT disparity and

buffer size on throughput bias were studied. The reference value of the average through-

put is introduced for auxiliary analysis, and the calculation equation is shown in Equation

(4).

=
bytes

x
duration

 (4)

Figure 7a–d show the throughput changes of the four algorithms when 10ms RTT

flow competes with other RTT flows in the 5BDP buffer, and Figure 7e–h illustrate which

in the 1BDP buffer. As the RTT ratio increases in different cases, the fairness is decreased.

For BBR flows in Figure 7a, the throughput difference is about 5.6 times, when the RTT

difference is twice. When the RTT difference is greater than 3 times, the bandwidth of

10ms RTT flow is only about 10%. The BBQ in Figure 7b shows the throughput of 10 ms

flow does not depend on the constant change of RTT difference when the RTT difference

is 2–3 times. When the RTT difference is 5 times, the throughput of long flow accounts

Figure 6. Throughput comparison with 1 BDP buffer: (a) BBR (b) BBQ (c) DA-BBR (d) BBR-ACW.

Figure 7a–d show the throughput changes of the four algorithms when 10ms RTT
flow competes with other RTT flows in the 5BDP buffer, and Figure 7e–h illustrate which
in the 1BDP buffer. As the RTT ratio increases in different cases, the fairness is decreased.
For BBR flows in Figure 7a, the throughput difference is about 5.6 times, when the RTT
difference is twice. When the RTT difference is greater than 3 times, the bandwidth of
10 ms RTT flow is only about 10%. The BBQ in Figure 7b shows the throughput of 10 ms
flow does not depend on the constant change of RTT difference when the RTT difference is
2–3 times. When the RTT difference is 5 times, the throughput of long flow accounts about
for 65%. In Figure 7c, the bandwidth ratio of long RTT flows are more than 58% from the
point where the RTT difference is 5 times. For BBR-ACW algorithm, when RTT difference
is less than 5 times, the long RTT flow can occupy less than 55% bandwidth occupation,
and the 10-ms RTT flow can occupy more than 45%. Overall, BBR-ACW algorithm shows
better fairness than the other three algorithms.

When the buffer size was 1BDP, RTT bias was reduced. As shown in Figure 7e, when
the RTT difference is more than 2 times, the long RTT flows of BBR algorithm preempts
about 80% of the bandwidth. In the BBQ algorithm shown in Figure 7f, the bandwidth
of the long RTT flow still accounts about for 60% when the RTT difference is 5 times. As
Figure 7g illustrates, DA-BBR shows better fairness than BBR and BBQ, similar to the case
in the 5 BDP buffer. For BBR-ACW algorithm in Figure 7h, when different RTT flows
compete, the fairness is slightly improved, compared with the DA-BRR algorithm. Even if
it competes with 10 × RTT (100 ms), the 10-ms RTT flow can still retain close to 40% of the
bottleneck bandwidth.

Electronics 2021, 10, 615 12 of 18

Electronics 2021, 10, x FOR PEER REVIEW 12 of 18

about for 65%. In Figure 7c, the bandwidth ratio of long RTT flows are more than 58%

from the point where the RTT difference is 5 times. For BBR-ACW algorithm, when RTT

difference is less than 5 times, the long RTT flow can occupy less than 55% bandwidth

occupation, and the 10-ms RTT flow can occupy more than 45%. Overall, BBR-ACW algo-

rithm shows better fairness than the other three algorithms.

When the buffer size was 1BDP, RTT bias was reduced. As shown in Figure 7e, when

the RTT difference is more than 2 times, the long RTT flows of BBR algorithm preempts

about 80% of the bandwidth. In the BBQ algorithm shown in Figure 7f, the bandwidth of

the long RTT flow still accounts about for 60% when the RTT difference is 5 times. As

Figure 7g illustrates, DA-BBR shows better fairness than BBR and BBQ, similar to the case

in the 5 BDP buffer. For BBR-ACW algorithm in Figure 7h, when different RTT flows com-

pete, the fairness is slightly improved, compared with the DA-BRR algorithm. Even if it

competes with 10 × RTT (100 ms), the 10-ms RTT flow can still retain close to 40% of the

bottleneck bandwidth.

