Design and Implementation Procedure of a High-Gain Three-Input Step-Up 1 kW Converter

Edgardo Netzahuatl-Huerta (${ }^{\text {D }}$, Leobardo Hernandez-Gonzalez * © , Domingo Cortes (${ }^{\text {(D) }}$ and Jazmin Ramirez-Hernandez (D)

Instituto Politécnico Nacional, Escuela Superior de Ingenieria Mecanica y Electrica, Unidad Culhuacan, Av. Santa Ana No. 1000, Col. San Francisco Culhuacan, Mexico City C.P. 04430, Mexico; edgardo.netz@gmail.com (E.N.-H.); domingo.cortes@gmail.com (D.C.); jazzrh@hotmail.com (J.R.-H.)

* Correspondence: lhernandezg@ipn.mx

Citation: Netzahuatl-Huerta, E.; Hernandez-Gonzalez, L.; Cortes, D.; Ramirez-Hernandez, J. Design and Implementation Procedure of a High-Gain Three-Input Step-Up 1 kW Converter. Electronics 2021, 10, 625. https://doi.org/10.3390/electronics 10050625

Academic Editor: Ki-Bum Park

Received: 11 January 2021
Accepted: 5 March 2021
Published: 8 March 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

The use of different sources to energize a load is convenient in many applications, particularly those where two or more renewable energy sources are employed, such as energy harvesting, hybrid vehicles, and off-grid systems. In these cases, a multi-input converter is able to admit sources with different characteristics and, if necessary, select the output power of each source. Several topologies of multi-input converters have been proposed to this aim; however, most of them are based on multistage designs, which decreases efficiency and increases control complexity, particularly when more than two sources are used. In this work, a three-input step-up converter, easy to control in open loop condition, is analyzed. A designed procedure is described, and experimental results are presented for a 1 kW power converter. The implemented converter results in a higher voltage gain and less storage element, keeping high efficiency compared to similar topologies. Using the procedure here proposed, this converter that was initially designed for photovoltaic applications is enabled to be used in medium- and high-power applications, for example, when renewable energy sources are used.

Keywords: multi-output converter; DC-DC converter; boost converter; renewable energy

1. Introduction

An intense research effort has been made to increase the use of renewable energy in all human activities. Techniques to take advantage of solar [1], wind [2] and hydrogen-based energy [3], among other clean energies, have been developed. In some applications, it is necessary to jointly use several of these sources to feed a single load. Frequently, it is a convenient scheme where, if a single source is not enough, a second source may be used; if both are not sufficient, a third can be used, and so on. To make such scheme possible, a multi-input converter is necessary [4]. Among the applications where this scheme is used are energy harvesting for wireless sensors [5], smart buildings [6], hybrid and electric vehicles [7], off-grid systems in rural areas [8], etc.

Multi-input step-up converters have been reported in the literature; some of them are based on the boost converter. For example, experimental results for a multi-input multi-output step-up converter for a 1 kW prototype are presented in [9]; this topology presents some disadvantages, like a high number of energy storage elements and a low switching frequency operation, that increase the magnetic component's size. In [10], a dual-input step-up converter is presented for a 125 W prototype with a high efficiency of 97%, but the number of switching power devices are two per input. The number of semiconductor devices increases severely in the dual step-up converter presented in [11] for a 200 W output power and an efficiency of 87%.

In [12], a model for the dual-input case of the topology proposed in [13] was derived and analyzed, and a 500 W converter was evaluated. However, the real difficulty with the existing multi-input converters arises when more than two inputs are used, and a higher
power is required. In this context, to make sure that the model and design procedure match the experimental results, a 1 kW prototype for three input voltages is implemented in this work, considering an open loop control. Efficiency and reliability of the converter are also evaluated.

2. Principle of Operation

The converter analyzed in this paper is shown in Figure 1. It was first proposed in [13] for a low power application (100 W) for two inputs. The number of components is one MOSFET to each input source added; in this case, three input voltages are considered: $V_{\text {in } 1}$, $V_{i n 2}$ and $V_{i n 3}$. Since the basic construction block is the boost converter, the only added component per input is a capacitor. To obtain the control switching signals, two basic conditions need to be considered: the phase shift in the control signals, $\varphi=360^{\circ} /$ inputs $=$ $360^{\circ} / 3=120^{\circ}$, and the minimum duty cycle, which is given by $d_{\text {min }}=1-(1 /$ inputs $)=0.66$.

