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Abstract: With the rapid increase in the world’s population, there is an ever-growing need for a
sustainable food supply. Agriculture is one of the pillars for worldwide food provisioning, with
fruits and vegetables being essential for a healthy diet. However, in the last few years the worldwide
dispersion of virulent plant pests and diseases has caused significant decreases in the yield and
quality of crops, in particular fruit, cereal and vegetables. Climate change and the intensification of
global trade flows further accentuate the issue. Integrated Pest Management (IPM) is an approach to
pest control that aims at maintaining pest insects at tolerable levels, keeping pest populations below
an economic injury level. Under these circumstances, the early identification of pests and diseases
becomes crucial. In this work, we present the first step towards a fully fledged, semantically enhanced
decision support system for IPM. The ultimate goal is to build a complete agricultural knowledge base
by gathering data from multiple, heterogeneous sources and to develop a system to assist farmers in
decision making concerning the control of pests and diseases. The pest classifier framework has been
evaluated in a simulated environment, obtaining an aggregated accuracy of 98.8%.

Keywords: agrisemantics; crop pest recognition; natural language processing; ontology population;
semantic data integration

1. Introduction

The World Health Organization (WHO) and the Food and Agriculture Organization
(FAO) of the United Nations agreed on the following definition: organic agriculture is
a holistic production management system which promotes and enhances agroecosystem health,
including biodiversity, biological cycles, and soil biological activity. It emphasizes the use of
management practices in preference to the use of off-farm inputs, taking into account that regional
conditions require locally adapted systems. This is accomplished by using, where possible, cultural,
biological and mechanical methods, as opposed to using synthetic materials, to fulfil any specific
function within the system [1]. Thus, beyond ensuring the provision of food for the increasing
world population, organic agriculture is concerned with sustainability [2]. If pests and
diseases are one of the main threats to crop yields when employing conventional farming
practices, in organic agriculture, in which the application of synthetic chemical fertilizers
and pesticides is prohibited, the impact could be devastating [3]. For that reason, the general
approach in organic agriculture is to apply management practices aiming at preventing
pests and diseases from affecting a crop, rather than treating the symptoms. On the side,
globalization and climate change are contributing to the emergence of new diseases and
to their spread [4,5]. Under these circumstances, early detection of the outbreak of a pest
or disease becomes paramount to reduce yield losses and their corresponding economic
damage. Both small and large farm owners should be provided with access to relevant
information about best practices in organic agriculture and the allowed methods to fight
crop pests and diseases. However, in most cases such information is dispersed throughout
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multiple, heterogeneous data sources. Information and Communication Technology (ICT)
should play an important role in attaining such an objective.

As with many other fields, the adoption of ICT in agriculture, also known as e-
agriculture, is pervasive worldwide [6]. Smart farming is the term coined to describe the
application of advanced information technologies (IT) to make agriculture more efficient
and effective [7]. The main applications of ICT in agriculture include the use of GPS
and Geographic Information Systems (GIS) for precision farming, smartphone apps for
e-learning (i.e., agroadvisory services) and crop management, RFID (Radio-Frequency
Identification) for product tracking, etc. Apps in the agronomy domain can be classi-
fied in the following categories [8]: weather, soil preparation, sowing scheduling, farm
management, soil fertility and crop nutrition, pest management, irrigation and drainage,
precision agriculture, teaching and research apps. The number of ICT-enabled solutions
for the recognition of plant pests and diseases is ever increasing [9,10]. While most of
the proposed tools are based on image processing [11], other approaches such as natural
language-guided, rule-based engines have also been explored [12]. The majority of the
existing applications provide guidance to farmers as to how to control the outbreak of
the identified pest. However, instead of building upon the vast amount of information
already available about the topic, a manual process involving agronomy experts is usually
required to prepare the knowledge base. This is partially due to the difficulty associated
with the integration of heterogeneous data coming from disparate sources. Ontologies and
other related semantic technologies have proven effective for data integration in multiple
domains [13–15].

