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Abstract: To realize the high-performance load torque tracking of an electric dynamic load simulator
system with random measurement noises and strong position disturbances, a PD-type iterative
learning control (ILC) algorithm with adaptive learning gains is proposed in this paper. With the
principle of system analyzing, a nonlinear discrete state-space model is established. The adaptive
learning gains is used to suppress the effects of periodic disturbances and random measurement
noises on the load torque tracking performance. A traditional PD feedback controller in parallel
with the proposed ILC is designed to stabilize the system and render the ILC converge quickly. The
convergence analysis of the proposed control method ensures the stability of the system. Compared
with the fixed learning gains, the experiment results show that the proposed control method has
better load torque tracking performance and can effectively suppress the adverse effects of periodic
and aperiodic disturbances on tracking accuracy.

Keywords: electrical dynamic load simulator; iterative learning control; adaptive learning gains;
PD-type; random measurement noises; periodic disturbances

1. Introduction

In recent years, with the development of more electric aircraft (MEA) technology,
many actuators of medium and large unmanned aerial vehicle (UAV) have been gradually
replaced by an electromechanical actuator (EMA), which can eliminate the hydraulic
mechanism, reduce weight, and simplify the system structure [1–3]. The electrical dynamic
load simulator (EDLS) is an important piece of equipment for testing the EMA [4–6], which
can accurately simulate the alternating load characteristics and effectively test the dynamic
and static performance of the EMA.

The EDLS is a passive torque servo system with strong motion disturbance [7]. Non-
linear factors, such as inertia, friction, backlash, elastic deformation, and random measure-
ment noises, can be summarized as periodic and aperiodic disturbances of the system. It
is difficult to ensure the synchronous movement of the loading motor and EMA, and the
active movement of the EMA will lead to surplus torque in the system [8]. The existence of
surplus torque seriously affects the accuracy of torque loading and reduces the sensitivity
and stability of EDLS. Therefore, the vital problem to ensure the performance of EDLS is to
realize the suppression of surplus torque [6].

Scholars have proposed many advanced control strategies to eliminate the surplus
torque of EDLS. The existing control strategies mainly include feed-forward compensation
based on position or speed [9], adaptive neural network compensation method [10], adap-
tive robust control [7], novel robust control [11], proportional resonance (PR) control [6],
iterative learning control (ILC) [12], etc. Jiao et al. [13] proposed a compensation control
strategy based on the structure invariance principle to eliminate the surplus torque, but
this method requires an accurate system model. There are unknown nonlinearity and
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time-varying parameters in the actual system, which makes it difficult to achieve the ideal
control effect. In [5], Li et al. developed a new high-performance control scheme based on
neural networks and a linear difference inclusion model to deal with the nonlinear factors
and external disturbance of EDLS. Using H∞ performance criterion and parallel distributed
compensation, the external disturbances can be attenuated, and the load torque reference
can be completely tracked. In [6], Wang et al. proposed a PR-based loading control strategy
for EDLS to effectively eliminate surplus torque and track sinusoidal curves with high
precision. Yang et al. [14] proposed a robust hybrid control law containing a proportional–
derivative (PD) controller and a novel cerebellar model articulation controller (CMAC).
The control algorithm is easy to implement, which improves the approximation accuracy
and capability of EDLS to sinusoidal signals, and eliminates surplus torque. However, the
lack of theoretical guidance in the design of CMAC network structure makes it difficult to
be popularized and applied. Although these controllers mentioned above have improved
the load torque tracking accuracy of EDLS to some extent, there are still some limitations.
For example, the controller structure is complex, and it is difficult to apply in practical
engineering and hard to completely eliminate surplus torque.

Iterative learning control was proposed by Arimoto et al. [15] in 1984, and it has been
widely studied and applied since then [16]. The ILC has advantages of being a simple
algorithm, having good convergence performance, and being independent of the precise
mathematical model of the controlled plant. It has been well applied to the control system
with periodic and repetitive motion characteristics. Wang et al. [17] explored an ILC strategy
based real-time recurrent neural networks (RTRNN) to make the EDLS track any desired
load torque with high accuracy. Wang et al. proposed a compound torque controller based
on the ILC and EMA position feed-forward compensation. The ILC is used to restrain the
influence of surplus torque, and the feed-forward compensator combined with a traditional
load torque feedback controller ensures torque tracking performance. However, most of
the existing EDLS control strategies based on ILC are parallel with the traditional feedback
controller. The traditional ILC controller is very sensitive to random measurement noise
and aperiodic disturbances, which makes it difficult to ensure high accuracy.

In order to improve the tracking accuracy of load torque and eliminate the influence of
surplus torque and other aperiodic disturbances on the system, this paper presents a novel
control algorithm, combining a traditional PD feedback controller with a PD-type ILC with
adaptive learning gains (PDILC-ALG) [18]. The proposed feedback controller can be used
to stabilize the system so that the output of the system does not deviate too far from the
expected trajectory [19], so as to ensure that the iterative learning controller can realize the
tracking task quickly. The learning gains of the PD-type ILC are adjusted according to the
system errors and errors rate to reduce the influence of random measurement noise on the
system performance. Also, the ILC is used to improve the tracking accuracy even though
the system has modeled and unmolded periodic disturbances.