The six operating modes are shown in Figure 1. The control signals that generate these modes (M1 to M6) are presented in Figure 2. The control signals for $d_{\text {min }}$ are indicated in red; it can be observed that, at any timeframe, there are two switches in conduction, at most.

To analyze the operation of each mode, the following initial conditions are considered: $I_{L 1}, I_{L 2}$ and $I_{L 3}$ currents are greater than zero, and C_{1} and C_{2} are charged to $+V_{C 1}$ and $+V_{C 2}$. The conditions in each operating mode are as follows:

Mode 1, Δt_{1} (see Figure 1a): This mode starts by turning on switches S1,S2 and S3 at the same timeframe; diodes D_{1}, D_{2} and D_{3} are state-off. In this interval, inductors L_{1}, L_{2} and L_{3} are charged by $V_{i n 1}, V_{i n 2}$ and $V_{i n 3}$, respectively. Currents $I_{L 1}, I_{L 2}$ and $I_{L 3}$ increase linearly from its minimum value to its maximum. Considering that the average currents through capacitor C_{1}, C_{2} and C_{o} are zero, voltages $V_{C 1}, V_{C 2}$ and $V_{C o}$ are constant. This mode ends when switch $S 2$ is turned off at Δt_{2}.

Mode 2, Δt_{2} (see Figure 1b). In this mode, $S 2$ is turned off, and D_{2} is activated, allowing current of inductor L_{2} flows through C_{1} and C_{2}. Thus, $I_{L 2}$ decreases linearly and charges C_{1} and C_{2}, increasing their voltages. This mode ends when switch $S 2$ is turned on at Δt_{3}.

Mode 3, Δt_{3} (see Figure 1c). This mode is the same as mode 1.
Mode 4, Δt_{4} (see Figure 1d). In this mode, $S 3$ is turned off, and D_{3} is activated, allowing the current of inductor L_{3} flows through C_{2}. Thus, $I_{L 3}$ decreases linearly and charges C_{2}. This mode ends when switch $S 3$ is gated ON at Δt_{5}.

Mode 5, Δt_{5} (see Figure 1e). This mode is the same as mode 1.
Mode $6, \Delta t_{6}$ (see Figure 1f). In this mode, $S 1$ is turned off, and D_{1} is activated, allowing the current of inductor L_{1} flows through C_{1} and C_{0}. Hence $I_{L 1}$ decreases linearly and begins to charge C_{0}; at the same timeframe, C_{1} is discharged to R_{L}. This mode ends when switch $S 1$ is gated ON.

Although modes 1,3 and 5 are the same, they are shown for completeness.
Converter stationary ideal waveforms obtained from analysis of its six operation modes are qualitative depicted in Figure 3.

(a)

Figure 1. Cont.

(b)

(c)

(d)

(e)

(f)

Figure 1. Operating modes of the three-input step-up converter: (a) Mode 1, S1 = S2 = S3=On, (b) Mode 2, S1 = S3 = On, S2 = Off, (c) Mode 3, S1 = S2 = S3 = On, (d) Mode 4, S1 = S2 = On, S3 = Off, (e) Mode 5, S1 = S2 = S3 = On, (f) Mode 6, S2 = S3 = On, S1 = On.

Figure 2. Control signals and operating modes in the three-input step-up converter.

Figure 3. Ideal waveforms of three-input step-up converter.

Model Based on a State Variable Equations

To obtain a model of the converter based on the state space analysis, the state variables are chosen according to:

$$
\begin{align*}
& x_{1}=I_{L_{1}}, \tag{1}\\
& x_{2}=I_{L_{2}}, \tag{2}
\end{align*}
$$

$$
\begin{align*}
& x_{3}=I_{L_{3}} \tag{3}\\
& x_{4}=V_{C_{1}} \tag{4}\\
& x_{5}=V_{C_{2}} \tag{5}\\
& x_{6}=V_{C_{o}} \tag{6}
\end{align*}
$$

According to the procedure described in [12], the state space equations for the six operating modes are shown in Table 1.

Table 1. State space equations.