The Semantic Web adds semantics to the data published on the Web (i.e., defines the
meaning of the data), so that machines are able to process these data in a similar way to what
a human can do [16]. The logical formalisms behind ontological models allow autonomous
agents to interpret the information that is being processed [17]. They also facilitate the
execution of reasoning and inferring processes over these data. A number of different tools
that make use of semantic technologies to improve classifiers and recommender systems
have been developed in the last few years [18,19]. Semantically enhanced tools have also
been built in the field of agronomy [20]. Agrisemantics (http://agrisemantics.org/, ac-
cessed on 9 April 2021) is an initiative intended to foster the use of formal semantics to
enable the interoperability of agricultural data. In this work, an ontology-based expert
system (we characterize the proposed framework as an “expert system” for disease di-
agnosis and treatment recommendations since it is a computerized system that emulates
the decision-making ability of a human expert) for crop pests and diseases recognition
is proposed as a major extension of our previous work [21]. The aim of the suggested
approach is to enable the integration of agricultural data from heterogenous sources. This
is done by employing the CropPestO ontology [22], an ontological model in the crop pests
and diseases domain that has been automatically populated from unstructured documents
by leveraging natural language processing (NLP) techniques. The source documents are the
official Spanish guides on crop pests and plant pathogens, and their control with Integrated
Pest Management (IPM) practices, that aim to keep the use of control methods to levels
that are economically justified [23]. The resulting knowledge base contains relevant infor-
mation about known pests and diseases, their most common symptoms, and the suggested
treatment both for conventional and organic agriculture. Once this knowledge base is
reachable, our classifier (we characterize the proposed framework as a “classifier” since
it can be used to associate a set of symptoms -inserted by means of sentences in natural
language- with pests; the pests or diseases related to a given crop are the classes into which
the set of entered symptoms can be classified) framework can readily determine the pest or
disease that is most likely present in the crop given a list of symptoms expressed in natural
language (i.e., the observations made by the farmer in situ). A further contribution of our
work is that the focus is mainly set on organic agriculture practices and permitted pest
control measures, thus disseminating organic agriculture policies and encouraging these
sustainable agricultural farming practices. The proposed framework should serve as the
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core for a fully fledged pest recognition system in which other evidentiary inputs, such as
images of the damage and environmental parameters (e.g., weather, soil condition, etc.),
are considered to boost the effectiveness of the system.

The main contributions of this work can be summarized as follows:

• A knowledge model representing the crop pest domain in the form of an ontology has
been defined as a revision of our previous work [22].

• Natural language processing tools have been used to automatically populate the
ontology from unstructured data sources in Spanish. During this process, data about
the plant pests and diseases, including their symptoms and recommended treatments,
are gathered.

• A novel approach for representing symptoms associated plant diseases is proposed
based on the combination of plant parts and observed damage.

• A knowledge-based crop pest recognizer has been built which is capable of identifying
multiple overlapping pests. The proposed framework is easily extensible to support
new evidentiary inputs such as images.

• Sustainable agricultural practices are fostered by suggesting organic agriculture-
compliant treatments. Nonetheless, the proposed framework provides support for
both conventional and organic management strategies.

• A dataset has been compiled with symptoms–pests associations for three crops: al-
mond tree, olive tree and grape vine. In total, the dataset contains 212 symptoms
declared by means of sentences in Spanish, connected to 75 pests and diseases. This
dataset is publicly available at http://agrisemantics.inf.um.es/datasets/ (accessed on
9 April 2021).

The rest of this paper is organized as follows. Section 2 provides the background infor-
mation on IT-enabled tools for plant pests and diseases recognition and current approaches
to knowledge acquisition from natural language texts. The framework proposed in this
work to automatically identify the pest or disease that has affected a crop is described
in Section 3. Section 4 shows a preliminary validation analysis of the framework in a
simulated environment, and finally, our conclusions and future work are put forward
in Section 5.

2. Related Work

In this paper, a plant pest diagnosis system is described that leverages an automatically
populated knowledge base to boost the overall accuracy results. In the last few years,
researchers in the field of agronomy have proposed a significant number of ways of
recognizing plant pests and diseases, while semantic technologies have simultaneously
been leveraged to improve the performance of natural language processing tools in different
application domains. In this section, various approaches to plant diseases’ identification
and management will be discussed and the most representative works in ontology-driven
natural language processing will be listed.