Electronics 2021, 10, x FOR PEER REVIEW 13 of 18

Figure 7. Throughput comparison when a 10-ms RTT flow coexists with a different RTT flow: (a) BBR with 1 BDP buffer.

(b) BBQ with 1 BDP buffer. (c) DA-BBR with 1 BDP buffer. (d) BBR-ACW with 1 BDP buffer. (e) BBR with 5 BDP buffer.

(f) BBQ with 5 BDP buffer. (g) DA-BBR with 5 BDP buffer. (h) BBR-ACW with 5 BDP buffer.

In some cases, the average throughput may not be a good reflection of the throughput

difference. In order to further quantify the impact of the BBR-ACW algorithm on the fair-

ness of RTT, the Jain’s fairness index [36] was introduced, which indicates the fairness of

bandwidth allocation when the competition for bandwidth resources happens. Equation

(5) shows a method for calculating Jain’s fairness index. The closer the value of J is to 1,

the better the fairness of bandwidth allocation sharing.

2

1

2

1

)(
n

ii

n

ii

x

n
J

x

 (5)

Figure 8 illustrates the Jain’s index of the four algorithms in 10 Mbps, 50 Mbps and

100 Mbps bottleneck bandwidth, respectively. As shown in Figure 8a, when there is com-

petition between 100 ms RTT flow and 10 ms RTT flow, the fairness index of BBR is the

smallest, only about 0.60. Compared with BBR, the RTT fairness of BBQ is improved in

different cases, and the fairness index is around 0.93 when RTT difference is less than 5

times. When the competition exists between 10 ms RTT and 100 ms RTT, the fairness index

is 0.85. The fairness of DA-BBR is better than that of BBR and BBQ, and the minimum

fairness index is about 0.92. The BBR-ACW's Jain index performs best, achieving a fairness

index of 0.94, even when competing with a 100 ms RTT flow.

From Figure 8b, we can observe the fairness index decreases in different cases, when

compared with Figure 8a. The minimum fairness index of BBR is only 0.61 as the RTT

differences increase. When RTT difference is less than 3 times, the fairness indexes of BBQ,

Figure 7. Throughput comparison when a 10-ms RTT flow coexists with a different RTT flow: (a) BBR with 1 BDP buffer.
(b) BBQ with 1 BDP buffer. (c) DA-BBR with 1 BDP buffer. (d) BBR-ACW with 1 BDP buffer. (e) BBR with 5 BDP buffer. (f)
BBQ with 5 BDP buffer. (g) DA-BBR with 5 BDP buffer. (h) BBR-ACW with 5 BDP buffer.

Electronics 2021, 10, 615 13 of 18

In some cases, the average throughput may not be a good reflection of the throughput
difference. In order to further quantify the impact of the BBR-ACW algorithm on the
fairness of RTT, the Jain’s fairness index [36] was introduced, which indicates the fairness of
bandwidth allocation when the competition for bandwidth resources happens. Equation (5)
shows a method for calculating Jain’s fairness index. The closer the value of J is to 1, the
better the fairness of bandwidth allocation sharing.

J =
(
(∑n

i=1 xi)
2

n∑n
i=1 xi

2

)
(5)

Figure 8 illustrates the Jain’s index of the four algorithms in 10 Mbps, 50 Mbps and
100 Mbps bottleneck bandwidth, respectively. As shown in Figure 8a, when there is
competition between 100 ms RTT flow and 10 ms RTT flow, the fairness index of BBR is
the smallest, only about 0.60. Compared with BBR, the RTT fairness of BBQ is improved
in different cases, and the fairness index is around 0.93 when RTT difference is less than
5 times. When the competition exists between 10 ms RTT and 100 ms RTT, the fairness
index is 0.85. The fairness of DA-BBR is better than that of BBR and BBQ, and the minimum
fairness index is about 0.92. The BBR-ACW’s Jain index performs best, achieving a fairness
index of 0.94, even when competing with a 100 ms RTT flow.