Modes 1, 3, 5	Mode 2	Mode 4	Mode 6
$\dot{x}_{1}=\frac{V_{i n 1}}{L_{1}}$	$\dot{x}_{1}=\frac{V_{i n 1}}{L_{1}}$	$\dot{x}_{1}=\frac{V_{i n 1}}{L_{1}}$	$\dot{x}_{1}=\frac{V_{i n 1}}{L_{1}}+\frac{x_{4}}{L_{1}}-\frac{x_{6}}{L_{1}}$
$\dot{x}_{2}=\frac{V_{i n_{2}}}{L_{2}}$	$\dot{x}_{2}=\frac{V_{i n_{2}}}{L_{2}}-\frac{x_{4}}{L_{2}}+\frac{x_{5}}{L_{2}}$	$\dot{x}_{2}=\frac{V_{i n_{2}}}{L_{2}}$	$\dot{x}_{2}=\frac{V_{i n_{2}}}{L_{2}}$
$\dot{x}_{3}=\frac{V_{i n_{3}}}{L_{3}}$	$\dot{x}_{3}=\frac{V_{i n_{3}}}{L_{3}}$	$\dot{x}_{3}=\frac{V_{i n_{3}}}{L_{3}}-\frac{x_{5}}{L_{3}}$	$\dot{x}_{3}=\frac{V_{i n_{3}}}{L_{3}}$
$\dot{x}_{4}=0$	$\dot{x}_{4}=\frac{x_{2}}{C_{1}}$	$\dot{x}_{4}=0$	$\dot{x}_{4}=-\frac{x_{1}}{C_{1}}$
$\dot{x}_{5}=0$	$\dot{x}_{5}=-\frac{x_{2}}{C_{2}}$	$\dot{x}_{5}=\frac{x_{3}}{C_{2}}$	$\dot{x}_{5}=0$
$\dot{x}_{6}=-\frac{x_{6}}{R_{L} C_{0}}$	$\dot{x}_{6}=-\frac{x_{6}}{R_{L} C_{o}}$	$\dot{x}_{6}=-\frac{x_{6}}{R_{L} C_{0}}$	$\dot{x}_{6}=-\frac{x_{1}}{C_{0}}-\frac{x_{6}}{R_{L} C_{o}}$

Let us introduce the notation for every switch state:

$$
u_{n}=\left\{\begin{array}{ccc}
1 & \text { if } & s w_{n}=o f f \tag{7}\\
0 & \text { if } & s w_{n}=o n
\end{array}\right\}, n=1,2,3
$$

Then, the following general state space representation can be obtained:

$$
\left[\begin{array}{c}
\dot{x}_{1} \tag{8}\\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4} \\
\dot{x}_{5} \\
\dot{x}_{6}
\end{array}\right]=\left[\begin{array}{cccccc}
0 & 0 & 0 & \frac{u_{1}}{L_{1}} & 0 & -\frac{u_{1}}{L_{1}} \\
0 & 0 & 0 & -\frac{u_{2}}{L_{2}} & \frac{u_{2}}{L_{2}} & 0 \\
0 & 0 & 0 & 0 & -\frac{u_{3}}{L_{3}} & 0 \\
-\frac{u_{1}}{C_{1}} & \frac{u_{2}}{C_{1}} & 0 & 0 & 0 & 0 \\
0 & -\frac{u_{2}}{C_{2}} & \frac{u_{3}}{C_{2}} & 0 & 0 & 0 \\
\frac{u_{1}}{C_{0}} & 0 & 0 & 0 & 0 & -\frac{1}{R_{L} C_{o}}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]+\left[\begin{array}{c}
\frac{V_{i n 1}}{L_{1}} \\
\frac{V_{i n 2}}{L_{2}} \\
\frac{V_{i n 3}}{L} \\
3 \\
0 \\
0
\end{array}\right]
$$

3. Design Procedure and Simulation Results

Although the converter uses three different input voltages, components are designed considering the lowest voltage, $V_{\text {in min }}$; due to inductors, current is maximum under this condition.

