
electronics

Article

The Control Method of Twin Delayed Deep Deterministic
Policy Gradient with Rebirth Mechanism to
Multi-DOF Manipulator

Yangyang Hou, Huajie Hong * , Zhaomei Sun, Dasheng Xu and Zhe Zeng

����������
�������

Citation: Hou, Y.; Hong, H.; Sun, Z.;

Xu, D.; Zeng, Z. The Control Method

of Twin Delayed Deep Deterministic

Policy Gradient with Rebirth

Mechanism to Multi-DOF

Manipulator. Electronics 2021, 10, 870.

https://doi.org/10.3390/

electronics10070870

Academic Editors: Pablo Gil and

Francisco Andrés Candelas

Received: 8 March 2021

Accepted: 30 March 2021

Published: 6 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

College of Intelligence Science and Technology, National University of Defense Technology,
Changsha 410073, China; houyangyang14@163.com (Y.H.); szm860420@163.com (Z.S.);
ixudasheng@163.com (D.X.); zengzhe@nudt.edu.cn (Z.Z.)
* Correspondence: honghuajie@nudt.edu.cn; Tel.: +86-138-7313-0046

Abstract: As a research hotspot in the field of artificial intelligence, the application of deep reinforce-
ment learning to the learning of the motion ability of a manipulator can help to improve the learning
of the motion ability of a manipulator without a kinematic model. To suppress the overestimation
bias of values in Deep Deterministic Policy Gradient (DDPG) networks, the Twin Delayed Deep
Deterministic Policy Gradient (TD3) was proposed. This paper further suppresses the overestimation
bias of values for multi-degree of freedom (DOF) manipulator learning based on deep reinforcement
learning. Twin Delayed Deep Deterministic Policy Gradient with Rebirth Mechanism (RTD3) was
proposed. The experimental results show that RTD3 applied to multi degree freedom manipulators is
in place, with an improved learning ability by 29.15% on the basis of TD3. In this paper, a step-by-step
reward function is proposed specifically for the learning and innovation of the multi degree of free-
dom manipulator’s motion ability. The view of continuous decision-making and process problem is
used to guide the learning of the manipulator, and the learning efficiency is improved by optimizing
the playback of experience. In order to measure the point-to-point position motion ability of a
manipulator, a new evaluation index based on the characteristics of the continuous decision process
problem, energy efficiency distance, is presented in this paper, which can evaluate the learning
quality of the manipulator motion ability by a more comprehensive and fair evaluation algorithm.

Keywords: deep reinforcement learning; manipulator; reward function; rebirth mechanism

1. Introduction

Deep reinforcement learning (DRL) is a research hotspot in the field of artificial intelli-
gence. In 2015, its landmark achievement, deep Q learning, was published in Nature [1].
At present, DRL is a general form of artificial intelligence learning. Its advantage is that
it combines the perception ability of deep learning (DL) with the decision-making ability
of reinforcement learning (RL), and realizes the direct control from the original input
to the output through the end-to-end learning [2]. The basic idea of deep learning is
to form abstract high-level features by extracting low-level features through multi layer
network structure and nonlinear transformation, so as to represent the distributed features
of data [3]. The basic idea of RL is to get the highest cumulative reward value through the
interaction between agent and environment, so as to get the optimal strategy to complete
the task [4]. As hot issues in the field of artificial intelligence, they have shown their
unique advantages in helping human beings solve complex practical problems. Deepmind,
a research team of Google, combines the abstract representation ability of deep learning
with the problem-making ability of reinforcement learning, forming a new research hotspot
in the field of artificial intelligence-DRL.

The multi-degree of freedom (DOF) manipulator is used in industrial applications
because of its flexibility to achieve high motion capacity. Traditional manipulator motion

Electronics 2021, 10, 870. https://doi.org/10.3390/electronics10070870 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-9032-2094
https://doi.org/10.3390/electronics10070870
https://doi.org/10.3390/electronics10070870
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10070870
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/10/7/870?type=check_update&version=2

Electronics 2021, 10, 870 2 of 20

planning is based on the known kinematics model of the manipulator. The most classical
method to establish the kinematics model is the D-H parameter method proposed by
Denavit and Hartenberg [5]. When the position of the end of the manipulator is known,
the key to successful completion of the task is to get the inverse kinematics solution of the
rotation angle of each joint of the manipulator [6]. Traditional inverse kinematics solution
methods include analytical and numerical methods [7]. However, the analytical method is
not suitable for solving multi joint manipulators with complex structures, and the numerical
method of iterative evaluation is not suitable for real-time control of manipulators [8].
When completing the task of reaching the target position with the end-effector of the
manipulator, the accuracy of reaching target position depends on the modeling accuracy of
the kinematics model of the manipulator. In general, there are two necessary conditions for
the manipulator to plan its kinematics capability with the known kinematics model. Even
if the working environment is known, all modern manipulators use closed loop control,
based on kinematic or dynamic model. The position accuracy that a manipulator can reach
depends on the accuracy of its own kinematics model and the measurement accuracy of
the position it reaches. Second, the nature of the task is mostly static, that is, when the
base and target position of the manipulator are relatively static, the manipulator uses the
kinematics model to plan the motion to reach the target position.

Many researchers are seeking for solutions in many different areas, as well as a way to
break through the current limitations through different areas. As an important resource in
modern society, data has also become an important factor to promote the development of
control theory. Roman et al. [9] used a 3DOF tower crane to verify the effectiveness of the
hybrid data-driven fuzzy active disturbance rejection control(ADRC) algorithms and this
algorithms are validated as controllers in terms of real-time experiments. Haibo et al. [10]
used data-driven technology to build an intelligent transportation system based on modern
control principles.Research on model-based control methods is also meaningful.Based on
the accurate flexible system model, Timothy Sands designed a whiplash compensator [11].
The compensator is very suitable for flexible multibody system. This paper is also dedi-
cated to the application of DRL theory to multi-DOF manipulators, and combines bionic
technology with DRL to establish a model-free multi-DOF manipulator motion control.