2.1. Pests and Diseases Recognition

Among the uses of ICTs in agriculture, that of automatic pests and diseases recognition
is extensive [24,25]. The most common approach is that of image processing [11,26,27]
using sophisticated artificial intelligence techniques such as deep learning [28–34]. In some
cases, image processing is complemented with information retrieved by sensors [35–37] or
other inputs [38]. Scarcer are the approaches relying on other evidence, such as odor [39,40],
weather [41,42], or rule-based systems triggered by symptoms introduced manually in
natural language [43–47]. While some solutions focus on a specific crop or a single condition
(throughout this manuscript the term “condition” is used as a synonym for “pest or
disease”.) reaching very high accuracy values [35,41,48–53], others struggle to achieve good
precision results dealing with a large number of conditions in different crops [38,54–56].
A common issue hampering image-based tools for plant pest identification is that of the
scarcity of images available to train the deep learning method in question [57]. To overcome
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this limitation, in Reference [58] the authors present a method to generate complete plant
lesion leaf images with the aim to assist in improving the recognition accuracy of the
classification tool.

In previous works, we have recently explored different syntactic-based approaches
to pest identification [21,59,60]. In Reference [59] we describe a tool that relies on Google
Cloud’s Vision API (https://cloud.google.com/vision/, accessed on 9 April 2021) to
recognize the pest or disease affecting a plant from an image taken by the farmer. The
image is sent to the Vision API, which automatically assigns labels to the image. The labels
are then compared against the data available in a local database containing information
about common diseases, their symptoms and suggested treatments. If one of the labels
matches the name of one of the recorded pests or diseases, then all the information about
that pest or disease is shown to the user. Similarly, in Reference [60] an image-based
approach is proposed. Here, instead of relying on an external service such as the Google
Cloud’s Vision API, we built our own image processing tool by using Convolutional
Neural Networks. The network was trained using a large set of images about common
conditions affecting stone and citrus fruit trees along with some other crops. In such
“ideal” conditions (only two diseases are considered), precision reached 90%. Again, if
the diagnosis is successful, both the identified condition and the suggested treatment are
shown to the user. Finally, a NLP-based approach was presented in [21], where the GATE
framework (https://gate.ac.uk/, accessed on 9 April 2021) (“General Architecture for Text
Engineering”) is leveraged to process the textual description of the visible symptoms and
impacts of the pest or disease. The keywords retrieved by GATE are then compared against
a pest control database and the most likely causes of the problem are shown along with the
recommended treatments.

Image-based pest recognition techniques benefit from the current widespread use of
phones with high-resolution cameras. However, the range of pests and diseases covered by
these approaches is limited to those with a visible impact on plants and their structural
components (stems, leaves, flowers or fruit). Other conditions associated with injury
that cannot be captured by a photographic shot will not be identified by these tools
(e.g., premature fruit drop). Language-guided approaches are more flexible in terms of
coverage, but their accuracy is hampered by the inherent ambiguity and imprecision of
natural language. Ontologies and other related semantic technologies have proven to
be useful to limit the effects of language ambiguity in different scenarios [18,61,62]. The
use of knowledge technologies in agriculture is very broad [20]. Currently, there are
several ontologies and structured vocabularies available in the agronomy domain [63–67].
AgroPortal [68] has become the reference repository in which most of the vocabularies and
ontologies produced to represent and annotate agronomic data are hosted. More specifically,
in Reference [69] the authors provide a detailed review on the use of knowledge graphs in
the crop pests and diseases domain.