Electronics 2021, 10, x FOR PEER REVIEW 14 of 18

DA-BBR and BBR-ACW are above 0.94. When the RTT difference is more than 3 times, the

fairness index of BBQ decreases significantly, and the minimum is only 0.85. The DA-

BBR’s fairness index is about 0.91. BBR-ACW demonstrates better fairness as compared to

the other algorithms, and the fairness index is above 0.93.

For the 100 Mbps bottleneck bandwidth, as shown in Figure 8c, the fairness index of

BBR is only 0.59. Although BBQ can improve the fairness index compared with BBR,

which is not as good as in the condition of 10 Mbps bottleneck bandwidth, the fairness

index only increases to 0.83 (the worst). Compared with the former two algorithms, the

DA-BBR significantly improved the fairness of the different RTT flows, and the fairness

index increased to about 0.9, but the fairness index of BBR-ACW was the highest among

the four algorithms, and the minimum value was 0.92.

Figure 8. Jain’s index comparison when a 10-ms round trip time (RTT) flow coexists with a different
RTT flow: (a) 10 Mbps bottleneck bandwidth. (b) 50 Mbps bottleneck bandwidth. (c) 100 Mbps
bottleneck bandwidth.

Electronics 2021, 10, 615 14 of 18

From Figure 8b, we can observe the fairness index decreases in different cases, when
compared with Figure 8a. The minimum fairness index of BBR is only 0.61 as the RTT
differences increase. When RTT difference is less than 3 times, the fairness indexes of BBQ,
DA-BBR and BBR-ACW are above 0.94. When the RTT difference is more than 3 times, the
fairness index of BBQ decreases significantly, and the minimum is only 0.85. The DA-BBR’s
fairness index is about 0.91. BBR-ACW demonstrates better fairness as compared to the
other algorithms, and the fairness index is above 0.93.

For the 100 Mbps bottleneck bandwidth, as shown in Figure 8c, the fairness index
of BBR is only 0.59. Although BBQ can improve the fairness index compared with BBR,
which is not as good as in the condition of 10 Mbps bottleneck bandwidth, the fairness
index only increases to 0.83 (the worst). Compared with the former two algorithms, the
DA-BBR significantly improved the fairness of the different RTT flows, and the fairness
index increased to about 0.9, but the fairness index of BBR-ACW was the highest among
the four algorithms, and the minimum value was 0.92.

The BBR-ACW algorithm proposed in this paper obtained the largest fairness index
among the four algorithms in different cases. Although the fairness index decreased
when competing with 100-ms RTT stream, it still remained above 0.9, which represents a
5× fairness improvement, compared to the original BBR algorithm. In summary, BBR-ACW
guaranteed better fairness in the different cases and increased the available bandwidth of
10-ms RTT flow.

5.3. Retransmission

Unlike the original BBR, BBR-ACW reduces the CWND when different RTT flows
coexist. To check the effect of the buffer size on CWND adjustment, the different buffers
were set to test the reduced number of retransmissions. The sender transmitted the 10-ms
flows and 50-ms flows using different algorithms to the receiver with a bottleneck link
bandwidth of 100 Mbps.

As shown in Figure 9, when the buffer size is 0.5 BDP, BBR generates a large amount
of packet retransmission. BBQ and DA-BBR reduce packet retransmission, compared to the
original BBR, but static cwnd_gain still causes buffer overflows. BBR-ACW has a smaller
average CWND than BBR to avoid continuous packet loss, reducing retransmission by
up to 78%. When buffer size is 1 BDP, the retransmission packet of BBR is 2992. BBQ
reduces the number of retransmissions relative to BBR by 35%, and DA-BBR also reduces
the number of retransmissions by 61%. BBR-ACW reduces retransmission by 63% and still
has the lowest retransmission. BBR-ACW adaptively adjusted the cwnd_gain according to
the size of bottleneck buffer and recognized packet loss as network congestion. Therefore,
BBR-ACW reduced the overall transmission time and ensured the smaller number of
retransmissions, regardless of buffer size.