This paper is organized as follows. Following the introduction, Section 2 describes
the subsection system architecture and the discrete state-space model of the studied EDLS
system. Section 3 presents the design and theoretical analysis of the EDLS controller based
on the PD-type ILC with adaptive learning gains and the traditional PD feedback controller.
Section 4 shows the experimental results that demonstrate the effectiveness of the proposed
control scheme. Finally, Section 5 draws conclusions.

2. Dynamic Model of Electric Dynamic Load Simulator
2.1. Subsection System Architecture of Electric Dynamic Load Simulator

The arrangement of the considered EDLS in this paper used to simulate the dynamic
load torque of EMA is presented in Figure 1. The mechanical structure of the EDLS system
can be divided into two major parts according to different functions: one is the EMA under
test worked in a position servo mode treated as the position servo system, and the other is
the EDLS, consisting of a permanent magnet synchronous motor (PMSM) and its driver
system treated as a torque servo system. As shown in Figure 1, the EDLS system consists of
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a servo motor, a reducer, two encoders, and the loaded EMA servo system. As the driving
element of the EDLS, the PMSM is connected with a reducer, the torque sensor, and the
loaded EMA through the coupling. The reducer is used to magnify the electromagnetic
torque output of the PMSM to achieve large mechanical torque output. The torque sensor
measures the torque signal on the transmission mechanism and transmits it to the control
equipment to form a torque feedback loop.

Figure 1. Electrical dynamic load simulator system architecture.

2.2. Mathematical Model of Electric Dynamic Load Simulator

The loading motor (PMSM) generates the dynamic load torque applied to the EMA un-
der test. Since the direct torque control (DTC) technique has high dynamic torque response
and excellent speed control characteristics, the DTC scheme is adopted to PMSM drives
to obtain the load torque with small time delay, high dynamic, and high reliability [20].
In normal conditions, EDLS operates within 10 Hz, while the electromagnet torque of
PMSM is updated at up to 4 KHz. Therefore, the driver of the PMSM loading motor can
be modeled as an ideal electromagnetic torque generator. The dynamic characteristics of
the PMSM driver can be neglected in practice. Thus, the input–output relationship of the
control input u(t) versus the output electromagnetic torque Te(t) is given by [7]:

Te(t) = Kmu(t) (1)

where Km is the equivalent gain of the PMSM driver.
According to the torque balance principle, the mechanical dynamic model of the

PMSM is described as follows [7]:

Te(t) = Jm
dωm

dt
+ Bmωm +

TL
ng

+ Td (2)

ωm(t) =
dθm(t)

dt
(3)
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where θm and ωm are the rotation angle and angular velocity of PMSM, respectively. Jm is
the total moment inertia of realized at PMSM, Bm is the viscosity coefficient, TL represents
the simulated load torque of EMA under test, ng is the reduction ratio of the reducer, and
Td represents the lumped disturbance torque caused by frictions, backlash, etc.

A torque sensor mounted on the drive shaft is used to measure the transmission and
load torque. According to Hooke’s law, the mathematical model of the torque sensor is
given by:

TL(t) = KG(
θm

ng
− θa) (4)

where KG is the stiffness coefficient of the torque sensor, θa is the angular position of EMA.
Differentiating Equation (4), the dynamic of the torque sensor can be obtained as follows:

d
dt

TL(t) = KG(
ωm

ng
−ωa) (5)

where ωa denotes the angular velocity of EMA.
Based on the above analysis, select the load torque TL and angular velocity ωm of

PMSM as state states, i.e., x(t) = [x1(t), x2(t)]
T = [TL(t), θm(t)]

T. Define η(t) as the
random measurement noise of torque sensor. By combining Equations (1), (2), (4) and (5),
the dynamics of the EDLS can be described by the following state space.

.
x1(t) = KG(

1
ng

x2(t)−ωa)

.
x2(t) = −

1
Jmng

x1(t)−
Bm

Jm
x2(t) +

Km

Jm
u(t)− 1

Jm
Td

y(t) = x1(t) + η(t)

(6)

Equation (6) can be rewritten as:{ .
x(t) = Ax(t) + Bu(t) + Ed

y(t) = Cx(t) + η(t)
(7)

where A =

[
0 KG

ng

− 1
Jmng

− Bm
Jm

]
, B =

[
0

Km
Jm

]
, E =

[
−KG
− 1

Jm

]
, d =

[
ωa(t)
Td(t)

]
, C =

[
1 0

]
.

In general, the control algorithms of an EDLS are implemented using digital microcom-
puters and are formulated as a discrete-time system. The controller that should be designed
needs a discrete-time model of the EDLS, thus requiring the use of Tustin’s discretization
method [21], and h is the sample period. The discrete model of the EDLS can be described
as follows:  x(i + 1) = (I − h

2
A)
−1

[(I +
h
2

A)x(i) + hBu(i) + hEd(i)]

y(i) = Cx(i) + η(i)
(8)

where i is an integer that denotes the discrete time step index, x(i + 1) is the value of x at
(i + 1)h and x(i) is the value of x at ih. u(i), d(i), y(i), and η(i) denote the value of u, d, y,
and η at ih, respectively. I is an identify matrix of appropriate dimension.
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With reference to Equation (8), define the following state space matrices.