By building upon such formal collection of terms, several applications have been de-
veloped to assist farmers in their day-to-day practices, including pest control [12,43,70–72].
In Reference [43] the authors describe a knowledge-based system to support the diagnosis
of plant diseases. The system rests on a rule-based engine built with the assistance of
domain experts. If the symptoms described by the farmer trigger a rule, then a diagnosis
is provided, and relevant treatments and recommendations are suggested to the farmer.
The way in which symptoms are entered into the system is not clear, but it relies on the
perception of the farmer. Ontologies are also leveraged in [70] to model the interrelation
between crops, pests and treatments. Once the model has been automatically populated
from a number of different heterogeneous sources (official guides) including 462 crops,
549 pests and 42,397 treatments, a recommendation system suggests the required treatment
given the crop and the symptoms. While the approach is similar to ours (i.e., use of natural
language processing to build a knowledge base with which to nourish a recommendations
system), the focus is set on different stages of the process. In our work, the main goal
is to assist farmers in identifying the pests and diseases in their crops; meanwhile, in
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Reference [70] the authors put their attention on obtaining a fully fledged knowledge base,
undermining the symptoms–pest matching. The symptoms in our work are modelled in
the form “plant part-damage”, thus simplifying the matching between the symptoms in
the knowledge base associated with each pest and the symptoms entered by users (which
are also processed using NLP). In Reference [70] a text field is used to store the textual
description of the produced symptoms; then a regular expression with the symptoms
indicated by users is embedded in a SPARQL query for finding matches in the knowledge
base. Additionally, one of the main drawbacks of this work is that it has not been validated
using traditional information retrieval or recommender systems evaluation metrics. The
authors in [71] present an ontology-based agro advisory system with the aim to bridge
the gap between farmers and agriculture domain experts by integrating various data re-
sources. A built-from-scratch cotton crop ontology constitutes the knowledge base for the
proposed expert system, which provides advice to farmers given keyword-based queries.
The collection of information regarding cotton farming practices to nourish the knowledge
base was done manually from different sources and with the assistance of experts in the
field. Another related approach is suggested in [72], where plant diseases are modelled in
the form of ontology elements and the diseases likely affecting a crop are retrieved given
farmers’ observations. To issue queries to the knowledge base, those observations should
be transformed into Web Ontology Language (OWL) concepts. Besides, the validation of
the proposed system is limited to the conditions associated with a single crop, namely,
rice, for which the authors developed a rice disease ontology. Finally, in Reference [12]
the authors describe AgriEnt, a knowledge-based Web platform for assisting farmers in
the crop insect pest diagnosis and management. The AgriEnt-Ontology constitutes the
cornerstone of the platform, an ontology representing knowledge about crops, diseases,
symptoms, insects, insect pests, and treatment recommendations. To populate the knowl-
edge base, crop insect pests’ records generated by agricultural entomology experts as well
as academic publications were collected. Then, a rule-based inference engine built using
the Semantic Web Rule Language (https://www.w3.org/Submission/SWRL/, accessed
on 9 April 2021) (SWRL) is used to explore the symptoms and provide a diagnosis. Again,
experts in the field were required to define the rules. Furthermore, a diagnosis is only
reached when all the symptoms defined in the rule have been pointed out by the user. The
average accuracy obtained by the system for the six crops considered, namely, sugar, cocoa,
corn, rice, banana and soya, is above 82%.

In this work, a novel approach to the recognition of crop pests and diseases based
on the combination of language technologies and semantic conceptual representations is
proposed. To build this expert system, no human expert was required since all the required
knowledge was gathered from available resources. Our framework makes use of a formula
to calculate the likelihood that each pest connected to a given crop is the one associated
with the symptoms pointed out by the farmer. The obtained scores allow the system to
provide a ranked list of the possible conditions affecting a crop. As a consequence, if
more than one pest or disease is actually present, the farmer can become aware of such
a circumstance.

2.2. Language Technologies for Knowledge Acquisition

The manual construction of ontologies is a demanding task which needs a great
deal of time and resources. To avoid it, several studies have been conducted lately on
their automatic construction and update [73,74]. It is possible to distinguish three main
categories: ontology learning, ontology population (a.k.a., ontology instantiation), and
ontology evolution (a.k.a., ontology enrichment). Ontology learning involves the extraction
of new concepts, relations, attributes, and axioms [75,76]. Due to this processing, the
terminological component of ontologies (TBox) is modified. On the other hand, the auto-
matic instantiation of ontologies [77] extracts and classifies the instances of the concepts
and features which have been defined by ontologies (ABox). The starting point of the
ontology’s instantiation is usually a partially instantiated ontology or a combination of
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possible individuals or named entities and relations between those entities. The stages of
ontology learning and instantiation from text in natural language are mainly term extrac-
tion, synonym detection, concept creation, named entity detection, the creation of concept
hierarchies, the extraction of other nontaxonomic relations, and axiom acquisition [78].
Although the stages for the creation of concept hierarchies have obtained very good results
for different languages, further research is currently being conducted on the automatic
extraction of taxonomic relations, nontaxonomic relations and axioms [79], since current
approaches have not yielded satisfying results [80]. The main problem of these automatic
extraction strategies is that most of them aim to detect a predetermined combination of
relations such as partonomy, time, causality, etc. [79]. As regards axiom extraction, there
are few studies trying to extract simple axioms like those dealing with nontaxonomic
relations [80,81]. Another drawback is that there is limited research to fulfill this task
in Spanish, where the authors have made a major contribution [82]. The evolution of
ontologies is based on the two technologies explained above and it not only deals with the
creation of new information, but also with the updating (creation, modification and dele-
tion) of elements as the domain changes over time. Currently, there are some satisfactory
solutions [83], but they pose the same problems that those mentioned above for language
technologies and automatic instantiation of ontologies.