DRL is a form of effective learning in high-dimensional problems that cannot be
solved by traditional robotic motion technology [12]. By experiment and exploration,
reward and punishment, memory and update constantly refining skill levels, high levels
of knowledge and skills can be obtained. In many explorations and attempts to use deep
reinforcement learning to help the manipulator learn its motion ability, many teams have
gained some useful experience and knowledge. At present, most of the team’s research
on deep reinforcement learning applied to the manipulator focuses on three aspects: first,
due to the sparse reward problem, it is difficult for the agent to get reward under the
initialization strategy, which leads to training difficulties [13], so it is necessary to design
a reward function that is closer to the learning characteristics of the manipulator [14];
second, in order to improve the learning efficiency of the manipulator, various experience
playback mechanisms are put forward after updating and optimizing the experience pool
in the RL. New and optimized, put forward various experience playback mechanisms to
improve the learning efficiency of the manipulator [15]; third, the innovational modification
in network structure brings improvement, which makes the motion ability learning for
high-dimensional complexity manipulator possible [16].

Kwiatkowsk et al. used DL methods to make the manipulator build self-model [17].
At first the manipulator did not know its shape and joint connection, but after 35 h of
training, it was able to build a self-model with little error from the actual physical model.
Levine et al. proposed a monocular vision-based hand-eye coordination method for the
capture task of a manipulator. This method trains a convolution neural network, which
relies on the image information collected by a real-time camera and the current status of the
manipulator to learn the skills of case coordination, and uses fourteen actual manipulators
to collect 800,000 attempts in two months to make the manipulator obtains grabbing

Electronics 2021, 10, 870 3 of 20

ability [18]. Ichnowski et al. proposed a warm-start optimizing motion planner based on
DL to reduce computation and movement time [19]. However, these beneficial attempts
are generally inefficient and take longer time to train. Fujimoto et al. improved the DDPG
algorithm to reduce the overestimation bias of value, proposed the Twin Delayed Deep
Deterministic Policy Gradient(TD3) algorithm, and verified the TD3 algorithm’s ability
through experiments [20]. Qian et al. of King’s College London combined an updated
version of DDPG-TD3 with an adaptive neuro-fuzzy proportion integral derivative(PID)
controller to optimize control performance, using TD3 to generate multiple parameters of
the fuzzy PID controller [21]. Andrs Antos suggests that when applying reinforcement
learning algorithms to time-bounded continuous decision space problems, a strategy
search step, such as the Actor-Critic algorithm, is required [22]. These results show that the
TD3 algorithm is suitable for solving the problem of the manipulator’s motion capability
in high-dimensional continuous decision space [23]. Google Brain’s OT-Opt research
has yielded a very surprising result. By using end-to-end training to control the real
manipulator to grab objects in an deep learning system, Google’s researchers combined
large-scale distributed optimization with a new deep learning algorithm and proposed
a new algorithm called OT-Opt. The reward function is designed as follows: if the end-
effector of the manipulator successfully grabs an object from the box, it gets a reward value
of 1; otherwise, it gets a reward value of 0 [24]. For the sparse reward problem, Lui et al.
helped the manipulator learn the ability to reach the target position by optimizing the
reward function [25]. Because these studies only used the result information as the basis
for reward function design, they ignored the problem that the manipulator reached the
target position as a process problem.

The structure of this paper is as follows: the first part introduces the related content
of deep reinforcement learning and the research status of multi-DOF manipulator control;
the second part introduces the problems to be solved and the main methods to be adopted
in this paper; the third part introduces the design of step-by-step reward function proposed
in this paper in detail; the fourth part introduces the design of rebirth mechanism and
RTD3 algorithm proposed in this paper in detail structure; the fifth part introduces the
evaluation index of intelligent algorithm proposed in this paper; the sixth part describes
the experimental design in detail, shows the results and discusses the experimental re-
sults; the seventh part evaluates the experimental results, analyzes the advantages and
disadvantages of the experiment, and prospects the future research direction.

2. Related Work

This paper will further improve the training efficiency through two aspects. These two
aspects are: one is to design a new deep reinforcement learning network structure based
on TD3; the other is to design a new reward function ‘step-by-step reward function’.
Therefore, this paper will improve the network structure of the TD3 algorithm for better
learning of the manipulator’s motion capability, further suppress the overestimation bias
of Q value, and propose a new Twin Delayed Deep Deterministic Policy Gradient with
Rebirth Mechanism (RTD3) algorithm. Since the previous reward function design did not
overcome the sparse reward problem well, so the multi-DOF manipulator can not better
use the DRL method to obtain better motion ability. In this paper, a new reward function,
step-by-step reward function, is proposed to learn the motion ability of a manipulator
faster and better. The reward function evaluates each step of the manipulator motion by
treating the manipulator motion as a continuous decision-making problem, which enables
the manipulator to achieve a higher mobility.

Unlike previous reward scores to evaluate the learning effect of a manipulator’s motor
ability, this paper presents a new criterion, the efficienct distance, as an index to measure
the motion ability of a manipulator, which is based on the continuous decision-making
process problem.

Firstly, the motion problem of multi-DOF Manipulator is decomposed into Markov
decision process (MDP). The MDP is a mathematical model of sequential decision, which is

Electronics 2021, 10, 870 4 of 20

used to simulate the randomness strategies and returns that an agent can achieve in an
environment where the system state has Markovian properties [4,26]. MDP is built on a
set of interactive objects, that is, agents and environments, with elements including status,
actions, strategies, and rewards [26].

In this paper, the 3DOF manipulator is used as an agent of machine learning in MDP
to perceive the external environment and make action decisions, and adjust the decisions
through the feedback of the environment. The process of decomposing the learning of
motion capability of a 3DOF manipulator into MDP is illustrated as Table 1.