Ad = (I − h
2

A)
−1

(I +
h
2

A) (9)

Bd = (I − h
2

A)
−1

hB (10)

Ed = (I − h
2

A)
−1

hE (11)

Cd = C (12)

Then, the discrete model of the EDLS described by Equation (8) can be rewritten as:{
x(i + 1) = Adx(i) + Bdu(i) + Edd(i)

y(i) = Cdx(i) + η(i)
(13)

Obviously, system states are adjusted by the electromagnetic torque of the loading
motor, which is driven by a PMSM under DTC. It can also be seen from Equation (13)
that the system states will be strongly affected by the angular velocity of the loaded EMA
system. The active movement of the EMA is the main factor that generates surplus torque,
so the angular velocity of EMA can be regarded as the strong motion disturbance of the
EDLS system. Given a bounded periodical load torque trajectory Tre f (t), the objective of
this paper is to design a input torque command u(t) for the PMSM driver so that the output
load torque TL(t) tracks Tre f (t) as closely as possible despite the strong motion disturbance,
random measurement noise of the torque sensor, and other aperiodic disturbances. The
development of the load torque controller will be proposed in the following section.

3. Controller Design for Electric Dynamic Load Simulator

As mentioned previously, the EDLS system is a typical multivariate system with
a variety of disturbances. For an EDLS that performs the same load torque tracking
task multiple times, the primary task of controller design is to provide control signals
to the actuator accurately, so as to achieve high-performance tracking of the desired
trajectory. The traditional ILC scheme can achieve the desired high-performance tracking
within a finite interval despite the existence of repeated disturbances, such as the strong
motion disturbance induced by EMA and unmolded periodic dynamics in the system.
However, the traditional ILC scheme is difficult to deal with the random measurement
noise without repeated characteristics. In order to obtain high performance for repetitive
loading torque tracking of an EDLS with uncertainties, measurement noise, and periodic
external disturbances, a novel PD-type ILC with adaptive learning gains combined with a
PD feedback controller is proposed in this paper.

3.1. The Framework of PD-Type Iterative Learning Control Law with Adaptive Learning Gains

The ILC uses the input signals and error signals gained from previous iterations to
continuously correct the inaccurate control signals, so as to get an appropriate control input
that can achieve the desired tracking performance from trail-to-trail [22]. However, the
conventional PD-type ILC with fixed learning gains can hardly deal with the aperiodic
measurement noise of a nonlinear system [23]. In order to improve the torque tracking
performance of the EDLS, the schematic diagram of proposed controller is shown in
Figure 2.
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Figure 2. Block diagram of the electric dynamic load simulator system based on proportional–
derivative (PD)-type iterative learning control with adaptive learning gains.

The following notations are used; see also Figure 2: the proposed learning control
algorithm is a PD-type ILC with adaptive learning gains and the feedback controller
is a traditional PD controller. The subscript k indicates the present iteration with k ∈
{0, 1, 2, · · ·}; i is the time index and i ∈ {0, 1, . . . , N}, where (N + 1) is the number of
discrete time steps in each iteration; yd = Tre f is the desired periodical loading torque
trajectory; ek and yk are the tracking error and the system practical output on k − th
iteration, respectively; u f

k is the output of the PD feedback controller with KP and KD being
the proportional gain and derivative gain, respectively; uILC

k is the output of the PD-type
ILC controller in the k− th iteration; ΓP and ΓD are the proportional learning gain and
derivative learning gain, respectively; ηk denotes the measurement noise of the torque
sensor on k − th iteration. Considering the measurement noise of the torque sensor, as
shown in Figure 2, one can calculate the tracking errors as:

ek(i) = yd(i)− yk(i)− ηk(i). (14)

Thus, the selected hybrid PD-type ILC with adaptive leaning gains and a standard PD
feedback controller can be described as follows:

uk(i) = u f
k (i) + uILC

k (i). (15)

The feedback controller of the system is a standard PD controller, as mentioned above,
which is used to stabilize the system and compensate the EDLS for nonrepeating distur-
bances, so that the initial errors of the system at the beginning of each iteration are within
the allowable range. The PD feedback control law on k− th iteration is given as follows:

u f
k (i + 1) = KPek(i + 1) + KD[ek(i + 1)− ek(i)]. (16)

The functions of each parameter of PD feedback controller are as follows:
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1. KP: The proportional control gain KP can reflect the error signal ek(i) of the control
system proportionally. When the error is generated, the controller will immediately
exert control action to reduce the error.

2. KD: The derivative term is used to reflect the change rate of the error signal, which can
introduce an effective early correction signal into the system before the error signal
becomes too big, so as to accelerate the response speed of the system and reduce the
adjustment time.

An easy way to obtain reasonable control parameters KP and KD is to use the manual
tuning method. The development of the PD-type ILC with adaptive learning gains uILC

k
will be described in Section 3.2.