On the other hand, text annotation can be considered as a process that enables the
mapping of concepts, relations, comments or descriptions to a document or a text extract.
Overall, annotations can be assimilated to metadata associated with particular text ex-
tracts from a document or any other pieces of information. Semantic annotation helps
deal with natural language ambiguity and its representation through ontologies [84,85].
This process involves relating text extracts with tags representing ontological elements
(concepts, relations, attributes, and instances), which enables document processing by
software systems. The major limitation of these methodologies is their reliance on static
knowledge; thus, the ontologies do not evolve over time. Recent studies conducted by the
authors of this work provide tools for semantic annotation based on ontology evolution
technology [86,87]. Finally, it is worth noting that new deep learning technologies are being
applied to traditional ontology learning tasks in different languages [88].

In this work, we built upon existing natural language processing resources to develop
an automatic ontology population tool which is used to gather relevant data from unstruc-
tured documents and create the corresponding instances in the ontology. For future work,
we plan to exploit our previous experience in ontology evolution to apply refinement
actions and enable the adaptation of the knowledge base to this changing domain.

3. Crop Pests and Diseases Identification from Natural Language Text

In this work, an expert system to classify symptoms expressed in natural language
into crop pests and diseases is proposed. This section provides a detailed description of
the proposed framework. Next, the functional architecture of the framework is presented,
and its main components are explained.

3.1. Proposed Framework

The functional architecture of the proposed system is shown in Figure 1 and comprises
three main components: (i) the pests and diseases management ontology (CropPestO); (ii)
the knowledge base population tool (KB Instantiator); and (iii) the crop symptoms analyzer.
The input to the system is a list of symptoms expressed in natural language that represent
the harmful effects of a likely pest or disease affecting a given plant (users select the crop
from a list of the crops found in the knowledge base), while the output is an ordered list of
crop pests and diseases matching the provided symptoms.
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The system works as follows using a two-step process. The first step takes place before
the system is made available to users and consists of the population of the knowledge
base. During this stage, a number of unstructured documents elaborated by experts in
the field of IPM are processed by the KB Instantiator. This component takes into account
the reference data model, a previously defined pests and diseases management ontology
named CropPestO, to transform the natural language input into a number of instances
to be added to the knowledge base. Once the knowledge base has been fully populated,
the system becomes functional and users can interact with it. Users should point out both
the crops that are being likely affected by some condition (that is, users select the crop
under question from the list of crops included in the knowledge base) and the observed
symptoms, which are defined in natural language. During this second stage, the Crop
Symptoms Analyzer processes the entered symptoms and matches them with the ones
previously introduced in the knowledge base. From the matches found, a ranked list
with the most likely conditions along with the suggested control methods are shown to
the users.

3.2. CropPestO: Pests and Diseases Management Ontology

The pests and diseases knowledge base, which constitutes the cornerstone of the
proposed approach, is based on a domain ontological scheme that has been designed
by following the steps suggested in the “Ontology Development 101” guide [89]. While
there are a number of ontologies in the agronomy domain and, more specifically, in the
crop pests and diseases field, none fit the requirements of an organic agriculture-based
pest control recommender system. The scope of the ontology has been limited by the
following competency questions (i.e., questions the ontology should help to answer): (i)
Which measures should be applied to prevent the outbreak of a disease or pest? (ii) What
evidence does an outbreak of a disease or pest suggest in a crop?; (iii) Which disease or
pest is present in a crop?; and (iv) Which measures should be applied at any given moment
to treat a disease or pest? The focus is set on organic agriculture, so organic-compliant
control methods are highlighted.

In the development of the ontology, some of the terms included in the AGROVOC
thesaurus [90] were reused. AGROVOC is a controlled vocabulary built by United Nations’
FAO, with more than 37,000 concepts and 750,000 terms in up to 37 languages cover-
ing elements related to food, nutrition, environment, plant cultivation techniques, etc.