Table 1. Markov decision process.

Name Symbolism Explanation

State S = {s1, s2, · · ·, sT}
State space refers to the workspace of
a manipulator and is an environment

composed of continuous spatial position coordinates.

Action A = {a1, a2, · · ·, aT}
Motion is the angular increment command
issued by the three corresponding joints of

the manipulator arm. The action space is continuous.

Policy π(a|s) = p(a|s) Actions given by status.

Reward R = R(st, at, st+1)
When the arm moves, it is rewarded

for reaching the target position, that is, the
environment’s feedback to the agent.

Return G = ∑ Ri
Return is the accumulation of rewards

over step time.

3. Step-by-Step Reward Function

The design of the step-by-step reward function is based on the sparse reward problem
and the learning ability of the manipulator. The sparse reward problem does not work well
in solving continuous decision-making problems. The problem with sparse rewards is that
there is a portion of the learning vacuum between being punished and being rewarded
due to the discontinuity of rewards. When the manipulator is learning in this part of
the learning vacuum area, it is blind and useless to spend most of its time and energy.
Therefore, the sparse reward problem will cause the slow convergence of the network and
the poor learning efficiency of the manipulator’s motion ability. At present, many reward
functions have been designed to solve the sparse reward problem as a process problem to
achieve better learning results, such as distance reward function, azimuth reward function
and so on. The advantage of the reward function designed in this paper is that the process
of reaching the target position of the manipulator is taken as the basis for the design of the
reward function. In the design of step-by-step reward function, the positive and negative
reward values are given separately for each step of the task according to the principle that
effective results are encouraged. The step-by-step reward function is designed to consider
the projection of the end-effector position of the manipulator on the spatial vector from
the starting position to the target position, near or far from the target position, and to use
the projection as the criterion to get the reward value. The calculation principle is shown
in Figure 1.

Electronics 2021, 10, 870 5 of 20

Figure 1. Calculation diagram of step-by-step reward function.

The distance from the current position at the end-effector of manipulator to the target
position is Lreward1, and Lreward1 is given as:

Lreward1 = |−→ST|. (1)

The first part of the step-by-step reward function is Rreward1 as follows:

Rreward1 = −λ1Lreward1, λ1 ∈ (0,+∞), (2)

where Lreward2 is stepped distance as Equation (3), which could represent the effect of
−→
SS′

approaching the target in the current step.

Lreward2 =

−→
OT ·

−→
SS′

|−→OT|
(3)

Through the comparison of ϕ1 and ϕ2, the positive or negative effects of the current
manipulator motion step is determined. ϕ1 and ϕ2 are defined as follows:

ϕ1 =

−→
OT · −→TS

|−→OT| · |−→TS|
, (4)

ϕ2 =

−→
OT ·

−→
TS′

|−→OT| · |
−→
TS′|

. (5)

The second part of the step-by-step reward function is Rreward2 as Equation (6).

Rreward2 = λ2Lreward2 (6)

The step-by-step reward function R is defined as:

R = Rreward1 + Rreward2. (7)

where λ1 is a normal number and is the gain coefficient for the first part of the reward. λ2
is the gain coefficient for the second part of the reward, which is discussed in six cases.

The movement process of the manipulator’s end-effector from the initial position to
the target position is classified into six cases. As shown in Figure 2, through the analysis of
the six cases, the six cases are divided into two categories: the proximity to get positive
reward and the distance to get negative reward.

Electronics 2021, 10, 870 6 of 20

case1 :
π

2
< ϕ2 < ϕ1, (8)

case2 :
π

2
< ϕ1 < ϕ2, (9)

case3 : ϕ2 <
π

2
< ϕ1, (10)

case4 : ϕ1 <
π

2
< ϕ2, (11)

case5 : ϕ2 < ϕ1 <
π

2
, (12)

case6 : ϕ1 < ϕ2 <
π

2
. (13)

Six cases are analyzed and divided into two categories. Corresponding to the two
cases, λ2 is a positive or negative constant respectively as follows.

λ2 =

{
c, case1 or case2 or case4
−c, case3 or case5 or case6

, c ∈ (0,+∞), (14)

where case1→ case6 represents six stepping cases.

Figure 2. Six steps of the Step-by-Step Reward Function.

4. Rebirth Mechanism of Target Critic Network to Suppress Overestimation Bias

The Q value represents the agent’s expectation of choosing this action until the sum of
the final status rewards. The Q value for policyπ(a|s) at state s is given as:

Qπ(s, a) = E[
∞

∑
k=0

γkrt+k+1|st = s, at = a]

The structure of TD3 network is a beneficial attempt and improvement to solve
the problem of slow learning convergence and poor learning performance due to over
estimation of Q value. In gym tests, TD3 network can achieve better results than other
algorithms, which should owe to the suppression of overestimation bias of Q value.

Faced with the problem of overestimation bias of Q values, TD3 networks can use
smaller Q estimates from two target critic networks as data sources for update iteration.
The fixed objective y over multiple updates:

y = r + γmini=1,2Qθ′i
(s′, πφ′(s

′) + ε). (15)

Electronics 2021, 10, 870 7 of 20

where r is a reward and s′ is the new state of environment when the agent selects actions
with respect to its policy. γ is a discount factor determining the priority of short-term
reward. πφ′(s′) is the action selected from a target actor network. ε is a random noise with
a normal distribution.

The problem is that the generation of network nodes has a lot of randomness. If a
randomly generated target critic network always can not achieve good evaluation results
during training process, the problem of overestimation bias of Q value can only depend on
another target critic network, and the effect of suppressing overestimation bias of Q value
can only depend on the evaluation results of the target critic network.