3.2. The PD-Type Iterative Learning Control Adaptive with Learning Gains Controller Design

From Equation (13) and Figure 2, one can see that the system has periodic distur-
bance and random measurement noise. The standard PD feedback controller proposed
in Section 3.1 can be used to eliminate the influence of nonrepeating disturbances on the
system. However, the output of the proposed PD control method is determined by the
current error, and when the system continues to be subjected to the periodic disturbance, it
is often difficult for the proposed PD control method to make the system error converge
smoothly, and there are still periodic errors in the system’s response to the periodic drive
reference signal.

The standard PD feedback controller has many disadvantages such as the trade-off
between overshoot and the system rapidity, and the poor ability to deal with periodic
disturbances. To overcome this shortcoming, the ILC law introduces human learning
behavior into the control law design. The control system can modify the control input
during the next iteration by the control input and error stored during the previous iterations
of the same task, and finally achieve better tracking results through continuous iteration
and learning.

Many ILC design algorithms, such as the plant inversion method [24], norm-optimal
ILC method [25] and PD-type ILC method [26,27], have been proposed to improve the
output tracking performance of systems that are often required to operate the same task
multiple times. Among these methods, the PD-type ILC method has the characteristics of a
simple structure, low design cost, and good robustness, and it does not need an accurate
system model. The PD-type learning law has been the most widely used type of iterative
learning controller at present. However, the conventional PD-type ILC with fixed learning
gains can hardly deal with the aperiodic measurement noise of a nonlinear system. In
order to improve the torque tracking performance of the EDLS and suppress the influence
of random measurement noise on the control system, as shown in Figure 2, a PD-type ILC
with adaptive learning gains is proposed. The learning gains can be adjusted adaptively
according to the system errors and can be used to suppress measurement noise. Without
loss of generality, on the k− th iteration, the PD-type ILC with adaptive learning gains can
be described as follows:

uILC
k+1(i) = uILC

k (i) + ΓP,k(ek)ek(i) + ΓD,k(ek, ∆ek)[ek(i)− ek(i− 1)] (17)

with proportional and derivative learning gains given by:

ΓP,k(ek) = τP f (ek) (18)

ΓD,k = τDg(ek, ∆ek) (19)

and the first difference of tracking error is given by:

∆ek(i) = ek(i)− ek(i− 1) (20)
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where τP and τD are positive constant gains, and the nonlinear function f (ek) and g(ek, ∆ek)
are given, respectively, as follows [28]:

f (ek) = k1 − (k1 − k0)e−qe2
k (21)

g(ek, ∆ek) = λs(ek · ∆ek) f (ek) + (1− λ) f (ek) (22)

where s(∗) is the step function and satifies

s(ek · ∆ek) =

{
1, for ek · ∆ek > 0
0, for ek · ∆ek ≥ 0

(23)

where k1 and k0 are the upper and lower bounds of nonlinear function f (∗), respectively,
and k1 > k0 ≥ 0. q is used to determine the concavity openness of f (∗), so as to adjust the
transition process of f (∗) and enhance the adaptability of f (∗) to errors ek. λ is a positive
constant with 0 ≤ λ < 1.

Remark 1. For the PD-type ILC with adaptive learning gains (17), it is clear that, for ∀k ∈
{0, 1, 2, · · ·}, {

ΓP,k ∈ [τPk0, τPk1]
ΓD,k ∈ [0, τDk1]

. (24)

Remark 2. The selection principle of parameter q is as follows: A larger q leads to f (∗) with
a larger opening concavity, so that a small amplitude of error ek can get a small value of f (∗).
Therefore, one should determine the value of q according to the amplitude of random measurement
noise, that is to say, an error with small amplitude needs a large q to suppress.

The effect of different parameters on the shape of the nonlinear function f (∗) and the
relationship between f (∗) and the error ek can be seen in Figure 3a. The typical nonlinear
function g(∗) versus the error ek and its first difference are shown in Figure 3b.

Figure 3. (a) Diagram of relationship of (q, ek) and f (∗); (b) Diagram of relationship of (ek, ∆ek) and g(∗).

From Figure 3a and Equation (18), one can calculate that the function f (∗) is a bounded
smooth function with values that vary with error magnitude. The greater the error ampli-
tude, the larger the function value, and the greater the proportional learning gain ΓP for
the proposed PD-type ILC. Since the measurement noise present in the system is gener-
ally concentrated in a range of small amplitudes, small learning gains of a PD-type ILC
can weaken the impact of noise on the system when the error magnitude is small. From
Figure 3b and Equation (19), one can calculate that the function s(∗) is used to adjust the
system damping. Then, ΓD is directly used to mitigate the adverse effects of control inertia.
In this method, the selected adjustment rule of learning gains can achieve both the desired
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tracking accuracy and system performance. The values of ΓP and ΓD have to be determined
according to the monotonic convergence condition, which will be analyzed in Section 3.3.

