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Abstract: Face recognition technology is presenting exciting opportunities, but its performance gets
degraded because of several factors, like pose variation, partial occlusion, expression, illumination,
biased data, etc. This paper proposes a novel bird search-based shuffled shepherd optimization
algorithm (BSSSO), a meta-heuristic technique motivated by the intuition of animals and the social
behavior of birds, for improving the performance of face recognition. The main intention behind the
research is to establish an optimization-driven deep learning approach for recognizing face images
with multiple disturbing environments. The developed model undergoes three main steps, namely,
(a) Noise Removal, (b) Feature Extraction, and (c) Recognition. For the removal of noise, a type II
fuzzy system and cuckoo search optimization algorithm (T2FCS) is used. The feature extraction is
carried out using the CNN, and landmark enabled 3D morphable model (L3DMM) is utilized to
efficiently fit a 3D face from a single uncontrolled image. The obtained features are subjected to Deep
CNN for face recognition, wherein the training is performed using novel BSSSO. The experimental
findings on standard datasets (LFW, UMB-DB, Extended Yale B database) prove the ability of the
proposed model over the existing face recognition approaches.

Keywords: face recognition; occlusion; bird swarm algorithm; convolution neural network; shuffled
shepherd optimization

1. Introduction

Due to the evolution and advancement in biometric system technology, face recogni-
tion has become very popular in image and computer vision [1]. In the last few years, the
analysis based on face recognition has grown rapidly where building access control, video
surveillance, and autonomous vehicles are the few instances of the concrete applications
that are gaining more attention in industries [2–4]. Several approaches, such as holistic,
local, and hybrid are developed for providing face image description with only fewer
face image features or the whole facial features [5]. Numerous researchers have shown a
better recognition rate for face recognition [6–8]. However, during the biometric validation,
the face is affected by the illumination with several intensities of the light and different
angles [9]. This makes face recognition complex in real-time applications. When the effect
of illumination is controlled, it is very easy to recognize the face [10]. In the video scenes,
the regions of extracted face normally have low resolution (LR), and they are sensitive to
illumination and pose variations; these flaws degrade subsequent recognition tasks.

In the last few years, face recognition has been showing promising performance in
several applications with various challenging conditions, such as the variation in pose,
occlusion, expression, and illumination. Several face recognition systems are introduced
to recognize the face images in the controlled conditions; there are some studies focused
on surveillance systems with the LR faces [6]. A major challenge that lies in these appli-
cations is that high resolution (HR) probe images are not available because of the huge
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camera distance from the subject [11]. The performance of the face recognition system is
significantly affected under an uncontrolled environment. The problem of misalignment
heavily affects the face recognition system [12]. Previous works show that the presence
of occlusions degrades the performance of the face recognition system; hence, the initial
task for recognizing the face with the occlusion is to eliminate or suppress occlusions
effectively [13].

Deep learning is utilized to provide accurate results for pre-processing and face recog-
nition. In the deep learning techniques, the original data are considered as the input in
convolve filters with various multiple levels for detecting high representation from unla-
beled or labeled data [14,15]. The deep face recognition system aligns faces initially with
affine transformations; after that, the aligned faces are subjected to Convolutional Neural
Networks (CNN) for extracting identity-preserving features. As affine transformations
remove in-plane pose variations but fail to eliminate intra-class appearance variations from
the out-plane poses, this results in the face misalignment issue [12]. The deep learning
algorithm is utilized for extracting shallow structures from facial images [14].

The main intention behind the research is to establish an optimization-driven deep
learning approach for recognizing face images. In our work, initially, the input image
undergoes a noise removal phase to eliminate noise to make them suitable for subsequent
processing. The noise removal is performed using a type II fuzzy system and cuckoo search
optimization algorithm (T2FCS), which helps to detect noisy pixels from the image for
improved processing. After the noise removal phase, the feature extraction is carried out
using the CNN model and landmark-enabled 3D morphable model (L3DMM). Here, the
CNN is the multi-layered neural network (NN) for detecting the complex features in the
data and the L3DMM feature is utilized to fit a 3D face from a single uncontrolled image.
The obtained features are subjected to Deep CNN for face recognition, which is trained by
a novel bird search-based shuffled shepherd optimization algorithm (BSSSO). Here, the
developed BSSSO is designed by combining the shuffled shepherd optimization algorithm
(SSOA) [16] and bird swarm algorithm (BSA) [17]. The major contributions of the paper are:

Proposed BSSSO-based Deep CNN for face recognition: The proposed BSSSO-based
Deep CNN is the combination of the proposed BSSSO strategy to train the Deep CNN.
Here, the integration of SSOA is done along with the BSA for an efficient face recognition
system. Both BSA and SSOA are bio-inspired meta-heuristic algorithms designed to solve
optimization algorithms. Both algorithms are based on simple concepts and can be used
to solve a wide range of problems. In this paper, the developed BSSSO combines both
these algorithms efficiently by modeling the BSA’s bird intelligence (foraging) and SSOA’s
sheep instinct (to find the way). The novel algorithm is effective, efficient, and stable for
face recognition.

The other sections of research are as follows: Section 2 describes the conventional
face recognition techniques used in literature and faced challenges. The developed model
for face recognition is shown in Section 3. The results of the developed model with other
schemes are portrayed in Section 4, and Section 5 concludes the paper.

2. Related Work

The existing face recognition techniques along with their limitations are explained in this
section, which motivates researchers to develop a new method to perform face recognition.

2.1. Literature Survey

The eight classical strategies based on face recognition along with its limitations are
deliberated below: Li, X.X. et al. [13] developed a joint probabilistic generative model for
improving the quality of error images in the Image Gradient Orientations-embedded Struc-
tural Error Coding (IGO-SEC). Further, the novel reconstruction approach was introduced
by incorporating the advantages of the pixel as well as IGO features. The method kept more
stable recognition performances but failed to consider error coding models into the deep
learning method. He, M. et al. [12] presented Deformable Face Net (DFN) for handling
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pose variations for recognizing the face. The deformable convolution module was utilized
for learning identity enabled preserving feature extraction and face-recognition-oriented
alignment. In addition, Displacement Consistency Loss (DCL) was introduced as the
regularization term for enforcing learned displacement fields to align faces to be consistent
both in amplitude and orientation. Here, the performance was found better, but the risk of
over-fitting was increased. Yang, W. et al. [18] developed the Local Multiple Patterns (LMP)
feature descriptor for feature extraction and Weber’s law for face recognition. In the LMP,
Weber’s ratio was quantized into various intervals for generating the multiple feature maps
to describe the changes, and then LMP concatenated non-overlapping regions of feature
maps to represent the image. After that, the LMP captured the small-scale structures for
generating discriminative visual features. The method was complex to fix the pre-defined
threshold in the LMP. Zangeneh, E. et al. [11] employed the coupled mappings approach
for face recognition based on Deep CNN with low resolution. Here, the distance among
features of the corresponding low- and high-resolution images was back-propagated for
training the networks. The method can lead to over-fitting issues due to general features
that can sparsely change.

Gao, G. et al. [19] presented multilayer locality-constrained structural orthogonal
Procrustes regression (MLCSOPR) for recognizing the face. This method learns pose-robust
discriminative representation features for reducing the resolution gap among the LR and
the HR image space, but still strengthens consistency among the HR and LR image space.
However, the method failed to address multiple pose variations. Chen, Z. et al. [20]
developed Slack Block-Diagonal (SBD) structure, in which the target structure matrix was
updated dynamically, but their block diagonal nature was preserved. Further, the dictionary
learning method was introduced using the mixed-noise model for depicting noise in
the face images. The method failed to capture global structures of data. Vishwakarma,
V.P. and Dalal, S [10] presented a face recognition approach using adaptive illumination
normalization. In addition, the illumination normalization was carried out over Discrete
Cosine Transform (DCT) coefficients that were adaptively estimated based on alteration
significance of coefficients. The method failed to include various color face images for
color image illumination normalization. Iran Manesh, S.M. et al. [21] developed coupled
Generative Adversarial Network (CpGAN) for solving matching problems against the
gallery of the visible faces. This architecture contains two sub-networks where one is given
to the visible spectrum, whereas the other belongs to the non-visible spectrum. The method
prevents information flow in the network due to a combination of the identity function.

2.2. Challenges

The challenges of existing face recognition techniques are illustrated below:
A desirable image feature should be both discriminative and robust to different

variances, e.g., image noise and illumination changes. Variation in the illumination and
Gaussian white noise causes serious problems [13].