Electronics 2021, 10, x FOR PEER REVIEW 15 of 18

Figure 8. Jain's index comparison when a 10-ms round trip time (RTT) flow coexists with a different RTT flow: (a) 10 Mbps

bottleneck bandwidth. (b) 50 Mbps bottleneck bandwidth. (c) 100 Mbps bottleneck bandwidth.

The BBR-ACW algorithm proposed in this paper obtained the largest fairness index

among the four algorithms in different cases. Although the fairness index decreased when

competing with 100-ms RTT stream, it still remained above 0.9, which represents a 5×
fairness improvement, compared to the original BBR algorithm. In summary, BBR-ACW

guaranteed better fairness in the different cases and increased the available bandwidth of

10-ms RTT flow.

5.3. Retransmission

Unlike the original BBR, BBR-ACW reduces the CWND when different RTT flows

coexist. To check the effect of the buffer size on CWND adjustment, the different buffers

were set to test the reduced number of retransmissions. The sender transmitted the 10-ms

flows and 50-ms flows using different algorithms to the receiver with a bottleneck link

bandwidth of 100 Mbps.

As shown in Figure 9, when the buffer size is 0.5 BDP, BBR generates a large amount

of packet retransmission. BBQ and DA-BBR reduce packet retransmission, compared to

the original BBR, but static cwnd_gain still causes buffer overflows. BBR-ACW has a

smaller average CWND than BBR to avoid continuous packet loss, reducing retransmis-

sion by up to 78%. When buffer size is 1 BDP, the retransmission packet of BBR is 2992.

BBQ reduces the number of retransmissions relative to BBR by 35%, and DA-BBR also

reduces the number of retransmissions by 61%. BBR-ACW reduces retransmission by 63%

and still has the lowest retransmission. BBR-ACW adaptively adjusted the cwnd_gain ac-

cording to the size of bottleneck buffer and recognized packet loss as network congestion.

Therefore, BBR-ACW reduced the overall transmission time and ensured the smaller

number of retransmissions, regardless of buffer size.

Figure 9. Retransmission with different RTT competition (10 ms vs. 50 ms) in different bottleneck buffers.

5.4. Latency

The RTT flow of 10 ms competed with the RTT flow of 50 ms with the bottleneck

bandwidth of 100 Mbps and the bottleneck buffer size of 1 BDP. Figure 10 indicates the

delay of 10 ms RTT flow with different algorithms. Figure 10a shows that the delay of BBR

flow increases to 35 ms at most times. Figure 10b shows that the delay of BBQ flow is

about 26 ms, which is 26% lower than the delay of BBR algorithm. As shown in Figure

10c, this is compared with the delay time of other two algorithms, in which DA-BBR is

Figure 9. Retransmission with different RTT competition (10 ms vs. 50 ms) in different bottle-
neck buffers.

Electronics 2021, 10, 615 15 of 18

5.4. Latency

The RTT flow of 10 ms competed with the RTT flow of 50 ms with the bottleneck
bandwidth of 100 Mbps and the bottleneck buffer size of 1 BDP. Figure 10 indicates the
delay of 10 ms RTT flow with different algorithms. Figure 10a shows that the delay of BBR
flow increases to 35 ms at most times. Figure 10b shows that the delay of BBQ flow is about
26 ms, which is 26% lower than the delay of BBR algorithm. As shown in Figure 10c, this is
compared with the delay time of other two algorithms, in which DA-BBR is about 24 ms,
which is 31% lower than the delay of BBR algorithm. Figure 10d shows that the delay of
BBR-ACW flow is about 16 ms. BBR-ACW limited the aggregate flows inserted into the
pipe, avoiding the high latency caused by it creating deep queue. Overall, the average
queuing delay of BBR-ACW was 54% lower than that of BBR, which was also lower than
that of BBQ and DA-BBR.