3.3. Convergence Analysis

As mentioned in Section 2.2, the load torque of EDLS system output TL(t) is a function
of θm(t) and θa(t). Since the EDLS system described by Equation (13) is required to move
along a pre-determined trajectory repeatedly, without loss of generality, the EDLS system
can be treated as a linear time-varying system with respective disturbance and random
measurement noise. Then, the state-space model of the EDLS system (13) in the k − th
iteration can be rewritten:{

xk(i + 1) = Adxk(i) + Bduk(i) + Eddk(i)

yk(i) = Cdxk(i) + ηk(i)
. (25)

To restrict the analysis, the following assumptions are used for the system:

1. The ideal control input set ud(i) can make the system state x(i) and system output
y(i) track the ideal states xd(i) and the desired output yd(i), respectively;

2. The initial state error of each iteration satisfies xk+1(0)− xk(0) = ζk, and ζk satisfies
|ζk| ≤ ε with ε > 0;

3. The periodic disturbance dk(i) and the output measurement noise ηk(i) are bounded
as follows: ∀k ∈ {0, 1, 2, · · ·} and sup

i∈[0,N]

|dk(i)| ≤ bd; sup
i∈[0,N]

|ηk(i)| ≤ bη ; bd and bη are

known positive constants;
4. The periodic disturbance dk(i) satisfies: ∀k ∈ {0, 1, 2, · · ·} and i ∈ {0, 1, . . . , N},

dk(i) = dk+1(i);

Theorem 1. For the linear time-varying system with respective disturbance and random measure-
ment noise (25) which satisfies assumptions 1–4, if the hybrid adaptive gain-scheduled PD with ILC
control law (15) is used, the adaptive gain-scheduled algorithm (16) and the PD-type ILC scheme
(24) are adopted. Given a desired trajectory yd(i), i ∈ {0, 1, . . . , N} and the sample interval h, the
monotonic convergence condition for all frequencies up to the Nyquist frequency can be given by:∥∥∥∥∥1−

G(z)[ΓP,k + ΓD,k(1− z−1)]

G(z)[KP + KD(1− z−1)] + 1

∥∥∥∥∥
∞

≤ ρ < 1; z = ejωh with ω ∈ [0, ωN ] (26)

where ωN = 1/(2h) is the Nyquist frequency.

Proof of Theorem 1. Taking the z transform of Equation (25) and the learning law given
by Equations (15)–(17) for the k− th iteration, it follows:

Yk(z) = G(z)Uk(z) + Φk(z) + Πk(z) (27)
Uk(z) = U f

k (z) + U ILC
k (z)

U f
k (z) = KPEk(z) + KDEk(z)(1− z−1)

U ILC
k (z) = U ILC

k−1(z) + ΓP,kEk−1(z) + ΓD,kEk−1(z)(1− z−1)

(28)

where Πk(z) is the z-transform of the sequence {ηk}, and

G(z) = Cd(zI − Ad)
−1Bd (29)

Φk(z) = Cd(zI − Ad)
−1zxk(0) + Cd(zI − Ad)

−1EdDk(z) (30)

Ek(z) = Yd(z)−Yk(z)−Πk(z). (31)
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Then, one can get

Yk+1(z)−Yk(z) = G(z)[Uk+1(z)−Uk(z)] + [Φk+1(z)−Φk(z)] + [Πk+1(z)−Πk(z)]

= G(z)[U f
k+1(z)−U f

k (z)] + G(z)Ek(z)[ΓP,k + ΓD,k(1− z−1)]

+ [Πk+1(z)−Πk(z)]
(32)

since

Φk+1(z)−Φk(z) = Cd(zI − Ad)
−1z[xk+1(0)− xk(0)] + Cd(zI − Ad)

−1Ed[Dk+1(z)− Dk(z)] ≈ 0 (33)

U f
k+1(z)−U f

k (z) = [KP + KD(1− z−1)][Ek+1(z)− Ek(z)] (34)

Yk+1(z)−Yk(z) = [Yd(z)− Ek+1(z)]− [Yd(z)− Ek(z)]

= −Ek+1(z) + Ek(z)
. (35)

From these equations, one can get:

[G(z)KP + G(z)KD(1− z−1) + 1]Ek+1(z)

+[G(z)ΓP,k + G(z)ΓD,k(1− z−1)− G(z)KP − G(z)KD(1− z−1)− 1]Ek(z)

= Πk(z)−Πk+1(z)

. (36)

The homogeneous equation [1] of Equation (36) is

Ek+1(z) = Ek(z)−
G(z)[ΓP,k + ΓD,k(1− z−1)]

G(z)[KP + KD(1− z−1)] + 1
Ek(z). (37)

If the sample interval of system (25) is h, then the Nyquist frequency is ωN = 1/(2h).
Taking the infinity norm on both sides of Equation (37), the output error monotonically
decreasing can be reached for all frequencies under Nyquist frequency [29] if

∥∥∥∥Ek+1(z)
Ek(z)

∥∥∥∥
∞
=

∥∥∥∥∥1−
G(z)[ΓP,k + ΓD,k(1− z−1)]

G(z)[KP + KD(1− z−1)] + 1

∥∥∥∥∥
∞

≤ ρ < 1; z = ejωh with ω ∈ [0, ωN ]. (38)

Since KP and KD can be obtained by the manual tuning method, by substituting proper
KP and KD into the right-hand side of Equation (38), one can get:∥∥∥∥∥1−