Unconstrained face recognition remains a challenging task due to various factors
such as pose, expression, illumination, partial occlusion, etc. In particular, the most
significant appearance variations are stemmed from poses that lead to severe performance
degeneration [12].

While many face recognition systems have been developed for recognizing high-
quality face images in controlled conditions, there are a few studies focused on face
recognition in real-world applications such as surveillance systems with low-resolution
faces. One important challenge in these applications is that high-resolution (HR) probe
images may not be available due to the large distance of the camera from the subject. Thus,
the performance of traditional face recognition systems that are developed for high-quality
images degrades considerably with low-resolution (LR) face regions [19].

During biometric checks, a face can be affected by illumination with different inten-
sities of light from different angles. Face recognition is difficult due to varying lighting
conditions [10].
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Proposed here is the bird search-based shuffled shepherd optimization-based Deep
Convolutional Network for face recognition

This section elaborates on the proposed BSSSO for face recognition. The schematic
view of the developed model is illustrated in Figure 1.

Figure 1. Schematic view of the proposed methodology of face recognition

Initially, the input image undergoes a noise removal phase to eliminate noise to make
them suitable for subsequent processing. The noise removal is performed using T2FCS [22],
which helps to detect noisy pixels from the image for improved processing. After the noise
removal phase, the feature extraction is carried out using the convolution neural network
(CNN) model and L3DMM [23]. Here, the CNN is a multi-layered neural network with a
special architecture for detecting the complex features in the data and the L3DMM feature
is utilized to fit a 3D face from the single uncontrolled image. The obtained features are
subjected to Deep CNN for face recognition. The training of the deep neural network is
performed using the bird search-based shuffled shepherd optimization algorithm (BSSSO).
Here, the proposed BSSSO is designed by combining the shuffled shepherd optimization
algorithm (SSOA) [16] and bird swarm algorithm (BSA) [17] for training Deep CNN.

Let us consider the dataset G with b number of images, which is expressed as,

G = {Kb}; (1 ≤ v ≤ b) (1)

where, the term b represents the total images and Kb indicate the bth image. Each image Kb
is forwarded to the noise removal module, which carries noise removal in the input images.
The size of database is expressed as [M× N].
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3. Proposed Bird Search-Based Shuffled Shepherd Optimization-Based Deep
Convolutional Network for Face Recognition
3.1. Noise Removal Using Type II Fuzzy System and Cuckoo Search Filter

The initial step involved in face recognition is noise removal. The main aim of noise
removal is to remove the noise for improving the quality of the image and to recognize
the face accurately. Here, the input image Kb is passed to the noise removal where noise
removal is carried out based on T2FCS filter [22]. Here, the noisy pixels in the image are
detected using the circular-based searching scheme and the detected corrupted pixels are
removed using the cuckoo search algorithm.

The noise removal process is utilized for modifying input image by changing a visual
impact. The enhancement image provides detailed information about boundaries, edges
with increased dynamic range. In this work, the enhancement procedure is carried based
on noisy pixels. Once the noisy pixels position K is identified, the identified pixels are
applied for the enhancement process. After that, a novel image matrix is produced based
on nearest neighbor for the noisy pixel, expressed by,

Jn1(x, y)
∀K

=
1
9

1

∑
u=1

1

∑
v=1

Jn(x + u, y + v) (2)

In order to solve the uncertainty issues, the generated new pixel values are subjected
to the neuro-fuzzy system.

Jn2(x, y)
∀K

= N f uzzy(Jn(x, y)) (3)

where, the term N f uzzy signifies the neuro-fuzzy system. Once the T2FCS set model is
generated, the new pixel Jn(x, y) is considered as the input and the new image is generated
using the noise pixel-based location. At last, the restored image is obtained from the
below equation.

JG(x, y)
∀K

=

 Jn1(x, y)+
∀K

Jn2(x, y)
∀K

2

 (4)

The structure of T2FCS [22] is composed of consequence and premise parts. The T2FCS
is trained for determining the parameters related to the parts employed in the optimization
approach. Here, the T2FCS uses output and input data pairs in the training. The layers
present in T2FCS are the fuzzification, rule, normalization, defuzzification, and summation
layers. Here, the fuzzification layer employs the membership functions for obtaining
fuzzy clusters from the input values where the firing strengths are produced based on
the membership values evaluated in the fuzzification, whereas the normalization layer is
utilized to compute the firing strengths corresponding to every rule. The normalized value
refers to the ratio of firing strength to ith rule to the total number of firing strengths. The
defuzzification layer computes the weighted values for every node, while the summation
layer sums the results obtained from the defuzzification layer. Hence, the output obtained
from noise removal output is denoted as T.