In order to build a better target critic network, this paper designs and establishes
an target critic network elimination and rebirth mechanism to suppress overestimation
bias of Q value. This mechanism is based on the ability to eliminate poor target critic
networks when the elimination conditions are met, and rebuild a new set of network nodes
to continue to be used for the evaluation mechanism of actor networks. Figure 3 shows the
RTD3 network structure and shows RTD3 pseudocode through Algorithm 1, where the
Rebirth Target Networks section is detailed by pseudocode in the Figure 4 Mechanism of
Rebirth and Algorithm 2 Rebirth Target Networks.

Figure 3. Twin Delayed Deep Deterministic Policy Gradient with Rebirth Mechanism (RTD3) network
structure diagram.

In practice, RTD3 network structure diagram uses selecting the source of smaller Q
value and evaluating the proportion of network as the condition to rebuild the target critic
network. By calculating the utilization percentage of the first 100 Q-values selected for the
network, the goal target critic network which is less than the minimum utillization rate
Wmin will be rebuilt. In order to ensure that the goal target critic network after rebirth has
time for learning and adapting, the goal target critic network after rebirth will be protected
for a certain time. During the protection time, the rebirth goal target critic network no
longer accepts the rebirth mechanism operation.

wθ′1
== (

i=0

∑
i=−99

wi
θ′1
)/100, (16)

wθ′2
== (

i=0

∑
i=−99

wi
θ′2
)/100, (17)

where wi
θ′1

, wi
θ′2

means totally 100 Q values using percentage, form i = 0 at the current
training moment to i = −99 at the current 99 training moments. wθ′1

, wθ′2
represent the

Electronics 2021, 10, 870 8 of 20

average utilization percentage of the Q values given by the two Target Cirtic Networks at
the current time i = 0, respectively.

Algorithm 1 Algorithm RTD3.

1: Initialize critic networks Qθ1 , Qθ2 and actor network πφ with random parameters
θ1, θ2, φ ;

2: Initialize target networks Qθ′1
, Qθ′2

, πφ′ ;
3: Target network node assignment θ1 → θ′1, θ2 → θ′2, φ→ φ′;
4: Initialize replay buffer B;
5: for t = 1 to T do
6: Select action with exploration noise a ∼ πφ + ε, ε ∼ N(0, σ);
7: Store transition tuple (s, a, r, s’) in B;
8: if SumB < mini_batch then
9: Return;

10: end if
11: Sample mini-batch of N transition (s, a, r, s’) from B ;

ã← πφ′(s
′) + ε, ε ∼ clip(N(0, σ̃),−c, c);

y = r + γmini=1,2Qθ′i
(s′, ã);

12: Statistical calculation of Q value utilization ratio wθ′1
, wθ′2

;
13: if wθ′1

< mini_utilization then
14: Rebirth target networks θ′1 ;
15: end if
16: if wθ′2

< mini_utilization then
17: Rebirth target networks θ′2 ;
18: end if
19: Update critics θi ← argminθi

N−1 ∑ (y−Qθi (s, a))2;
20: if t mod d then
21: Update φ by the deterministic policy gradient:

5φ J(φ) = N−1 ∑5aQθ1(s,a)|a=πφ(s)5φπφ(s);

22: Update target networks:

θ′i ← τθi + (1− τ)θ′i , φ← τφ + (1− τ)φ′;

23: end if
24: end for

Through the rebirth mechanism of target critic network in Figure 4, the network that
is not suitable for evaluating the learning of the manipulator can be eliminated in time
continuously. The target critic network that is rebuilt can participate in the process of
evaluating the learning of the manipulator.

With this scheme design, the number of target critic networks can be reduced and the
requirement of computer computing ability in training process can be reduced.

Electronics 2021, 10, 870 9 of 20

Figure 4. Mechanism of rebirth.

Algorithm 2 Algorithm Rebirth Target Networks.

1: Initialize mini_utilization Wmin and Protection time Tp;
2: if Protection time Tp > 0 then
3: Return;
4: end if
5: Statistical calculation wθ′1

, wθ′2
;

6: if wθ′1
< Wmin then

7: Rebirth target critic network θ′1 with random parameter;
8: Reset Protection time Tp;
9: Return;

10: end if
11: if wθ′2

< Wmin then
12: Rebirth target critic network θ′2 with random parameter;
13: Reset Protection time Tp;
14: Return;
15: end if
16: Update protection time Tp ← Tp − 1.

5. Efficient Distance

In the framework of DRL, different network structures can be evaluated by setting
the same reward function to give feedback on reward scores. However, there are obvious
inappropriateness of this criterion for multi-DOF manipulators. For this article, through the
design of a variety of reward functions, there itself exists the use of different dimensions
of information, so the reward score can not fairly evaluate the effect of different forms of
reward functions. Therefore, using the DRL framework to learn the motion ability of a
multi-DOF manipulator requires a specially defined performance evaluation index for the
multi-DOF manipulator’s motion ability.

The evaluation index designed in this paper is the efficiency distance, which is used as
the evaluation index to evaluate the kinematic learning ability of the multi-DOF manipula-
tor. This index can make a fairer comparison between the improved reward function and
the learning effect of the multi-DOF manipulator’s motion ability with the DRL framework.

Efficient distance De is defined as:

De =
∑

Nstep_time
i=1 (LInit − Di)

LInitNstep_time
. (18)

Electronics 2021, 10, 870 10 of 20

The parameters in Equation (18) are explained as follows.
LInit: Euclidean distance from initial position to generated random position;
Di: Euclidean distance from the end of the real-time manipulator to the randomly

generated position for the times movement in the same;
Nstep_time: Total number of decision-making times for the actual motion of a manipula-

tor in the same.

6. Experiments and Discussions

The software and hardware configuration of this experiment is shown in Table 2,
and the configuration of network parameters is shown in Table 3.

Table 2. Software and hardware configuration.