Electronics 2021, 10, x FOR PEER REVIEW 16 of 18

about 24 ms, which is 31% lower than the delay of BBR algorithm. Figure 10d shows that

the delay of BBR-ACW flow is about 16 ms. BBR-ACW limited the aggregate flows in-

serted into the pipe, avoiding the high latency caused by it creating deep queue. Overall,

the average queuing delay of BBR-ACW was 54% lower than that of BBR, which was also

lower than that of BBQ and DA-BBR.

Figure 10. The latency of 10-ms RTT flow: (a) BBR; (b) BBQ, (c) DA-BBR and (d) BBR-ACW.

6. Conclusions

In this paper, based on the study of BBR congestion control, the cause of the unfair-

ness of BBR to different RTT flows was analyzed. BBR-ACW was proposed to improve

the fairness issue of original BBR with different RTT flows. According to the delivery rate

and queue status of different RTT flows, the scaling factor α and β were defined to adjust

the corresponding cwnd_gain. This scheme ensures that the different RTT flows can com-

pete the bottleneck bandwidth fairly.

Many simulation experiments have been conducted on the NS3 platform for different

RTT flows with different bottleneck bandwidths and buffer sizes. The results show that

the performance of BBR-ACW is better than BBR, BBQ and DA-BBR in improving RTT

fairness, and the fairness index is the highest of the four algorithms under different exper-

imental conditions. Furthermore, BBR-ACW greatly reduced the number of retransmis-

sions, compared to original BBR in the data transmission experiments. Lower packet re-

transmission can also be maintained even in small bottleneck buffers, which shows that

the buffer size has a smaller restriction on BBR-ACW. In addition, the latency was also

Figure 10. The latency of 10-ms RTT flow: (a) BBR; (b) BBQ, (c) DA-BBR and (d) BBR-ACW.

6. Conclusions

In this paper, based on the study of BBR congestion control, the cause of the unfairness
of BBR to different RTT flows was analyzed. BBR-ACW was proposed to improve the
fairness issue of original BBR with different RTT flows. According to the delivery rate and
queue status of different RTT flows, the scaling factor α and β were defined to adjust the
corresponding cwnd_gain. This scheme ensures that the different RTT flows can compete
the bottleneck bandwidth fairly.

Electronics 2021, 10, 615 16 of 18

Many simulation experiments have been conducted on the NS3 platform for differ-
ent RTT flows with different bottleneck bandwidths and buffer sizes. The results show
that the performance of BBR-ACW is better than BBR, BBQ and DA-BBR in improving
RTT fairness, and the fairness index is the highest of the four algorithms under different
experimental conditions. Furthermore, BBR-ACW greatly reduced the number of retrans-
missions, compared to original BBR in the data transmission experiments. Lower packet
retransmission can also be maintained even in small bottleneck buffers, which shows that
the buffer size has a smaller restriction on BBR-ACW. In addition, the latency was also
greatly improved, and the average queuing delay of BBR-ACW was lower than that of
BBR, BBQ and DA-BBR.

In future work, what appropriate value to be chosen as the scaling factor requires
data support in the real network, and it needs to be made applicable to BBR v2 if the same
RTT fairness issue exists. We will continue the study of the BBR and BBR v2 algorithm
and match the model with more actual data. Moreover, the AQM can be used to further
improve BBR-ACW and provide better network performance.

Author Contributions: Methodology, W.P. and H.T.; data curation, W.P.; writing—original draft
preparation, W.P.; writing—review and editing, X.L. (Xiru Li); supervision, X.L. (Xiaofeng Li); project
administration, H.T. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China under Grant
61602435, in part by the National Natural Science Foundation of Anhui under Grant 1708085QF153.