3.2. Feature Extraction Based on CNN Features and L3DMM Feature

After noise removal, the feature extraction is required for extracting the appropriate
features using CNN features and L3DMM feature. The segmentation image T is fed to
feature extraction phase to perform feature extraction effectively. The feature extraction
step performed in this research is explained below.

(i) CNN features

CNN is a multi-layered network, which is utilized for detecting the complex feature
from the pre-processed image. The CNN architecture comprises convolutional (Conv)
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layers, pooling (POOL) layers, and the Fully Connected (FC) layers, where each performs
a specific task. The initial layer is convolution layer that is utilized to extract essential
features from pre-processed images. It provides the relationship between the pixel values
and the image features. It takes the pre-processed result T as input and the CNN features
get extracted using the convolutional layer. The features that are extracted from the
initial convolutional layer are known as the CNN features and are denoted as f1 with
dimension [1 × 256].

The features obtained from CNN are denoted as E1. In this work, VGG19 is used for
the extraction of features. VGG19 architecture contains 16 CNN layers, 3 fully connected
layers and a final layer for softmax function.

(ii) L3DMM features

The 3D lighting environment is computed from the person’s face based on the follow-
ing steps: the initial step is to achieve a 3D face shape. For solving limitations of 3D face
fitting, the L3DMM [23] is employed to fit 3D face efficiently from the single uncontrolled
image. This approach is initially developed by Blanz and Thomas for estimating the 3D
face model from a single image based on the analysis-by-synthesis method. The 3DMM
is designed through principal component analysis of the textures and face shapes. Then,
multiple image features are employed for improving the convergence property of the
3DMM fitting method with a better precision level. According to 3DMM, the shape of the
expressional face is given by,

B = B + Je f βe f + Jexpβexp (5)

where, the term B refer to average shape vector matrix, the terms Je f and Jexp consists of
principle components of the shape variations corresponding to expression and identity,
and the terms βe f and βexp refer to weight coefficients. The main aim is to morph 3DMM
for reducing distance among projected 3D facial landmarks, as well as its 2D ones. Hence,
objective function is expressed by,

S(φ) = ‖mt−land −mland(φ)‖ (6)

where, mt−land land is the position of ground truth 2D facial landmarks detected from the
image based on explicit shape regression approach. mland(φ) is the projected position of
the morphable model’s 3D facial landmarks, which is obtained by,

mland(φ) = LM(Bland + g) (7)

where, the terms M and g represents the rotation matrix, and translation vector of 3D facial
landmarks is Bland. The features obtained from L3DMM are denoted as E2. Finally, the
feature vector obtained from the feature extraction step is expressed as,

E = {Ei ; 1 < i < m} (8)

3.3. Face Recognition Using the Proposed Bird Search-Based Shuffled Shepherd
Optimization-Based Deep Convolutional Neural Network (DCNN)

In this section, the face recognition is presented based on the developed BSSSO-
based Deep CNN method, and detection is carried out based on the feature vector. The
feature extracted output is given to the classification module based on the Deep CNN [3]
and training is carried out based on the training algorithm, termed BSSSO, which is the
integration of SSOA [16] with the BSA [17]. BSSSO aims to recognize a face from input
images based on extracted features.

SSOA: Animals use their intuition to find the best way for living and human beings
learn animal’s instincts for their purposes. Horses have an instinct to find the best way,
and shepherds use one or more horses in their herd to find the way. Shepherds guide
sheep behind the horses to pasture and bring them back. The SSOA [16] is a simple meta-
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heuristic technique that is motivated by utilizing an intuition of animals by a shepherd.
Here, the first step is to separate the agents into different communities, and optimization
is progressed by shepherd behavior operating in each community. Thus, the proposed
algorithm enhances the convergence speed, offering the optimal solution.

BSA: BSA [17] is the bio-inspired optimization that is based on the social interactions
and the social behaviors of birds. It consists of three behaviors, namely, flight behavior,
vigilance behavior, and foraging behavior. The birds try to forage the food using social
interactions and escape it from predators. The birds can switch between foraging and vigi-
lance behavior such that the birds foraging and the vigilance behavior of birds are modeled
as the stochastic decision. During foraging, each records and updates the previous best
experience regarding the food patch. However, social information can be instantaneously
shared among the whole swarm. The birds seek to shift to the center of the swarm using
vigilance behavior. Birds switch between scrounging and producing while flying to another
site. The mathematical modeling of this behavior of birds is BSA.