The complete development of the converter design equations was derived in [12] for the two-input case. Generalization of these equations was obtained from the operating modes described in the previous section. The gain for a three-input converter, $M_{V D C}$, is:

$$
\begin{equation*}
M_{V D C}=\frac{V_{o}}{V_{i n}}=\frac{3}{1-d}=\frac{3 I_{i n n}}{I_{0}} \tag{9}
\end{equation*}
$$

where d is the duty cycle of switching devices operation, and $I_{i n n}$ is the input current for each source. The duty cycle is determined according to an open loop control, where the
output power or the voltage gain, $M_{V D C}$, are specified. To calculate inductance values, note that the inputs of the converter are the same as the conventional boost converter, hence:

$$
\begin{equation*}
L_{n}=\frac{V_{i n} d}{\Delta I_{n} f_{s}} \tag{10}
\end{equation*}
$$

where ΔI_{n} is the ripple current of inductor, and f_{s} is the switching frequency.
Capacitors C_{1} and C_{2} were carefully designed, since a small value may generate an inadequate conversion ratio, and a very large value will affect the time response and create output voltage oscillations. Note that voltage on capacitors C_{1} and C_{2} affect the output voltage only through inductor currents. This can be observed from state equations, particularly from the output voltage equation; the output voltage derivative only depends on the output voltage, itself, the current $x 1$, the load and the output capacitor. Hence, ripple voltage in these capacitors can have a wide range, since this ripple is not reflected at the converter output. As it is proved in [12], the capacitors can be calculated according to:

$$
\begin{align*}
& C_{1}=\frac{I_{o}\left(1-d_{1}\right)}{d_{2} \Delta V_{c 1} f_{s}} \tag{11}\\
& C_{2}=\frac{I_{o}\left(1-d_{2}\right)}{d_{3} \Delta V_{c 2} f_{s}} \tag{12}\\
& C_{o}=\frac{I_{o}\left(1-d_{1}\right)}{\Delta V_{o} f_{s}} \tag{13}
\end{align*}
$$

where I_{0} is the output current and $\Delta V_{C 1}, \Delta V_{C 2}, \Delta V_{C o}$ are the ripple voltage of C_{1}, C_{2} and C_{0} respectively.

The converter output voltage is given by:

$$
\begin{equation*}
V_{o}=\frac{V_{i n 1}}{1-d_{1}}+\frac{V_{i n 2}}{1-d_{2}}+\frac{V_{i n 3}}{1-d_{3}} \tag{14}
\end{equation*}
$$

Using Equations (10)-(13), the final component values are obtained and listed in Table 2, together with the design conditions. A simulation was performed in Saber ${ }^{\mathrm{TM}}$ using ideal components to validate the design procedure and the correct operation of the three-input step-up converter.

Table 2. Test parameters and components.

Parameter	Value
Lowest input voltage, $V_{\text {in }}$ min	12 V
First input voltage source, $V_{\text {in } 1}$	12 V
Second input voltage source, $V_{\text {in } 2}$	24 V
Third voltage source, $V_{\text {in }}$	48 V
Output voltage, V_{o}	190 V
Output current, I_{o}	5.2 A
Output power, P_{o}	1000 W
Switching frequency, f_{s}	100 kHz
Voltage gain, $M_{V D C}$	15.7
Duty cycle, d_{n}	$0.66 \sim 0.8$
Phase shift	120°
Voltage ripple in $C_{1}, \Delta V_{c p 1}$	50 V
Voltage ripple in $C_{2}, \Delta V_{c p 2}$	100 V
Output voltage ripple, ΔV_{o}	2 V
Inductors, L_{1}, L_{2}, L_{3}	$47 \mu \mathrm{H}$
Capacitor C_{1}	$0.1 \mu \mathrm{~F}$
Capacitor C_{2}	$0.2 \mu \mathrm{~F}$
Capacitor C_{o}	$20 \mu \mathrm{~F}$
Output load, R_{o}	33Ω

Control signals S1,S2 and S3 are shown in Figure 4 with a phase shift $\varphi=120^{\circ}$ and $d=0.72$ The voltages $V_{L 1}, V_{L 2}$ and $V_{L 3}$ and currents $I_{L 1}, I_{L 2}$ and $I_{L 3}$ are shown in Figures 5-7, respectively. They can be contrasted with the ideal waveforms of Figure 3 to verify the correct operation of the converter.

Figure 4. Simulation results for digital control signal $S 1, S 2, S 3$ with $\varphi=120^{\circ}$ and $d=0.72$.

Figure 5. Simulation results for $I_{L 1}$ and $V_{L 1}$.

Figure 6. Simulation results for $I_{L 2}$ and $V_{L 2}$.

Figure 7. Simulation results for $I_{L 3}$ and $V_{L 3}$.
Simulation results for output voltage and current, V_{o} and I_{o} are shown in Figure 8 with DC (average) values $V_{O D C}=193.39 \mathrm{~V}$ and $I_{O D C}=5.52 \mathrm{~A}$, getting an output power of $P_{o}=1.067 \mathrm{~kW}$. The ripple voltage obtained $\Delta V_{o}=951 \mathrm{mV}$.