Electronics 2021, 10, 905 8 of 21

AGROVOC was just recently published as a linked open data (LOD) set and is aligned with
other 18 datasets related to agriculture. Besides, AGROVOC satisfies our requirements in
terms of both completeness (including a large number of domain relevant concepts and
being actively maintained and updated (http://aims.fao.org/agrovoc/releases, accessed
on 9 April 2021); in particular, AGROVOC includes concepts tagged in both English and
Spanish for all the pathogens, plants and plant products covered in the processed IPM-
related documents) and formality (enough semantic expressivity for our purposes). The
upper-level concepts that form the backbone of the ontology are as follows: “Plant Product”
(i.e., a product produced by a plant including cereals, fruits, legumes, among others), “Pest”
(i.e., this concept encompasses both diseases and pests that can inflict damages on plants or
plant products, such as fruit flies or tuta absoluta), “Control Method” (i.e., technique that
can be applied to avoid or reduce the harmful effects of pests and diseases, such as trap
cropping or sexual confusion), “Plantae” (i.e., plant; the focus is set on those that produce
basic human foods such as grain, fruit and vegetables, including Solanum lycopersicum or
Prunus armeniaca, among others), “Symptom” (i.e., a physical feature which is regarded
as indicating a condition of disease, such as fruit rot or leaf spot). Additionally, to assist in
the resolution of the abovementioned competency questions, the following relationships
between the upper-level elements were considered (along with their inverse relationships):
“Plantae produces Plant Product”, “Plant Product hasPest Pest”, “Symptom isInfluencedBy
Pest”, and “Control Method controls Pest”.

The ontology has been developed in OWL 2 [91] and is available at
http://agrisemantics.inf.um.es/ontologies/CropPestOv2.owl (accessed on 9 April 2021).
More details on the ontology construction process can be found in [22]. An excerpt of the
ontology, including the high-level classes, is depicted in Figure 2. In the figure, the classes
and relationships directly extracted from AGROVOC are represented in green. Since the
framework has been originally conceived to be used by Spanish-speaking farmers (e.g.,
the documents used for populating the ontology are Spanish reference guides for IPM in
different crops, see Section 3.3), the ontology has been labelled in Spanish (besides English).
In total, the populated ontology contains 286 classes, 8 object properties, 11,754 individuals,
and 96,550 axioms. The correctness of the resulting ontology has been checked using the
following tools: (i) the RDFS Validator (https://www.w3.org/RDF/Validator/, accessed
on 9 April 2021) to repair the definitions of concepts, relations, and instances; (ii) OOPS! (
http://oops.linkeddata.es/catalogue.jsp, accessed on 9 April 2021) (the OntOlogy Pitfall
Scanner!) to identify deficiencies in metadata information such as license and version infor-
mation, among others; and (iii) OQuare (https://semantics.inf.um.es/ontology-metrics/,
accessed on 9 April 2021) to test the model’s features.

Electronics 2021, 10, x FOR PEER REVIEW 9 of 23 
 

 

 
Figure 2. Ontology’s high-level classes and their relationships (partially in Spanish). 

3.3. KB Instantiator: Knowledge Base Population 
In agriculture, pest control is a vast field where each crop can be infected with differ-

ent types of infectious agents. In this work, the focus is set on the crops grown in Spain, 
but the proposed framework can be easily adapted to other environments. To prepare the 
list of supported crops, the Web portal of the Spanish Ministry for Agriculture, Fisheries 
and Food (https://www.mapa.gob.es/es/agricultura/temas/default.aspx, accessed on 9 
April 2021) has been queried. It contains detailed information and statistics about the pro-
duction and exploitation of the crops in this country. Besides, it offers a set of official doc-
uments written by agronomy experts to guide farmers in applying the most convenient 
control methods according to an IPM strategy to combat the pests and diseases that affect 
a number of different crops (https://www.mapa.gob.es/es/agricultura/temas/sanidad-
vegetal/productos-fitosanitarios/guias-gestion-plagas/, accessed on 9 April 2021). Each 
document provides information about the pathogenic agents known to attack a given 
crop. It also describes their associated symptomatology and provides details about the 
most appropriate strategies to monitor, prevent and combat these infectious agents. These 
IPM-related documents have been used to create the relationships between crops (i.e., 
“Plant Product”) and their associated pests and diseases (i.e., “Pest”), and between each 
pest/disease (i.e., “Pest”) and the associated symptoms (i.e., “Symptom”) and the sug-
gested treatment (i.e., “Control Method”), as described below. In this section, the process 
carried out to populate the ontology is described in detail. This process encompasses the 
steps enumerated next. 