The integration of SSOA and BSA is done to enhance the overall system performance
of the algorithm. The structure of Deep CNN and algorithmic procedure of the developed
model are given below.

3.3.1. Architecture of Deep CNN

The architecture of the Deep CNN is deliberated in Figure 2 and the architecture
of DCNN comprises three layers: pooling (POOL), convolutional (conv), and the Full
Connected (FC) layers. Among the three layers of DCNN, each constitutes a specific
function. The main function of the conv layers is to generate feature maps from segments
of pre-processed images and these feature maps are sub-sampled down in pool layers. The
third layer is the FC layer, where the classification is progressed. The convolutional layer
engages in mapping the input such that the input maps undergo convolution with the
convolutional kernels in order to develop the output map. The size of the output map is
similar to the kernel number and the kernel matrix dimension is [3× 3]. Hence, this makes
it clear that the conv layers are the multilayer input maps loop, output maps, and kernel
weights. In the first conv layer, there are several inputs and outputs, whose size reduces in
the successive conv layers such that classification accuracy of the objects depends on the
layers in the Deep CNN.

Figure 2. Structure of Deep Convolutional Neural Network (DCNN) for the construction of prediction map.

Conv layers: This layer extracts the features and provides pattern extraction using the
feature vector obtained by input images. The neurons that are linked with the trainable
weights and those trained weights get convolved with inputs to build feature maps. After
that, the outcome is subjected to the non-linear activation function to ease the functional



Electronics 2021, 10, 626 8 of 18

mappings between input and the response variables. Let us assume input to the Deep
CNN is G and, therefore, the output from the conv layer is given by,

(Mb
c )i,j =

(
Bb

c

)
i,j
+

vd−1
1

∑
d=1

vl
1

∑
k=−vl

1

vl
2

∑
n=−vl

1

(
ϑb

c,d

)
k,n
∗ (J)i+k,j+n (9)

where, the symbol ∗ indicates the convolutional operator, and
(

Bb
c

)
i,j

signifies fixed feature

maps. The output from (b− 1)th layer forms the input to lth conv layer. The conv layer
weight is denoted as, ϑb

c, d, which is bth conv layer weights, and bth conv layer bias is
expressed by Bb

c . Assume d, k, and n denote the feature maps notations.
ReLU layer: ReLU ensures simplicity and effectiveness, and works faster when dealing

with huge networks. The ReLU layer output when subjected with the feature maps is
given by,

Gb
c = A f n

(
Mb−1

c

)
(10)

where, A f un() refers to activation function in bth layer.
POOL layers: It is a non-parametric layer without bias and has weights that follow

fixed operation. The importance of the POOL layer is to mitigate the spatial dimensions of
the input and minimize the computational complexity.

FC layers: The generated patterns based on conv layers and pooling are given to fully
connected layers. The fully connected layer output is expressed as,

Hb
c = δ

(
Gb−1

c

)
with Mb

c =
vd−1

1

∑
d=1

vl
1

∑
k=−vl

1

vl
2

∑
n=−vl

1

(
ϑl

c,d

)
k,n
∗ (J)i+k,j+n (11)

where,
(

ϑl
c,d

)
k,n

denotes the weight.

3.3.2. Training of DCNN Based on BSSSO Algorithm

This section illustrates the developed BSSSO algorithm for face recognition. Here, the
proposed BSSSO is developed by integrating the SSOA [16] and BSA [17]. The SSOA [16]
is devised for introducing a new multi-community that is motivated by the shepherd [16].
Here, the first step is to separate the agents into different communities, and optimization
is motivated by the shepherd’s behavior acting on each neighborhood. This method is
utilized to generate improved features for solving multi-objective optimization issues. The
SSOA is simpler because it works in a single phase.

Here, the updated equation of the BSA algorithm is modified based on the SSOA
optimization updated equation. The modification makes the solution update to be effective,
and it further enhances the convergence of the optimization algorithm. The procedure of
the developed model is illustrated below:

(i) Initialization of population: The initial step is the initialization of shepherd population,
which is expressed as,

Y =
{

Y1, Y2, . . . , Yl , . . . Yj
}

(12)

where, Yl refer to the position of lth shepherd and j represents the total shepherds.