Hardware Configuration

CPU AMD Ryzen 7 3750 H with Radeon Vega Mobile Gfx 2.30 GHz

Vision Windows 10 64 bit

RAM 8 GB

Software Configuration

Pycharm Community Edition 2019.3.3

Torch 1.5.0 + cpu

Torchaudio 0.7.0

Torchvision 0.6.0 + cpu

The fewer the number of network nodes, the fewer the number of network layers and
the smaller the batch size, the less computational power was needed in the training process.
Therefore, the following parameters were selected in this experiment. The learning rate of
actor network and critical network was 0.001 according to experience. This also showed
that RTD3 algorithm could use a small network to show strong expression ability.

Table 3. Network parameter settings.

Parameter Value

Actor learning rate 0.001

Critic learning rate 0.001

Target actor learning rate 0.001

Target critic learning rate 0.001

Input dims 6

DNN size 64× 64× 128

Output dims 3

Batch size 100

Optimizer adam

Update delay 10

Universal Robots introduced the first collaborative robot in 2009, UR5, with a weight
of 18 kg, a load of up to 5 kg and a working radius of 85 cm. The UR5 manipulator
model was used in this experiment. The kinematics model of UR5 was established by D-H
parameters method, which was used as the observation method to sense the workspace
position of the manipulator end-effector. In Table 4, we show the DH parameters of UR,

Electronics 2021, 10, 870 11 of 20

where a is the length of the link, d is the offset of the link, α is the twist angle of the link, θ
is the joint angle. The units of a and d are meters, and the units of α and θ are radians.

Table 4. The D-H parameters of UR5.

Joint a d α θ

1 0 0.0892 π/2 θ1

2 −0.4250 0 0 θ2

3 −0.3923 0 0 θ3

4 0 0.1092 π/2 θ4

5 0 0.0946 −π/2 θ5

6 0 0.0823 0 θ6

By defining the link coordinate system and corresponding link parameters of UR5, the
kinematic equation of UR5 could be directly established. The homogeneous transformation
matrix of each link could be calculated by the value of the link parameter of UR5 as
Equation (19).

i−1
i T =


cos(θi) −sin(θi)cos(θi) sin(θi)sin(αi) aicos(θi)
sin(θi) cos(θi)cos(αi) −cos(θi)sin(αi) aisin(θi)

0 sin(αi) cos(αi) di
0 0 0 1

 (19)

By multiplying these homogeneous transformation matrices, the homogeneous trans-
formation matrix of the coordinate system {E} of the end-effector of the manipulator
relative to the base coordinate system {B} of the manipulator could be obtained, which
was given as:

0
6T = 0

1T 1
2T 2

3T 3
4T 4

5T 5
6T (20)

Homogeneous transformation matrix T is a function of six joint variables. With this
function, the position of the end-effector of the manipulator in the Cartesian coordinate
system could be calculated.

In the model, the position information of the end-effector of the manipulator was
obtained by the forward kinematics solution based on the angle of each joint of the manipu-
lator. In the workspace of UR5 manipulator, with the same initial position, the end-effector
of the manipulator generates the target position randomly during the 60,000 episodes
of training to train the DRL network. In the experiment, Joint4, Joint5 and Joint6 were
determined to keep locked state, and the 6DOF manipulator was changed into 3DOF ma-
nipulator for deep reinforcement learning. The position deviation dx, dy and dz between
the end-effector of the manipulator and the target position were taken as the input of the
deep reinforcement learning network, and the joint angle increments dθJoint1, dθJoint2 and
dθJoint3 were taken as the output.

6.1. Effect of Step-by-Step Reward Function

In order to verify the effect of the step-by-step reward function, a comparative ex-
periment was conducted between the step-by-step reward function, distance reward and
azimuth reward function. The TD3 network was used to carry out the experiment with
four groups of randomly initialized network node parameters. Under the same network en-
vironment configuration, 60,000 random target locations were generated in the workspace
of the 3DOF manipulator to verify the effect of the step-by-step reward function. The step-
by-step reward function has been mentioned before, and the composition of the distance

Electronics 2021, 10, 870 12 of 20

reward function is Equation (21). This reward value adopts negative reward function,
negatively correlated with distance.

Rdistance_reward = −λ3|
−→
ST|, (21)

where λ3 is a positive constant. In the coordinate system of the base of the manipulator, the
azimuth reward function was formed by comparing the angle and distance of the current
position with the target position. The azimuth reward function was given as:

Razimuth_reward = λ4 ϕ3 − λ5|
−→
ST| (22)

where ϕ3 =
−→
OT·−→OS
|−→OT|·|−→OS|

, λ5 is a positive constant. In different angle intervals, λ4 had a

different constant.
In this paper, the above three reward functions were combined into reward function(1)

to reward function(4) by combination form as Table 5. The improvement effect was proved
by comparative experiments.

Four lots of random initialization of network node parameters were used for compar-
ative experiments, namely Network(1) to Network(4). The effectiveness of the improved
algorithm was proved by several experiments of random initialization of network node
parameters. It should be noted that Network(1) to Network(4) in different comparative
tests had different initialization network node parameters.

The comparison experiment shows that the step-by-step reward function had a better
efficient distance than the distance reward function in Table 6 and Figure 5. The average
efficient distance obtained by the four-time random initialization of the step-by-step reward
function was 89.18%, while the distance reward function just had an average efficient
distance of 78.66%. In the TD3 network structure, the step-by-step reward function could
improve the motion ability of the 3DOF manipulator by 10.63% compared with the distance
reward function.

The comparison experiment shows that the composite reward function with the step-
by-step reward function had a better efficient distance than the azimuth reward function in
Table 7 and Figure 6. The average efficient distance obtained with the four-time random
initialization of the composite function (step-by-step reward function + azimuth reward
function) was 91.14%, while the corresponding average efficient distance of the azimuth
reward function was 11.97%. Excluding the Network(4) data of network divergence, the
average efficient distance of the composite function (step reward function + azimuth reward
function) was 91.10%, and that of the azimuth reward function was 70.96%. In the TD3
network structure, a step-by-step reward function was added to improve the motion ability
of the 3DOF manipulator by 20.13%.