Figure 8. Simulation results for V_{o} and I_{o}.

4. Experimental Results

Considering that the maximum drain-source voltage is the output voltage, SiC transistors CMF20120 and diodes C3 D06060 were employed to reduce switching losses in the implemented prototype. The NXP TWR-KV 58 F220 microcontroller was used to generate the PWM pulses with a phase shifted of 120°. Inductors were designed and constructed, following the methodology presented in [14].

The efficiency of the converter is determined by:

$$
\begin{equation*}
\eta=\frac{P_{o}}{P_{i n_{1}}+P_{i n_{2}}+P_{i n_{3}}} \tag{15}
\end{equation*}
$$

The measure input current values were:

$$
\begin{gather*}
I_{i n_{1}}=12.5 \mathrm{~A}, I_{i n_{2}}=18.5 \mathrm{~A}, I_{i n_{3}}=11.5 \mathrm{~A} \tag{16}\\
V_{i n_{1}}=12 \mathrm{~V}, V_{i n_{2}}=24 \mathrm{~V}, V_{i n_{3}}=48 \mathrm{~V} \tag{17}
\end{gather*}
$$

The implemented prototype can be seen in Figure 9, where the main components are indicated. Output voltage and current are shown in Figure 10; obtained multimeter measurements are $190.9 \mathrm{~V}_{\mathrm{DC}}$ and $5.4 \mathrm{~A}_{\mathrm{DC}}$. In Figure 11, it can be seen that the output voltage is $192.09 \mathrm{~V}_{\mathrm{DC}}$, with ripple voltage of $1.005 \mathrm{~V}_{\mathrm{RMS}}$, resulting in an output power of $P_{o}=1.037 \mathrm{~kW}$.

Figure 9. Implemented 1 kW prototype.

Figure 10. Implemented 1 kW prototype with voltage and current measurement.
In Figure 12, voltage and current waveforms of inductors L_{1}, L_{2} and L_{3} are shown. Positive amplitudes in voltage waveforms are approximately equal to the value of the corresponding input voltage supply. A comparison of these waveforms with the ideal waveforms of Figures 3 and 5-8 shows their similarity, validating the experimental results. Spikes and high-amplitude ripples observed in the experimental waveforms show the existence of parasitic components that are not considered in simulation.

Figure 11. Experimental results $V_{o}=192.09 \mathrm{~V}_{\mathrm{DC}}, \Delta V_{o}=1.005 \mathrm{~V}$.

Figure 12. Cont.

(c)

Figure 12. Experimental results: (a) $V_{L 1}$ and $I_{L 1}$, input voltage $V_{i n 1}=12 \mathrm{~V}$, (b) $V_{L 2}$ and $I_{L 2}$, input voltage $V_{i n 2}=24 \mathrm{~V}$, (c) $V_{L 3}$ and $I_{L 3}$, input voltage $V_{i n 2}=48 \mathrm{~V}$.

According to Equation (15), and using the input voltages and currents, the efficiency obtained is $\eta=90.51 \%$. Figure 13 shows the experimental set up: (a) three-input step-up converter, (b) three input voltage sources, (c) the PWM signal generator and (d) the 33Ω output load.

Figure 13. Experimental prototype with three input voltage sources, 33Ω output load and the PWM signal generator.

A comparison between the proposed converter and similar topologies is summarized in Table 3. The implemented converter provides the highest output power, keeping a high efficiency, considering three voltage sources in its design. The number of energy storage elements is less than the converters proposed in [9-12,15,16]. The high switching frequency $(100 \mathrm{kHz})$ is a factor to reduce its implementation size.

Table 3. A comparison between the proposed converter and similar topologies.