A variety of dictionaries have been created to assist in both the definition of the on-
tology scheme and in its instantiation. The process starts with the definition of the list of 
supported crops. To create this list, the report available in [92], which studies the perfor-
mance of crops and crop groups with great relevancy in the Spanish economy, has been 
analyzed. The document includes an annex with a list of the crops produced in towns and 
provinces. The Snowtide library (https://www.snowtide.com, accessed on 9 April 2021) 
has been used to process the PDF file, extract the list of crops and create the glossary of 
crops. Besides, the resulting list has been manually enriched with the plants that produce 
the crop. The resulting resource is a file with a list of pairs relating each crop (i.e., “Plant 
Product”) with the plant producing it (i.e., “Plantae”). 

Similarly, the IPM-related documents mentioned above have been processed to ex-
tract: (i) pest names (i.e., “Pest”); (ii) the damages produced by such pests (i.e., “Symp-
toms”); and (iii) their recommended treatments (i.e., “Control Method”). As a result, for 
each document two new files are defined, one including pest names, the crops known to 
be attacked by such pests and diseases, and the associated symptoms and damages pro-
duced, and the other associating each pest and the recommended control methods, which 

Figure 2. Ontology’s high-level classes and their relationships (partially in Spanish).

http://aims.fao.org/agrovoc/releases
http://agrisemantics.inf.um.es/ontologies/CropPestOv2.owl
https://www.w3.org/RDF/Validator/
http://oops.linkeddata.es/catalogue.jsp
http://oops.linkeddata.es/catalogue.jsp
https://semantics.inf.um.es/ontology-metrics/


Electronics 2021, 10, 905 9 of 21

3.3. KB Instantiator: Knowledge Base Population

In agriculture, pest control is a vast field where each crop can be infected with different
types of infectious agents. In this work, the focus is set on the crops grown in Spain, but
the proposed framework can be easily adapted to other environments. To prepare the
list of supported crops, the Web portal of the Spanish Ministry for Agriculture, Fisheries
and Food (https://www.mapa.gob.es/es/agricultura/temas/default.aspx, accessed on
9 April 2021) has been queried. It contains detailed information and statistics about the
production and exploitation of the crops in this country. Besides, it offers a set of official
documents written by agronomy experts to guide farmers in applying the most convenient
control methods according to an IPM strategy to combat the pests and diseases that affect
a number of different crops (https://www.mapa.gob.es/es/agricultura/temas/sanidad-
vegetal/productos-fitosanitarios/guias-gestion-plagas/, accessed on 9 April 2021). Each
document provides information about the pathogenic agents known to attack a given
crop. It also describes their associated symptomatology and provides details about the
most appropriate strategies to monitor, prevent and combat these infectious agents. These
IPM-related documents have been used to create the relationships between crops (i.e.,
“Plant Product”) and their associated pests and diseases (i.e., “Pest”), and between each
pest/disease (i.e., “Pest”) and the associated symptoms (i.e., “Symptom”) and the suggested
treatment (i.e., “Control Method”), as described below. In this section, the process carried
out to populate the ontology is described in detail. This process encompasses the steps
enumerated next.

A variety of dictionaries have been created to assist in both the definition of the
ontology scheme and in its instantiation. The process starts with the definition of the
list of supported crops. To create this list, the report available in [92], which studies the
performance of crops and crop groups with great relevancy in the Spanish economy, has
been analyzed. The document includes an annex with a list of the crops produced in towns
and provinces. The Snowtide library (https://www.snowtide.com, accessed on 9 April
2021) has been used to process the PDF file, extract the list of crops and create the glossary
of crops. Besides, the resulting list has been manually enriched with the plants that produce
the crop. The resulting resource is a file with a list of pairs relating each crop (i.e., “Plant
Product”) with the plant producing it (i.e., “Plantae”).