G(ejωh)[ΓP,k + ΓD,k(1− e−jωh)]

G(ejωh)[KP + KD(1− e−jωh)] + 1

∥∥∥∥∥
∞

< 1; ∀ω ∈ [0, ωN ]. (39)

The adaptive learning gains ΓP,k and ΓD,k are determined by τP, τD, k1, k0, and q, and
as mentioned in Remark 1, ΓP,k ∈ [τPk0, τPk1], and ΓD,k ∈ [0, τDk1]. Hence, the parameters
design of adaptive learning gains ΓP,k and ΓD,k can be formulated as:

sup
(τP ,τD ,k0,k1)

∣∣∣∣∣1− G(ejωh)[ΓP,k + ΓD,k(1− e−jωh)]

G(ejωh)[KP + KD(1− e−jωh)] + 1

∣∣∣∣∣ < 1; ∀ω ∈ [0, ωN ]. (40)

Clearly, when KP and KD are known, it is always possible to find τP, τD, k0, k1, and q
such that the Equation (40) is satisfied for all frequencies up to the Nyquist frequency ωN .

Then, according to Equations (31), (36), and (38), and the assumption 5, one can get
the final error of the system, which can be described as:

lim
k→∞

Ek(z) =
Πk(z)−Πk−1(z)

G(z)[KP + KD(1− z−1)] + 1
≤

bη

G(z)[KP + KD(1− z−1)] + 1
. (41)
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According to assumption 5, if the tracking error signals of the first iteration, E0, is finite,
and there is no uncertainty and disturbance in (26), then one can get that
‖Ek(z)‖∞ ≤ ρk‖E0(z)‖∞ → 0 as k→ ∞ . In order to fulfill the monotonic convergence
condition (41), one should choose the proper feedback gains and learning gains of the
proposed controller in this paper. �

4. Experimental Evaluation
4.1. Experimental Setup

In order to demonstrate the effectiveness of the proposed robust adaptive iterative
learning control scheme, experiments were conducted on an experimental laboratory test
bench, shown in Figure 4. A PMSM was selected as a loading motor that was used to
generate the loading torque of the tested EMA. Two high-precision encoders were used to
obtain the position of the drive shaft. A torque sensor was used to measure the dynamic
loading torque of the EDLS. An EDLS controller was used to implement the proposed robust
adaptive iterative learning control scheme. In order to improve the dynamic response and
stability accuracy of the loading torque, the driver of the loading motor is based on the
direct torque control strategy to achieve high-precision torque output. The tested EMA
was driven by a position servo driver. The main parameters of the loading motor drive
system and EDLS are given in Tables 1 and 2, respectively.

Figure 4. Test bench for the control system of the electric dynamic load simulator.

Table 1. The main indicators of permanent magnet synchronous motor (PMSM) loading motor.

Rated Power Rated Speed Rated Torque Rated Voltage

3 (KW) 3000 (r/min) 9.55 (N ·m) 380 (V)

Table 2. Parameters of the electric dynamic load simulator.

Parameter Value Unit

Km 0.955 (N ·m)/V
Jm 0.000697 Kg ·m2

Bm 0.00018 (N ·m)/(rad/s)
ng 35 dimensionless
KG 8500 (N ·m)/rad

4.2. Experimental Results

To evaluate the effectiveness of the proposed ILC schemes, performances of conven-
tional PD-type ILC with fixed learning gains have been carried out as comparison. By
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setting the sample period h = 0.002 s, and submitting h into Equations (9)–(12), the system
matrices can be described as:

Ad =

[
0.9803 0.4808
−0.0812 0.9798

]
; Bd =

[
0.3294
1.3563

]
; Ed =

[
−8.7611
−1.0753

]
; Cd =

[
1 0

]
.

The Nyquist frequency of the EDLS system is ωN = 250 Hz. Then, the following two
controllers are proposed for comparison.

(1) Conventional PD-type ILC (C-PDILC): this is a combination of a standard PD feedback
controller and a conventional PD-type ILC. The conventional PD-type ILC with fixed
learning gains can be seen as a special case of the proposed method in this paper,
for all k ∈ {0, 1, 2, · · ·}. ΓP and ΓD are restricted to be constant scalars. To satisfy the
condition of Equation (38), the control gains of PD feedback controller are chosen as
KP = 2.25 and KD = 0.02, and the PD-type learning gains are chosen as ΓP = 1.5 and
ΓD = 0.6. For all frequencies up to the Nyquist frequency, one can get:∥∥∥∥1− G(z)[ΓP + ΓD(1− z−1)]

G(z)[KP + KD(1− z−1)] + 1

∥∥∥∥
∞
∈ [0.5592, 0.6035] < 1; z = ejωh for ∀ω ∈ [0, 250]. (42)

(2) PD-type ILC with adaptive learning gains (PDILC-ALG): this is the proposed method
in this paper. In order to satisfy the condition of Equation (38), the parameters of
adaptive learning gains are chosen as τP = 1.5, τD = 0.6, k0 = 0.1, k1 = 1, λ = 0.75,
and q = 0.5. The proportional gain of the feedback controller is the same as the
conventional PD-type ILC; i.e., KP = 2.25 and KD = 0.02. Then, for all frequencies up
to the Nyquist frequency and all k ∈ {0, 1, 2, · · ·}, one can get:∥∥∥∥∥1−

G(z)[ΓP,k + ΓD,k(1− z−1)]

G(z)[KP + KD(1− z−1)] + 1

∥∥∥∥∥
∞

∈ [0.5592, 0.9604] < 1; z = ejωh for ∀ω ∈ [0, 250] and ∀k ∈ {0, 1, 2, · · ·}. (43)

Two experimental test cases were conducted to evaluate the performance of the two
comparison controllers.