Factor/Topologies	Proposed High-Gain Three-Input Step-Up Converter	High Step-Up Multi-Input Multi-Output Converter [9]	Soft-Switched Step-Up Converter [10]	$\begin{gathered} \text { Modular } \\ \text { Step-Up } \\ \text { Converter [11] } \end{gathered}$	High-Gain Two-Input Step-Up Converter [12]	Multiphase Buck Converter [15]	Multi-Input Multi-Output [16]
Open-loop current unbalance	Minimum	Minimum	Minimum	Medium	Minimum	Medium	Medium
Output power	1.037 kW	1 kW (divided in 2 outputs)	125 W	200 W	500 W	152 W	100 W
Efficiency	90.51\%	75-96.8\%	97\%	87\%	90-95\%	87-95\%	86\%
Number of voltage sources	3	4	2	2	2	2	2
Input voltage	$24 \mathrm{~V}, 12 \mathrm{~V}, 48 \mathrm{~V}$	$52 \mathrm{~V}, 40 \mathrm{~V}, 50 \mathrm{~V}$,	$24 \mathrm{~V}, 20 \mathrm{~V}$	$10 \mathrm{~V}, 10 \mathrm{~V}$	$24 \mathrm{~V}, 24 \mathrm{~V}$	$100 \mathrm{~V}, 50 \mathrm{~V}$	$60 \mathrm{~V}, 12 \mathrm{~V}$
Output voltage	190 V	$453 \mathrm{~V}, 322 \mathrm{~V}$	200 V	250 V	186.6 V	18.5 V	48 V
Number of power switching devices	3	4	4	7	2	5	4
Number of diodes	3	7	4	1	2	2	6
Number of inductors	3	7	3	4	2	1	3
Number of capacitors	3	4	3	4	2	1	5
Switching frequency	100 kHz	40 kHz	100 kHz	25 kHz	100 kHz	10 kHz	100 kHz

5. Conclusions

A high-gain three-input step-up converter of 1 kW was analyzed, designed and implemented. The design procedure was validated through experimental results. In addition, the converter efficiency and reliability were verified, obtaining a power of 1037 W , with an efficiency of 90.51%, which is superior to similar proposals. The converter topology can be used for a wide range of applications; in particular, the topology could be used as a low-cost alternative to jointly use several renewable sources that may be backed up by a nonrenewable source, allowing the prioritization of power sources at any time. Based on the obtained results, it can be said that the converter topology can be used for higher powers and more inputs.

Author Contributions: Conceptualization, E.N.-H., L.H.-G. and D.C.; data curation, J.R.-H. and D.C.; formal analysis, L.H.-G., D.C. and J.R.-H.; funding acquisition, E.N.-H. and L.H.-G.; investigation, E.N.-H., L.H.-G., D.C. and J.R.-H.; methodology, E.N.-H. and L.H.-G.; project administration, L.H.-G.; resources, D.C. and J.R.-H.; software, E.N.-H., L.H.-G. and J.R.-H.; supervision, L.H.-G. and D.C.; validation, E.N.-H. and L.H.-G.; visualization, E.N.-H. and L.H.-G.; writing, original draft, E.N.-H. and L.H.-G.; writing, review and editing, D.C. and J.R.-H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Instituto Politécnico Nacional.
Acknowledgments: The authors are grateful to the Instituto Politécnico Nacional (IPN) for their encouragement and kind economic support to realize the research project.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

$V_{\text {in } 1}, V_{\text {in } 2}, V_{\text {in } 3}$	Three input voltages
Φ	Control signals phase shift
d	Duty cycle in switching devices
$d_{\text {min }}$	Minimum duty cycle
$S 1, S 2, S 3$	Digital control signals in each transistor
L_{1}, L_{2}, L_{3}	Inductors for each input voltage source
$I_{L 1}, I_{L 2}, I_{L 3}$	Currents in inductor L_{1}, L_{2} and L_{3}
$\Delta I_{1}, \Delta I_{2}, \Delta I_{3}$	Ripple current in L_{1}, L_{2} and L_{3}
C_{1}, C_{2}	Capacitors in boost circuits in first and second inputs
$V_{C 1}, V_{C 2}$	Voltage in capacitors C_{1} and C_{2}
D_{1}, D_{2}, D_{3}	Diodes in boost circuits for each input
C_{o}	Output capacitor
V_{o}	Output DC voltage
R_{L}	Output load
Δt_{1} to Δt_{6}	Time interval in each operating mode
M 1 to M6	Operating modes 1 to 6
x_{1} to x_{6}	State variables in state space analysis
$V_{\text {in min }}$	Minimum input voltage
$M_{V D C}$	Voltage gain
f_{s}	Switching frequency
$s w_{n}, n=1,2,3$	State of switches $S 1, S 2$ and $S 3$
I_{o}	Output current
$\Delta V_{c 1}, \Delta V_{c 2}$	Ripple voltage in C_{1} and C_{2}
V_{o}	Output voltage
ΔV_{o}	Output voltage ripple
P_{o}	Output power
$P_{\text {in1 }}, P_{i n 2}, P_{i n 3}$	Input power for each voltage source
η	Converter efficiency