Acknowledgments: The authors sincerely thank that the editors and reviewers for their valuable
comments and suggestions on this article, which will comprehensively improve the quality of
this article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

BBR Bottleneck Bandwidth and Round-trip time
BBR v2 BBR version 2
BBR-ACW Adaptive Congestion Window of BBR
RTT Round-trip time
BDP Bandwidth Delay Product
BtlBw Bottleneck Bandwidth
RTprop Round-Trip propagation time
CWND Congestion Window
DA-BBR Delay-Aware BBR
NS3 Network Simulator 3
AQM Active Queue Management

References
1. Jacobson, V. Congestion avoidance and control. ACM Sigcomm Comput. Commun. Rev. 1988, 18, 314–329. [CrossRef]
2. Floyd, S.; Henderson, T. The NewReno Modification to TCP’s Fast Recovery Algorithm. 1999. Available online: https://tools.ietf.org/

html/rfc2582 (accessed on 21 April 2020).
3. Xu, L.; Harfoush, K.; Rhee, I. Binary increase congestion control (BIC) for fast long-distance networks. In Proceedings of the IEEE

Infocom, Hong Kong, China, 7–11 March 2004; Volume 4, pp. 2514–2524.
4. Ha, S.; Rhee, I.; Xu, L. CUBIC: A new TCP-friendly high-speed TCP variant. ACM SIGOPS Oper. Syst. Rev. 2008, 42, 64–74.

[CrossRef]
5. Cardwell, N.; Cheng, Y.; Gunn, C.S.; Yeganeh, S.H.; Jacobson, V. BBR: Congestion-based congestion control. ACM Queue 2016, 14,

50:20–50:53. [CrossRef]
6. Cardwell, N.; Cheng, Y.; Gunn, C.S.; Yeganeh, S.H.; Jacobson, V. BBR Congestion Control. In Proceedings of the IETF 97th

Meeting, Seoul, Korea, 13–18 November 2016; Available online: https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-
bbr-congestion-control-02.pdf (accessed on 18 February 2020).

7. Kleinrock, L. Power and deterministic rules of thumb for probabilistic problems in computer communications. In Proceedings of
the International Conference on Communications, Boston, MA, USA, 10–14 June 1979; pp. 1–10.

http://doi.org/10.1145/52325.52356
https://tools.ietf.org/html/rfc2582
https://tools.ietf.org/html/rfc2582
http://doi.org/10.1145/1400097.1400105
http://doi.org/10.1145/3012426.3022184
https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf
https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf

Electronics 2021, 10, 615 17 of 18

8. Cardwell, N.; Cheng, Y.; Gunn, C.S.; Yeganeh, S.H.; Jacobson, V. BBR Congestion Control: An Update. Available online:
https://www.ietf.org/proceedings/98/slides/slides-98-iccrg-an-update-on-bbr-congestion-control-00.pdf (accessed on 2 April
2020).

9. Mahmud, I.; Kim, G.H.; Lubna, T. BBR-ACD: BBR with advanced congestion detection. Electronics 2020, 9, 136. [CrossRef]
10. Su, B.; Jiang, X.; Jin, G. Rethinking the rate estimation of BBR congestion control. Electron. Lett. 2020, 56, 239–241. [CrossRef]
11. Najmuddin, S.; Asim, M.; Munir, K.; Baker, T.; Guo, Z.; Ranjan, R. A BBR-based congestion control for delay-sensitive real-time

applications. Computing 2020, 102, 2541–2563. [CrossRef]
12. Do, H.; Gregory, M.A.; Li, S. SDN-based Wireless Access Networks Utilising BBR TCP Congestion Control. In Proceedings of

the 29th International Telecommunication Networks and Applications Conference (ITNAC), Auckland, New Zealand, 27–29
November 2019; pp. 1–8.

13. Wei, W.; Xue, K.; Han, J.; Xing, Y.; Wei, D.S.; Hong, P. BBR-based Congestion Control and Packet Scheduling for Bottleneck
Fairness Considered Multipath TCP in Heterogeneous Wireless Networks. IEEE Trans. Veh. Technol. 2020, 70, 914–927. [CrossRef]

14. Jia, M.; Sun, W.; Wang, Z.; Yan, Y.; Qin, H.; Meng, K. MFBBR: An Optimized Fairness-aware TCP-BBR Algorithm in Wired-cum-
wireless Network. In Proceedings of the IEEE INFOCOM 2020-IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), Toronto, ON, Canada, 6–9 July 2020; pp. 171–176.