Case 1: The tested EMA revolves according to the sine command, which was described
as θ∗a (t) = 8◦ sin(2πih), while the exerted loading torque is given by a sinusoidal signal as
yd(t) = 30 sin(2πih).

Case 2: The tested EMA revolves according to the sine command, which was described
as θ∗a (t) = 4◦ sin(4πih), while the exerted loading torque is given by a sinusoidal signal as
yd(t) = 30 sin(4πih).

Furthermore, i ∈ {0, 1, . . . , N}, N = 500 in each iteration.
The following infinite norm of the loading torque tracking error bound be, which is

used to make quantitative comparisons for the loading torque tracking accuracy of the two
controllers, is defined as follows:

be,k = sup
i∈[0,500]

|ek(i)|, for ∀k ∈ {0, 1, 2, · · ·} (44)

where k is the number of iterations.
Here, the measurement noise of the torque sensor is shown in Figure 5. The loading

torque tracking error results of the two comparison controllers in different experimental
test cases are shown in Figures 6 and 7, respectively.
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Figure 5. The random measurement noise of the torque sensor (sampling time is 1 ms).

Figure 6. Case 1 experimental results (θ∗a (t) = 8◦ sin(2πih), yd(t) = 30 sin(2πih)): (a) Loading torque tracking errors at
different iterations of the conventional PD-type iterative learning control. (b) Loading torque tracking errors at different
iterations of the proposed PD-type iterative learning control with adaptive learning gains. (c) The error bound comparisons
of loading torque tracking for 30 iterations.
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Figure 7. Case 2 experimental results (θ∗a (t) = 4◦ sin(4πih), yd(t) = 30 sin(4πih)): (a) Loading torque tracking errors at
different iterations of the conventional PD-type iterative learning control. (b) Loading torque tracking errors at different
iterations of the proposed PD-type iterative learning control with adaptive learning gains. (c) The error bound comparisons
of loading torque tracking for 30 iterations.

It can be seen that after enough iterations, the proposed PD-type ILC with adaptive
learning gains has a better tracking accuracy, which leads to a smaller output error. Under
different experimental cases, the error bounds of the two proposed methods are shown in
Figures 6c and 7c, respectively. Due to the influence of the random measurement noise, it
is difficult for the two control methods of comparison to guarantee the tracking accuracy
and convergence speed simultaneously. The Case 1 quantitative comparison results are
listed in Table 3, and the Case 2 quantitative comparison results are listed in Table 4.

Table 3. Case 1 (θ∗a (t) = 8◦ sin(2πih), yd(t) = 30 sin(2πih)) experimental results of the two controllers.

Strategy
Error Bound be in Different Iteration

8th 18th 28th

C-PDILC 1.43 N ·m 1.21 N ·m 1.21 N ·m
PDILC-ALG 1.97 N ·m 0.76 N ·m 0.41 N ·m
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Table 4. Case 2 (θ∗a (t) = 4◦ sin(4πih), yd(t) = 30 sin(4πih)) experimental results of the two controllers.

Strategy
Error Bound be in Different Iteration

8th 18th 28th

C-PDILC 3.12 N ·m 1.67 N ·m 1.43 N ·m
PDILC-ALG 3.25 N ·m 0.87 N ·m 0.74 N ·m

From Table 3 and Figure 6c, it can be seen that the conventional PD-type ILC with
fixed learning gains has an error bound of 1.21 N ·m and converges to the convergence
domain after about 13 iterations. The convergence rate of the proposed PD-type ILC
with an adaptive learning gain is slightly slower, but the error range is 0.41 N ·m after
the 28th iteration. From Table 4 and Figure 7c, it can be seen that the conventional PD-
type ILC with fixed learning gains has an error bound of 1.43 N ·m and converges to
the convergence domain after about 23 iterations. The convergence rate of the proposed
PD-type ILC with adaptive learning gain is slightly slower, but the error range is 0.74 N ·m
after the 28th iteration.

The tracking performance of the conventional PD-type ILC and the PD-type ILC with adap-
tive learning gains in different experimental test cases are shown in Figures 8 and 9, respectively.