References

1. Prasanth, J.; Rajasekar, N. A Novel Flower Pollination Based Global Maximum Power Point Method for Solar Maximum Power Point Tracking. IEEE Trans. Power Electron. 2015, 32, 8486-8499. [CrossRef]
2. Yaramasu, V.; Dekka, A.; Durán, M.; Kouro, S.; Wu, B. PMSG-based wind energy conversion systems: Survey on power converters and controls. IET Electr. Power Appl. 2017, 11, 956-968. [CrossRef]
3. Teng, Y.; Wang, Z.; Li, Y.; Ma, Q.; Hui, Q.; Li, S. Multi-energy storage system model based on electricity heat and hydrogen coordinated optimization for power grid flexibility. CSEE J. Power Energy Syst. 2019, 5, 266-274.
4. Liu, Y.-C.; Chen, Y.-M. A Systematic Approach to Synthesizing Multi-Input DC-DC Converters. IEEE Trans. Power Electron. 2009, 24, 116-127. [CrossRef]
5. Chew, Z.J.; Ruan, T.; Zhu, M. Power Management Circuit for Wireless Sensor Nodes Powered by Energy Harvesting: On the Synergy of Harvester and Load. IEEE Trans. Power Electron. 2018, 34, 8671-8681. [CrossRef]
6. Pooranian, Z.; Abawajy, J.H.; Vinod, P.; Mauro, C. Scheduling Distributed Energy Resource Operation and Daily Power Consumption for a Smart Building to Optimize Economic and Environmental Parameters. Energies 2018, 11, 348. [CrossRef]
7. Zhang, Y.; He, J.; Ionel, D.M. Modelling and Control of a Multiport Converter based EV Charging Station with PV and Battery. In Proceedings of the IEEE Transportation Electrification Conference, Detroit, MI, USA, 1-5 June 2019.
8. Schumacher, D.; Beik, O.; Emadi, A. Standalone Integrated Power Electronics System: Applications for Off-Grid Rural Locations. IEEE Electrif. Mag. 2018, 6, 73-82. [CrossRef]
9. Mohseni, P.; Hossein, H.S.; Sabahi, M.; Jalilzadeh, T.; Maalandish, M. A New High Step-Up Multi-Input Multi-Output DC-DC Converter. IEEE Trans. Ind. Electron. 2019, 66, 5197-5208. [CrossRef]
10. Faraji, R.; Farzanehfard, H.; Kampitsis, G.; Mattavelli, M.; Matioli, E.; Esteki, M. Fully Soft-Switched High Step-Up Nonisolated Three-Port DC-DC Converter Using GaN HEMTs. IEEE Trans. Ind. Electron. 2010, 67, 8371-8380. [CrossRef]
11. Varesi, K.; Hossein, H.S.; Sabahi, M.; Babaei, E. Modular non-isolated multi-input high step-up dc-dc converter with reduced normalised voltage stress and component count. IET Power Electron. 2018, 11, 1092-1100. [CrossRef]
12. Netzahuatl, E.; Cortes, D.; Ramirez-Salinas, M.A.; Resa, J.; Hernandez, L.; Hernandez, F.D. Modeling, Design Procedure and Control of a Low-Cost High-Gain Multi-Input Step-Up Converter. Electronics 2019, 8, 424. [CrossRef]
13. Zhou, L.; Zhu, B.; Luo, Q. High step-up converter with capacity of multiple input. IET Power Electron. 2012, 5, 524-531. [CrossRef]
14. McLyman, C.W.T. Transformer and Inductor Design Handbook; CRC Press: Boca Raton, FL, USA, 2017; ISBN 9781439836880.
15. Varesi, K.; Hossein, H.S.; Sabahi, M.; Babei, E.; Vosoughi, N. Performance and design analysis of an improved non-isolated multiple input buck DC-DC converter. IET Power Electron. 2017, 10, 1034-1045. [CrossRef]
16. Sun, Z.; Bae, S. Multiple-input Soft-switching Ćuk Converter. In Proceedings of the IEEE Energy Conversion Congress and Exposition, Cincinnati, OH, USA, 1-5 October 2017.