Table 5. Four reward functions.

Distance Reward Step-by-Step
Reward Function Azimuth Reward

reward function(1) X

reward function(2) X

reward function(3) X

reward function(4) X X

Electronics 2021, 10, 870 13 of 20

Table 6. The efficient distances of reward function(1) and reward function(2) for four times of
randomly initialized network node parameters.

Reward Function Category Network(1) Nework(2) Network(3) Network(4)

Reward function(1) 91.76 % 91.08% 88.98% 84.88%

Reward function(2) 85.01 % 76.04% 75.54% 77.59%

(a) Network(1) (b) Network(2)

(c) Network(3) (d) Network(4)

Figure 5. The efficient distances between reward function(1) (red) and reward function(2) (blue) for
four times of randomly initialized of network node parameters as shown above in (a–d).

Table 7. The efficient distances of reward function(3) and reward function(4) for four times of
randomly initialized network node parameters.

Reward Function Category Network(1) Network(2) Network(3) Network(4)

Reward function(3) 58.23% 79.31% 75.35% −165.02%

Reward function(4) 91.71% 91.14% 90.44% 91.26%

6.2. Comparison of Experimental Effects between RTD3 and TD3

This part of the experiment compared the difference in learning ability between TD3
and RTD3 which further suppressed the overestimated bias of Q value. The experiment
was carried out with through four random initialization of network node parameters.
Under the settings of four reward functions, the network training was conducted with the
use of 60,000 random generated target locations.

Electronics 2021, 10, 870 14 of 20

(a) Network(1) (b) Network(2)

(c) Network(3) (d) Network(4)

Figure 6. The efficient distances between reward function(3) (black) and reward function(4) (green)
for four times of randomly initialized network node parameters as shown above in (a–d).

(a) Network(1) (b) Network(2)

(c) Network(3) (d) Network(4)

Figure 7. Under the reward function(1), the efficient distances between RTD3(red) and TD3(blue) for
four times of randomly initialized network node parameters under the same initial network node
conditions as shown above in (a–d).

The results of four random network generations for RTD3 and TD3 networks under
the same initial network conditions showed that the improved RTD3 network structure
could achieve better learning results. Through Figure 7, under the condition of reward

Electronics 2021, 10, 870 15 of 20

function(1), RTD3 achieves higher efficient distance and more stable convergence compared
with TD3. Especially for the reward function(2) and reward function(3), which could not
help the manipulator to learn better by setting appropriate reward function, the improved
RTD3 could significantly improve the efficient distance. Especially when the initial network
node parameters could not learn better, such as reward function(3), randomly generated
Network(1) and Network(3), the improved RTD3 could greatly improve the learning
effect in Figures 8 and 9. The average efficient distance of RTD3 was 89.28%, which was
higher than 60.13% of TD3. RTD3 improved learning efficiency by 29.15%. When wiping
out the controversial Network(3)_F(3) comparative experiment data, the average efficient
distance index of RTD3 was 89.58%, which was higher than 75.14% of TD3. RTD3 improved
learning efficiency by 14.44%. Although both RTD3 and TD3 can get same results under
the condition of well-designed reward function, RTD3 is better than TD3 in convergence
speed in Figure 10 . We can compare all the experiments and see the comparison results
intuitively through Table 8 and Figure 11.

Through the comparison of learning process, we can see that the improved RTD3
network structure could achieve a more robust learning process than the TD3 network
structure, and there was no severe network oscillation in the overall process. By com-
paring the variances of efficient distances when episode ranged from 30,000 to 60,000,
the differences in learning robustness of network structures could be characterized.

By comparing the variances, we can see that RTD3 was better in learning ability and
better in robustness in learning process in Table 9 and Figure 12. Compared with the TD3
network structure, the average efficient distance variance of RTD3 was 0.0171, while that of
TD3 was 0.7988, which was 46.71 times that of RTD3. When wiping out the controversial
Network(3)_F(3) comparative experimental data, the average efficient distance variance of
RTD3 was 0.0165, that of TD3 was 0.2956, which was 17.94 times that of RTD3. In some
comparative experiments, the variance of efficient distance of RTD3 was even hundreds
of times better than that of TD3. It also showed that RTD3 network structure could show
better stability in the middle and late learning stages of multi-DOF manipulator learning.

Table 8. Under the four reward function settings, the average efficient distance of RTD3 and TD3 for
four times of randomly initialized network node parameters when episode is in the range of 50,000
to 60,000.

Network Structure and
Reward Function Categories Network(1) Network(2) Network(3) Network(4)

RTD3(1) 96.74% 95.01% 94.67% 95.60%

TD3(1) 76.76% 88.98% 84.88% 87.07%

RTD3(2) 94.71% 93.91% 95.15% 95.75%

TD3(2) 50.80% 50.80% 75.54% 80.57%

RTD3(3) 52.46% 90.79% 84.81% 73.71%

TD3(3) 3.41% 75.35% −165.02% 57.77%

RTD3(4) 92.76% 93.89% 88.80% 89.69%

TD3(4) 93.51% 93.57% 91.14% 91.73%

Electronics 2021, 10, 870 16 of 20

(a) Network(1) (b) Network(2)

(c) Network(3) (d) Network(4)

Figure 8. Under the reward function (2), the efficient distances between RTD3 (red) and TD3 (blue)
for four times of randomly initialized network node parameters under the same initial network
node conditions as shown above in (a–d).

(a) Network(1) (b) Network(2)

(c) Network(3) (d) Network(4)

Figure 9. Under the reward function(3), the efficient distances between RTD3 (red) and TD3 (blue)
for four times of randomly initialized network node parameters under the same initial network
node conditions as shown above in (a–d).