Figure 8. Case 1 experimental results (θ∗a (t) = 8◦ sin(2πih), yd(t) = 30 sin(2πih)): (a) Loading torque trajectory tracking
with the conventional PD-type iterative learning control at the 0th and 30th iterations. (b) Loading torque trajectory tracking
with the PD-type iterative learning control with adaptive learning gains at the 0th and 30th iterations. (c) The comparison of
the loading torque tracking errors at the 30th iteration.
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Figure 9. Case 2 experimental results (θ∗a (t) = 4◦ sin(4πih), yd(t) = 30 sin(4πih)): (a) Loading torque trajectory tracking
with the conventional PD-type iterative learning control at the 0th and 30th iterations. (b) Loading torque trajectory tracking
with the PD-typeiterative learning control with adaptive learning gains at the 0th and 30th iterations. (c) The comparison of
the loading torque tracking errors at the 30th iteration.

This study considers not only the unmolded dynamic, parameter uncertainty, and
the periodic external disturbance but also the random measurement noise. Due to the
0th control input u0 of the two compared control methods being derived from the output
value of the feedback PD controller with same parameters, they have the same tracking
performance on iteration 0. Under different experimental cases, the 30th error signals of the
two proposed methods are shown in Figures 8c and 9c, respectively. The Case 1 quantitative
comparison results are listed in Table 5, and the Case 2 quantitative comparison results are
listed in Table 6.

Table 5. Case 1 (θ∗a (t) = 8◦ sin(2πih), yd(t) = 30 sin(2πih)) experimental results of the two controllers.

Strategy Maximum Error Minimum Error be/max|yd|
C-PDILC 1.07 N ·m −1.21 N ·m 4.03%

PDILC-ALG 0.29 N ·m −0.32 N ·m 1.07%

Table 6. Case 2 (θ∗a (t) = 4◦ sin(4πih), yd(t) = 30 sin(4πih)) experimental results of the two controllers.

Strategy Maximum Error Minimum Error be/max|yd|
C-PDILC 1.39 N ·m −1.43 N ·m 4.77%

PDILC-ALG 0.68 N ·m −0.73 N ·m 2.43%
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From Table 5 and Figure 8c, it is obvious that the PD-type ILC with adaptive learning
gains has a smaller tracking error whose tracking error bound during the 30th iteration
is about 0.32 N ·m, whilst the tracking error bound based on conventional PD-type ILC
is about 1.21 N ·m. From Table 6 and Figure 9c, it can be seen that the PD-type ILC with
adaptive learning gains has a smaller tracking error whose tracking error bound during the
30th iteration is about 0.73 N ·m, whilst the tracking error bound based on conventional
PD-type ILC is about 1.43 N ·m. Due to the presence of the random measurement noise, the
conventional PD-type ILC cannot ensure accurate loading torque tracking. The proposed
PD-type ILC with adaptive learning gains can obviously improve the tracking performance,
although the convergence rate is compromised.

5. Conclusions

Periodic and aperiodic disturbances have been the main factors affecting the stability
of the EDLS system, which limit the tracking control performance for a given trajectory. This
is because the presence of a variety of disturbances in the system will reduce the tracking
accuracy of the EDLS and increase the complexity of the controller. Thus, a PD-type ILC
with adaptive learning gains is proposed in this paper and designed to obtain satisfactory
control input by learning the information of previous system operation. Meanwhile, a
standard PD feedback controller is designed to suppress some uncertain disturbances and
stabilize the system, so that the PD-type ILC with adaptive learning gains can realize the
tracking task quickly. The theoretical analysis and the comparison of experimental results
showed that the proposed control law can guarantee the accurate load torque tracking
despite of periodic and aperiodic disturbances for the EDLS.

Furthermore, in the modeling of EDLS, the influence of nonlinear characteristics such
as friction and backlash on the loading accuracy are ignored, and only the strong position
disturbance of EMA and the measurement noise of torque sensor are considered. However,
in practical working conditions, especially in the process of high-precision load torque
tracking, the influence of friction and backlash are inevitable. In the following research, we
will consider the friction model and backlash model, perfect the mathematical model of
EDLS, so as to enhance the engineering application of the research.
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Abbreviations

Notation Physical Significance

Te electromagnetic torque
Km the equivalent gain of the PMSM driver
u(t) the control input
θm loading motor anglular position
ωm loading motor anglular speed
Jm total inertia
Bm damping coefficient
TL the simulated load torque of EMA under test
ng the reduction ratio of the reducer
Td the lumped disturbance torque
KG the stiffness coefficient of the torque sensor
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θa EMA anglular position
ωa EMA anglular speed
η(t) the random measurement noise
x(t) system states
A, B, C, E, d state matrices
h the sample period
I the identify matrix of appropriate dimension
Ad, Bd, Cd, Ed state space matrices
Tre f (t) the bounded periodical load torque trajectory
k the present iteration
yd the desired periodical loading torque trajectory
ek the tracking error
yk the system practical output
u f

k
the output of PD feedback controller

KP the proportional gain
KD the derivative gain
uILC

k the output of PD-type ILC controller
ΓP the proportional learning gain
ΓD the derivative learning gain
∆ek the first difference of tracking error
τP the positive constant gain
τD the positive constant gain
k1 the upper bound of nonlinear function f (∗)
k0 the lower bound of nonlinear function f (∗)
q the positive constant
bd the positive constant
bη the positive constant
ε the positive constant
z z-transform
ωN the Nyquist frequency
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