(ii) Compute fitness function: The optimal solution is determined using fitness, which
is known as minimization problem and hence solution generating the least Mean
Square Error (MSE) is chosen as an optimal solution. Thus, the MSE is computed as,
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MSerr =
1
J

J

∑
j=1

[
ζ j −Mb

c

]2
(13)

where, ζ j signifies expected output and Mb
c represented predicted output, J indicates count

of input data, where 1 < j < J.

(iii) Generate new solutions: The position Yt+1
i are updated using previous position.

According to SSOA [16], the updated equation is given as,

Ys+1
g = α× rand×

(
Ys

e −Ys
g

)
+ β× rand×

(
Ys

e −Ys
g

)
(14)

where, the term Ys
e refer to solution vectors of the selected horse, the term Ys+1

g signifies
solution vector of the shepherd in the m-directional search space, rand represents the
random number, and α, β denotes the step size which is a random number.

Ys+1
g = (α + β)rand×Ys

e − (α + β)rand×Ys
g (15)

According to BSA [17], the updated equation of foraging behavior is represented as,

Ys+1
g = Ys

g +
(

G−Ys
g

)
× B× rand(0, 1) +

(
K−Ys

g

)
×M× rand(0, 1) (16)

where rand(0, 1) denotes the independent uniformly distributed numbers in (0, 1). B and M
are two positive numbers, also called cognitive and social accelerated co-efficient.

Rearrange Equation (16),

Ys+1
g = Ys

g[1− B× rand(0, 1)−M× rand(0, 1)] + G× B× rand(0, 1)+

(K×M× rand(0, 1))
(17)

Ys
g =

Ys+1
g − G× B× rand(0, 1)− K×M× rand(0, 1)

1− B× rand(0, 1)−M× rand(0, 1)
(18)

Substitute Equation (18) into Equation (15),

Ys+1
g = (α + β)rand ◦Ys

g − (α + β)rand◦(
Ys+1

g −G×B×rand(0,1)−K×M×rand(0,1)
1−B×rand(0,1)−M×rand(0,1)

) (19)

Ys+1
g +

(α+β)rand◦Ys+1
g

1−B×rand(0,1)−M×rand(0,1) = (α + β)rand ◦Ys
g

+(α + β)rand ◦
(

G×B×rand(0,1)−K×M×rand(0,1)
1−B×rand(0,1)−M×rand(0,1)

) (20)

The final updated equation of the proposed BSSSO is given by,

Ys+1
g =

[
1−B×rand(0,1)−M×rand(0,1)

1−B×rand(0,1)−M×rand(0,1)+(α+β)rand

]
[
(α + β)rand ◦Ys

g + (α + β)rand ◦
(

G×B×rand(0,1)−K×M×rand(0,1)
1−B×rand(0,1)−M×rand(0,1)

)] (21)

(iv) Ranking the shepherds: The shepherds are ranked using the values of fitness, with
maximal fitness chosen to obtain optimal solution.

(v) Termination: Steps (ii) to (iv) are iterated till maximal iterations. Figure 3 shows the
pseudo-code of the proposed BSSSO:
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Figure 3. Pseudo code of developed bird search-based shuffled shepherd optimization algorithm (BSSSO).

4. Results and Discussion

The results of the proposed BSSSO-based Deep CNN for face recognition are elabo-
rated in this section.

4.1. Experimental Setup

The implementation is carried out using PYTHON with Keras tool using Labelled
Faces in the Wild Home (LFW) dataset [24], The University of the Milano Bicocca 3D Face
Dataset (UMB-DB) database [25], and Extended Yale B database [26].

LFW database: It contains labeled faces for face verification with the original and the
aligned images.

UMB-DB database: It consists of 1473 pairs of color and depth images with 143 subjects.
Every subject is collected from various facial expressions and with partially occluded
objects, like hats, hands, and scarves. It contains a total of 578 occluded acquisitions.

Extended Yale B database: It consists of 16,128 images of the human subjects with
64 illumination statuses and 9 poses.

4.2. Evaluation Metrics

The performance is computed by considering metrics, like accuracy, false acceptance
rate (FAR), and false rejection rate (FRR).