Electronics 2021, 10, 870 17 of 20

(a) Network(1) (b) Network(2)

(c) Network(3) (d) Network(4)

Figure 10. Under the reward function(4), the efficient distances between RTD3 (red) and TD3 (blue)
for four times of randomly initialized network node parameters under the same initial network
node conditions as shown above in (a–d).

Table 9. Under four reward function settings, the variances of efficient distances of RTD3 and TD3
for four times of randomly initialized network node parameters when episode varies from 30,000
to 60,000.

Network Structure
and Reward Function

Categories
Network(1) Network(2) Network(3) Network(4)

RTD3(1) 0.001159 0.003495 0.002349 0.007059

TD3(1) 0.291893 0.075529 0.060792 0.162559

RTD3(2) 0.015039 0.006725 0.003478 0.001854

TD3(2) 0.823852 0.308610 1.408862 0.463721

RTD3(3) 0.071677 0.006649 0.026182 0.090065

TD3(3) 0.542213 0.032461 8.347054 0.238845

RTD3(4) 0.016182 0.012684 0.002566 0.006161

TD3(4) 0.008251 0.008009 0.003014 0.005266

Electronics 2021, 10, 870 18 of 20

Figure 11. Under four reward function settings, the comparison of the average efficient distance of
RTD3 and TD3 for four times of randomly initialized network node parameters when episode is in
the range of 50,000 to 60,000.

Figure 12. The variances of efficient distance of RTD3 (blue) and TD3 (orange) under four reward
function settings when episode ranges from 30,000 to 60,000.

Electronics 2021, 10, 870 19 of 20

7. Conclusions

Through a series of comparative experiments, the step-by-step reward function pro-
posed in this paper can better reflect the learning characteristics of the multi-DOF manipu-
lator, and the deep reinforcement learning method can make the multi-DOF manipulator
obtain better motion ability. The RTD3 algorithm proposed in this paper achieves higher
learning efficiency and mobility than the TD3 algorithm in the experimental environment of
multi-DOF manipulators. Especially when the parameters of randomly initialized network
nodes are not good, TD3 can not show a good effect of exploring and attempting training,
while RTD3 can still obtain a better promotion of the learning efficiency and mobility of
multi-DOF manipulators. Through all of the above experiments, it is verified and illustrated
that the two improvements proposed in this paper have achieved the expected results in
improving and helping the learning of the motion ability of the multi-DOF manipulator.
The two improvements are in conformity with the motion characteristics and rules of the
multi-DOF manipulator.

Through the research work of this paper, our team found that RTD3 algorithm can
use smaller models to complete some learning tasks that can only be completed by larger
models. Compared with the large model of deep learning, RTD3 algorithm can use the
smaller model on the premise of effective learning. RTD3 algorithm effectively improves
the perception ability of small model.

Through the analysis of the experimental results, RTD3 algorithm can continuously
detect the proportion of Q value predicted by two target critical networks in the early
training period. RTD3 algorithm can regenerate the target critical network which always
produces high overestimation bias of Q values in a certain period of time by further
analysis and setting the occupancy ratio threshold. This paper also finds that the method
of restraining the overestimation bias of Q value has a significant improvement effect on
the deterministic policy gradient method. It is found that the threshold of occupancy ratio
is sensitive to the learning ability of the deterministic policy gradient method. This can be
used as a direction for further research in the future.

Aiming at the motion ability of static manipulator, it is mostly open-loop control in
the current application of real life and production activities, that is, firstly, the kinematics
model of the manipulator is established, then the target position is detected by sensors, and
then the kinematics inverse solution of the target position is carried out in the kinematics
model of the manipulator, and finally the trajectory of the manipulator is obtained through
the planning algorithm similar to spline interpolation to reach target position. In this
paper, we no longer look for a network structure to represent the kinematics model of
the manipulator through intelligent algorithm training, that is, we no longer regard the
manipulator end-effector reaching the target position as a process of motion path. In this
paper, the current state of the manipulator (the angle of each joints of the manipulator) and
the position deviation between the end-effector and the target position of the manipulator
are taken as the input information to maximize the use of the cooperation between human
arm and human eyes. Through bionics, the RTD3 algorithm is further used to represent a
more advanced level of intelligence. In this aspect, in the future, a camera will be placed at
the end of the manipulator to imitate human eyes, so as to realize the cooperation between
the arm and the eyes in a more biological sense.

Of course, there are still many aspects worthy of study and promotion in the current
research work. Compared with the mature control method based on manipulator motion
model, the current RTD3 algorithm can not be applied in practical application, and its
performance needs to be improved. In the future, we need to achieve more in-depth
research on the high-precision capture task of dynamic target.

Author Contributions: Conceptualization, Y.H. and H.H.; methodology, Y.H. and H.H.; software,
Y.H. and Z.S.; formal analysis, Z.S.; investigation, Y.H.; resources, H.H.; data curation, Y.H.; writing—
original draft preparation, Y.H. and D.X.; writing—review and editing, Z.Z.; visualization, Z.S.;
supervision, H.H. All authors have read and agreed to the published version of the manuscript.

Electronics 2021, 10, 870 20 of 20

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]
2. Li, Y. Deep reinforcement learning. arxiv 2018, arxiv:1810.06339.
3. Sun, Z.; Xue, L.; Xu, Y.; Wang, Z. Overview of deep learning. Appl. Res. Comput. 2012, 29, 2806–2810.
4. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction, 2nd ed.; MIT Press: Cambridge, MA, USA, 2018.
5. Denavit, J.; Hartenberg, R.S. A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices. ASME J. Appl. Mech.