15. Cardwell, N. BBR v2: A model-based congestion control. In Proceedings of the ICCRG IETF 104th Meeting, March 2019. Available
online: https://datatracker.ietf.org/meeting/104/materials/slides-104-iccrg-an-update-on-bbr-00 (accessed on 2 April 2020).

16. Cardwell, N.; Cheng, Y.; Yeganeh, S.H.; Jha, P.; Seung, Y.; Yang, K.; Swett, I.; Vasiliev, V.; Wu, B.; Hsiao, L.; et al. BBRv2: A
Model-based Congestion Control. In Proceedings of the IETF 106th Meeting, Singapore, Singapore, 16–22 November 2019.
Available online: https://datatracker.ietf.org/meeting/106/materials/slides-106-iccrgupdate-on-bbrv2 (accessed on 2 April
2020).

17. Hock, M.; Bless, R.; Zitterbart, M. Experimental evaluation of BBR congestion control. In Proceedings of the International
Conference on Network Protocols (ICNP), Toronto, ON, Canada, 10–13 October 2017.

18. Ma, S.; Jiang, J.; Wang, W.; Li, B. Fairness of Congestion-Based Congestion Control: Experimental Evaluation and Analysis. arXiv
2017, arXiv:1706.09115.

19. Scholz, D.; Jaeger, B.; Schwaighofer, L.; Raumer, L.; Geyer, F.; Carle, G. Toward a Deeper Understanding of TCP BBR Congestion
Control. In Proceedings of the IFIP Networking, Zurich, Switzerland, 14–16 May 2018.

20. Atxutegi, E.; Haile, F.L.H.K.; Grinnemo, K.; Brunstrom, A.; Arvidsson, A. On the use of TCP BBR in cellular networks. IEEE
Commun. Mag. 2018, 56, 172–179. [CrossRef]

21. Cao, Y.; Jain, A.; Sharma, K.; Balasubramanian, A.; Gandhi, A. When to use and when not to use BBR: An empirical analysis and
evaluation study. In Proceedings of the Internet Measurement Conference, Amsterdam, The Netherlands, 21–23 October 2019;
pp. 130–136.

22. Jaeger, B.; Scholz, D.; Raumer, D.; Geyer, F.; Carle, G. Reproducible measurement of TCP BBR congestion control. Comput.
Commun. 2019, 144, 31–43. [CrossRef]

23. Ware, R.; Mukerjee, M.K.; Seshan, S.; Sherry, J. Modeling BBR’s Interactions with Loss-Based Congestion Control. In Proceedings
of the Internet Measurement Conference, Amsterdam, The Netherlands, 21–23 October 2019; pp. 137–143.

24. Kfoury, E.F.; Gomez, J.; Crichigno, J.; Bou-Harb, E. An emulation-based evaluation of TCP BBRv2 alpha for wired broadband.
Comput. Commun. 2020, 161, 212–224. [CrossRef]

25. Miyazawa, K.; Sasaki, K.; Oda, N.; Yamaguchi, S. Cycle and Divergence of Performance on TCP BBR. In Proceedings of the IEEE
International Conference on Cloud Networking (CloudNet), Tokyo, Japan, 22–24 October 2018.

26. Zhang, Y.; Cui, L.; Tso, F.P. Modest BBR: Enabling Better Fairness for BBR Congestion Control. In Proceedings of the IEEE
Symposium on Computers and Communications (ISCC), Natal, Brazil, 25–28 June 2018.

27. Claypool, S.M. Sharing but not caring-Performance of TCP BBR and TCP CUBIC at the network bottleneck. In Proceedings of the
Fifteenth Advanced International Conference on Telecommunications, Nice, France, 28 July—1 August 2019.