Accuracy: It measures the closeness of exact or true values and is computed as,

Ay =
Dp + Dn

Dp + Dn + Fp + Fn
(22)

where Dp denotes true positive, Dn refers to true negative, Fp signifies false positive, and
Fn specifies false negative.
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False Acceptance rate (FAR): It measures the likelihood that may incorrectly accept
the access attempt by the unauthorized one.

FAR =
Fa

Ta
(23)

where Fa represents the false acceptance and Ta represents the total acceptance.
False rejection rate (FRR): It measures the likelihood that incorrectly rejects the access

attempt by unauthorized one.

FRR =
Fr

Tr
(24)

where, Fr represents the false rejections and Tr represents the total rejections.

4.3. Experimental Results

Figure 4 represents the image results of the LFW database. Figure 4a–c represent
image results of a person acquired using the LFW database.

Figure 4. Image results using Labelled Faces in the Wild Home (LFW) database, (a) image-1, (b) image-
2, (c) image-3.

Figure 5 depicts the image results of UMB-DB database. Figure 5a–c refer to expression image-
1, 2, and 3, respectively. Figure 5d, 5e, and 5f portray occlusion image-1, 2, and 3, respectively.

Figure 5. Image results based on The University of the Milano Bicocca 3D Face Dataset (UMB-
DB) database, (a) expression image-1, (b) expression image-2, (c) expression image-3, (d) occlusion
image-1, (e) occlusion image-2, (f) occlusion image-3.



Electronics 2021, 10, 626 12 of 18

Figure 6 portrays the image results of the Extended Yale B database. Figure 6a,b
represents illumination image-1 and image-2, respectively. Figure 6c,d represent pose
image-1 and image-2, respectively.

Figure 6. Image results using Extended Yale B database, (a) illumination image-1, (b) illumination
image-2, (c) pos image-1, (d) pos image-2.

4.3.1. Comparative Methods

The methods utilized for the comparison are Deformable Face Net (DFN) [12], multi-
scale block local multiple patterns (MB-LMP) [18], bird swarm algorithm based Deep CNN
(DCNN+BSA), and the proposed BSSSO-based Deep CNN.

4.3.2. Comparative Analysis

This section describes a comparative analysis of the developed approach using three
different datasets in terms of the metrics accuracy, FAR, and FRR.

Analysis Using LFW Database

The proposed BSSSO-based-DCNN is tested on the LFW dataset [24] under the dif-
ferent amounts of training data and varying noise. Figure 7 illustrates the performance of
the proposed BSSSO-based-DCNN and other traditional methods, namely, DFN, MB-LMP,
and DCNN+BSA in terms of accuracy, FAR, and FRR under the different percentages of
training data. It can be observed that the proposed BSSSO-based DCNN outperforms
other traditional methods in all settings for training data ranging from 50% to 90%. It
shows the maximum accuracy, minimum FAR and FRR. Considering a particular case
when training data is 90%, the false accepts was reduced to 50% i.e., 0.2190 when compared
with other methods (Figure 7b). The statistical data presented in Figure 7a–c indicate that
our proposed BSSSO-based DCNN has achieved state-of-the-art results on the LFW dataset
under different amounts of training data.
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Figure 7. Analysis based on LFW database based on training data.

Figure 8 shows the performance of the methods using the LFW database by varying
the noise. Figure 8a–c depict the accuracy, FAR, and FRR, respectively, with respect to
the noise variance ranging from 50% to 90%. Compared to all algorithms, the proposed
BSSSO-based Deep CNN achieved higher accuracy and dropped false accepts and false
rejects. When tested for 90% noisy face images, the proposed algorithm shows an improved
+1.09 accuracy in terms of relative performance when compared with DFN.

Analysis Using UMB-DB Database

Next, the UMB-DB database is used to evaluate the performance of the proposed
BSSSO-based Deep CNN under expression and occlusion variations. Figures 9 and 10
depict an analysis of the proposed method using the UMB-DB database by varying the
expressions and occlusions, respectively, in terms of accuracy, FAR, and FRR. A significant
improvement in accuracy is depicted. The expressions considered are normal, sad, smile,
angry, and hate; a significant drop in the false accepts and false rejects is also achieved by
the proposed BSSSO-based Deep CNN. For a particular case, when the expression is sad,
the false rejects dropped by 0.80 for the proposed BSSSO-based Deep CNN in comparison
to BSA + DCNN. Figure 10 portrays the improvement of the proposed method using the
UMB-DB database by varying the occlusion. Figure 10a–c portray the analysis of accuracy,
FRR, and FAR, respectively, with respect to different occlusion like finger, cup, hand (in
front of the face image), mask, hat (on the face). Better accuracy, reduced FAR, and reduced
FRR demonstrate that the novel BSSSO-based Deep CNN is robust to expression and
occlusion variations.
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Figure 8. Analysis based on LFW dataset by varying the noise variance.