1955, 77, 215–221.
6. Craig, J.J. Introduction to Robotics: Mechanics and Control, 2nd ed.; Addison-Wesley: Reading, MA, USA, 1989.
7. Paul, R.C.P. Robot Manipulators: Mathematics, Programming and Control; MIT Press: Cambridge, UK, 1981.
8. Shi, X.; Guo, Z.; Huang, J.; Shen, Y.; Xia, L. A Distributed Reward Algorithm for Inverse Kinematics of Arm Robot. In Proceedings

of the 2020 5th International Conference on Automation, Control and Robotics Engineering, Dalian, China, 19–20 September 2020;
pp. 92–96.

9. Roman, R.C.; Precup, R.E.; Petriu, E.M. Hybrid data-driven fuzzy active disturbance rejection control for tower crane systems.
Eur. J. Control 2021, 58, 373–387. [CrossRef]

10. Zhang, H.; Liu, X.; Ji, H.; Hou, Z.; Fan L. Multi-Agent-Based Data-Driven Distributed Adaptive Cooperative Control in Urban
Traffic Signal Timing. Energies 2019, 12, 1402. [CrossRef]

11. Sands, T. Optimization Provenance of Whiplash Compensation for Flexible Space Robotics. Aerospace 2019, 6, 93. [CrossRef]
12. Peters, J.; Vijayakumar, S.; Schaal, S. Reinforcement Learning for Humanoid Robotics. In Humanoids Proceedings of the Third

IEEE-RAS International Conference on Humanoid Robots, Karlsruhe, Germany, 29–30 September 2003.
13. Plappert, M.; Andrychowicz, M.; Ray, A.; McGrew, B.; Baker, B.; Powell, G.; Schneider, J.; Tobin, J.; Chociej, M.; Welinder, P.; et al.

Multi-goal reinforcement learning: Challenging robotics environments and request for research. arXiv 2018, arXiv:1802.09464.
14. Dewey, D. Reinforcement learning and the reward engineering principle. Presented at the AAAI Spring Symposium Series,

San Francisco, CA, USA, 24–26 March 2014.
15. De Bruin, T.; Kober, J.; Tuyls, K.; Babuska, R. Experience selection in deep reinforcement learning for control. J. Mach. Learn. Res.

2018, 19, 1–56.
16. Gu, S.; Holly, E.; Lillicrap, T.P.; Levine, S. Deep reinforcement learning for robotic manipulation with asynchronous off-policy

updates. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA 2017), Singapore, 29 May–3
June 2017; pp. 3389–3396.

17. Kwiatkowski, R.; Lipson, H. Task-agnostic self-modeling machines. Sci. Robot. 2019, 4, eaau9354. [CrossRef] [PubMed]
18. Levine, S.; Pastor, P.; Krizhevsky, A.; Ibarz, J.; Quillen, D. Learning Hand-Eye Coordination for Robotic Grasping with Deep

Learning and Large-Scale Data Collection. Int. J. Robot. Res. 2016, 37, 421–436. [CrossRef]
19. Ichnowski, J.; Avigal, Y.; Satish, V.; Goldberg, K. Deep learning can accelerate grasp-optimized motion planning. Sci. Robot.

2020, 5, eabd7710. [CrossRef] [PubMed]
20. Fujimoto, S.; van Hoof, H.; Meger, D. Addressing function approximation error in actor-critic methods. arXiv 2018,

arXiv:1802.09477.
21. Shi, Q.; Lam, H.K.; Xuan, C.; Chen, M. Adaptive Neuro-Fuzzy PID Controller based on Twin Delayed Deep Deterministic Policy

Gradient Algorithm. Neurocomputing 2020, 402, 183–194. [CrossRef]
22. Antos, A.; Munos, R.; Szepesv’ari, C. Fitted Q-Iteration in Continuous Actionspace MDPs. In Proceedings of the NIPS, Vancouver,

BC, Canada, 3–6 December 2007; pp. 9–16
23. Smart, W.D.; Kaelbling, L.P. Practical reinforcement learning in continuous spaces. In Proceedings of the 17th International

Conference on Machine Learning, San Francisco, CA, USA, 29 June–2 July 2000; pp. 903–910.
24. Kalashnikov, D.; Irpan, A.; Pastor, P.; Ibarz, J.; Herzog, A.; Jang, E.; Quillen, D.; Holly, E.; Kalakrishnan, M.; Vanhoucke, V.; et al.

QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation. arXiv 2018, arXiv:1806.10293.
25. Liu, D.; Wang, Z.; Lu, B.; Cong, M.; Yu, H.; Zou, Q. A Reinforcement Learning-Based Framework for Robot Manipulation Skill

Acquisition. IEEE Access 2020, 9, 108429–108437. [CrossRef]
26. Kearns, M.; Mansour, Y.; Ng, A.Y. A Sparse Sampling Algorithm for Near-Optimal Planning in Large Markov Decision Processes.

Mach. Learn. 2002, 49, 193–208. [CrossRef]

http://doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.1016/j.ejcon.2020.08.001
http://dx.doi.org/10.3390/en12071402
http://dx.doi.org/10.3390/aerospace6090093
http://dx.doi.org/10.1126/scirobotics.aau9354
http://www.ncbi.nlm.nih.gov/pubmed/33137761
http://dx.doi.org/10.1177/0278364917710318
http://dx.doi.org/10.1126/scirobotics.abd7710
http://www.ncbi.nlm.nih.gov/pubmed/33208523
http://dx.doi.org/10.1016/j.neucom.2020.03.063
http://dx.doi.org/10.1109/ACCESS.2020.3001130
http://dx.doi.org/10.1023/A:1017932429737

	Introduction
	Related Work
	 Step-by-Step Reward Function
	Rebirth Mechanism of Target Critic Network to Suppress Overestimation Bias
	Efficient Distance
	Experiments and Discussions
	Effect of Step-by-Step Reward Function
	Comparison of Experimental Effects between RTD3 and TD3

	Conclusions
	References