28. Song, Y.J.; Kim, G.H.; Cho, Y.Z. BBR-CWS: Improving the Inter-Protocol Fairness of BBR. Electronics 2020, 9, 862. [CrossRef]
29. Tao, Y.; Jiang, J.; Ma, S.; Wang, L.; Wang, W.; Li, B. Unraveling the RTT-fairness Problem for BBR: A queueing model. In

Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13
December 2018; pp. 1–6.

30. Kim, G.H.; Cho, Y.Z. Delay-Aware BBR Congestion Control Algorithm for RTT Fairness Improvement. IEEE Access 2019, 8,
4099–4109. [CrossRef]

31. Zhang, S. An Evaluation of BBR and its variants. arXiv 2019, arXiv:1909.03673.
32. Yang, M.; Yang, P.; Wen, C.; Liu, Q.; Luo, J.; Yu, L. Adaptive-BBR: Fine-grained congestion control with improved fairness and low

latency. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakech, Morocco,
15–18 April 2019; pp. 1–6.

33. Sun, W.; Jia, M.; Zhang, G.; Wang, Z. RFBBR: A Rtt Faireness Awared Algorithm Based on BBR. In Proceedings of the 2020 IEEE
International Conference on Smart Internet of Things (SmartIoT), Beijing, China, 14–16 August 2020; pp. 124–131.

34. Kim, G.H.; Mahmud, I.; Cho, Y.Z. Fairness improvement of BBR congestion control algorithm for different RTT flows. In
Proceedings of the 2019 International Conference on Electronics, Information, and Communication (ICEIC), Auckland, New
Zealand, 22–25 January 2019; pp. 1–2.

https://www.ietf.org/proceedings/98/slides/slides-98-iccrg-an-update-on-bbr-congestion-control-00.pdf
http://doi.org/10.3390/electronics9010136
http://doi.org/10.1049/el.2018.6440
http://doi.org/10.1007/s00607-020-00829-2
http://doi.org/10.1109/TVT.2020.3047877
https://datatracker.ietf.org/meeting/104/materials/slides-104-iccrg-an-update-on-bbr-00
https://datatracker.ietf.org/meeting/106/materials/slides-106-iccrgupdate-on-bbrv2
http://doi.org/10.1109/MCOM.2018.1700725
http://doi.org/10.1016/j.comcom.2019.05.011
http://doi.org/10.1016/j.comcom.2020.07.018
http://doi.org/10.3390/electronics9050862
http://doi.org/10.1109/ACCESS.2019.2962213

Electronics 2021, 10, 615 18 of 18

35. Kim, G.H.; Song, Y.J.; Mahmud, I.; Cho, Y.Z. Enhanced BBR congestion control algorithm for improving RTT fairness. In
Proceedings of the 2019 Eleventh International Conference on Ubiquitous and Future Networks (ICUFN), Zagreb, Croatia, 2–5
July 2019; pp. 358–360.

36. Jain, V.; Mittal, V.; Tahiliani, M.P. Design and implementation of TCP BBR in ns-3. In Proceedings of the 10th Workshop on Ns-3,
Surathkal, India, 13–14 June 2018; pp. 16–22.

37. Jain, R.K.; Chiu, D.M.W.; Hawe, W.R. A Quantitative Measure of Fairness and Discrimination; Eastern Research Laboratory, Digital
Equipment Corporation: Hudson, MA, USA, 1984.

38. Jaffe, J. Flow control power is nondecentralizable. IEEE Trans. Commun. 1981, 29, 1301–1306. [CrossRef]

http://doi.org/10.1109/TCOM.1981.1095152

	Introduction
	Related Work
	BBR Overview
	Algorithm Principle of BBR
	Four States of BBR

	BBR-ACW: Adaptive Congestion Window of BBR
	Analysis of BBR’s RTT Fairness
	Model Analysis of BBR-ACW

	Experimental Evaluation and Analysis
	Channel Utilization
	RTT Fairness
	Retransmission
	Latency

	Conclusions
	References