Figure 9. Analysis using UMB-DB database by varying expression.
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Figure 10. Analysis using UMB-DB database by varying occlusion.

Analysis using Extended Yale B database

We evaluate our model on the Extended Yale B database by illumination and pose
variations. Figure 11a–c portray the accuracy, FAR, and FRR, respectively, for the devel-
oped method and the traditional methods for different illumination angles. When the
illumination angle is 45, the proposed algorithm shows an improved +1.15 accuracy in
terms of relative performance when compared with BSA + DCNN.

Figure 11. Cont.
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Figure 11. Analysis using Extended Yale B database by illumination angle.

Figure 12 portrays the analysis of the proposed method using the Extended Yale B
database by varying pose type. Figure 12a–c portray the analysis of accuracy, FAR, and FRR,
respectively, with respect to pose types. Improved accuracy, reduced FAR, and reduced
FRR demonstrate that the novel BSSSO-based Deep CNN is robust to illumination and
pose variations.

Figure 12. Analysis with respect to Extended Yale B database by pos type.
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4.4. Comparative Discussion

The results illustrated in Figures 7–12 indicate the generalization ability of the pro-
posed BSSSO-based Deep CNN for face recognition in the presence of noise, varying
expressions, occlusions, illuminations, and pose variations. The proposed method out-
performs the state-of-the-art face recognition techniques on the standard LFW, UMB-DB,
and extended Yale-B database. When compared with other techniques, BSSSO-based Deep
CNN shows significant improvement in terms of accuracy, FAR, and FRR.

Table 1 illustrates a comparative discussion of the developed model. By considering
the training data of 90%, the accuracy measure computed by the traditional DF, MB-LMP,
and DCNN+BSA is 0.8586, 0.8495, and 0.8132, whereas developed BSSSO-based Deep CNN
achieved higher accuracy of 0.8935 using LFW database by varying training data. Similar
improvements have been achieved with respect to noise variance using the LFW database
for the proposed method.

Table 1. Comparative discussion.

Database Metrics DF MB-LMP DCNN + BSA Proposed BSSSO-Based Deep CNN

LFW database

Accuracy

Training data

0.8586 0.8495 0.8132 0.8935

FAR 0.4222 0.4125 0.4101 0.2190

FRR 0.5810 0.5010 0.7190 0.4953

Accuracy

Noise variance

0.7896 0.7637 0.7804 0.8683

FAR 0.4245 0.4208 0.3667 0.2908

FRR 0.4622 0.7501 0.4816 0.4459

5. Conclusions

This research aims to establish an optimization-driven deep learning approach for face
recognition in multiple disturbing environments. The major contribution of the research is
the development of a new deep learning strategy based on the optimization algorithm for
face recognition. The proposed novel bird search-based shuffled shepherd optimization
algorithm (BSSSO) is a meta-heuristic technique motivated by the intuition of animals and
the social behavior of birds.

Initially, the input image undergoes a noise removal phase to eliminate noise to make
them suitable for subsequent processing. The noise removal is performed using T2FCS,
which helps to detect noisy pixels from the image for improved processing. After the
noise removal phase, the feature extractions are carried out using the CNN model and
L3DMM. Here, the CNN is the multilayered NN with the special architecture for detecting
the complex features in the data, and the L3DMM feature is utilized to efficiently fit 3D face
from a single uncontrolled image. The obtained features are subjected to Deep CNN for
the face recognition. The training of DCNN is performed using BSSSO. Here, the proposed
BSSSO is designed by combining the shuffled shepherd optimization algorithm (SSOA)
and bird swarm algorithm (BSA). The experimental findings on standard datasets (LFW,
UMB-DB, Extended Yale B database) prove the ability of the proposed model over the
existing face recognition approaches. For instance, the proposed method obtained higher
accuracy of 0.8935, and minimum FAR and FRR of 0.2190 and 0.4953, respectively, using
the LFW database concerning training data.
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