Similarly, the IPM-related documents mentioned above have been processed to extract:
(i) pest names (i.e., “Pest”); (ii) the damages produced by such pests (i.e., “Symptoms”); and
(iii) their recommended treatments (i.e., “Control Method”). As a result, for each document
two new files are defined, one including pest names, the crops known to be attacked by
such pests and diseases, and the associated symptoms and damages produced, and the
other associating each pest and the recommended control methods, which are described in
tabular format. In addition to this, additional information was gathered from the resource
at [93]. This official document provides a detailed description of a wide variety of pathogen
agents of plants. It offers a complete classification of the plant pathogens observed in Spain
including virus, viroid, bacteria and fungus, among others. It also provides specific sections
with further details about synonyms, the taxonomy they belong to, associated symptoms,
and hosts affected. A script was implemented to process each pathogen from the document
and extract the associated details. In all the processed documents, the connection between
pests, the plant products that they harm, their symptomatology, and the known control
methods to limit their impact and spread are made explicit and can be easily reproduced in
the knowledge base.

However, to facilitate the search for symptoms in the knowledge base matching
those expressed by the users of the system (a key step in the pest recognition process)
we conceived a novel approach to represent the symptoms. In particular, a two-step
method has been defined to process the natural language sentences describing the pests
associated symptomatology in the documents. First, all relevant information is gathered,
and the text is tokenized into sentences—that is, the text is divided in sentences. Then,
these sentences are analyzed and only those providing specific details about the effects

https://www.mapa.gob.es/es/agricultura/temas/default.aspx
https://www.mapa.gob.es/es/agricultura/temas/sanidad-vegetal/productos-fitosanitarios/guias-gestion-plagas/
https://www.mapa.gob.es/es/agricultura/temas/sanidad-vegetal/productos-fitosanitarios/guias-gestion-plagas/
https://www.snowtide.com
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of the pest or disease in the plant and in the plant product are kept. To do so, a recursive
method was designed which analyzes the syntactic dependency graph of each sentence.
During this search, it utilizes a morphology glossary and a phytopathology dictionary
(http://www.ub.edu/vocabularia/archives/4518, accessed on 9 April 2021) to identify
terms related to part of plants and damages, respectively. The morphology glossary
was created in a semisupervised manner. First, a frequency analysis tool was used to
identify the most used words in the sections dealing with pests’ symptomatology. A
stopwords list was employed next to remove nondomain specific terms. Then, a botanical
dictionary (https://www.arbolesornamentales.es/glosario.htm, accessed on 9 April 2021)
was exploited to identify those words specifically related to the plants’ domain. As a
result, a list of terms sorted by the number of apparitions is obtained. Finally, the list was
analyzed to remove those identified words which are related to the plant domain but are
not explicitly related to the plants’ morphology. Once the relevant sentences have been
identified, they are processed so that “plant part–damage” pairs are obtained, generating
a new resource in which each pest is associated with the gathered pairs. Algorithm 1
describes the pseudocode of the two-step method.

Algorithm 1: SymptomsAnalyser
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As inputs, the method receives four parameters: s, mg, dp and sw. The s parameter
stands for the sentences to be analyzed; the mg represents the morphology dictionary
utilized to identify parts of the plant; the dp parameter denotes the phytopathology dictio-
nary to identify the plants’ injuries; and finally, the sw indicates the stopwords list used
to filter terms without useful information such as prepositions and conjunctions, among
others. The method utilizes the library spaCy (https://spacy.io, accessed on 9 April 2021)
to extract the syntactic dependency graph of a sentence. SpaCy is an open-source library
for Natural Language Processing capable of analyzing a vast of text volume. Among the
diverse functions that it provides, it is possible to highlight Name Entity Recognition, Part-
of-speech tagging, Syntax-driven sentence segmentation, integrated viewers for syntax, etc.
When a sentence is given, the method splits the sentences into tokens. First, it checks if
the token is a term related to a plant morphology by using the dictionary. If so, the next
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step will be to traverse into the dependency graph to obtain the verb root of the sentence.
Then, it traverses the graph recursively to analyze the terms related to this token. For each
extracted term, the method checks if it is related to phytopathology domain by using a
dictionary. If so, the term is stored in a stack. The procedure finishes when all token’s
dependencies are analyzed.

Once all the resources described above are available, the ontology scheme can be en-
riched and the knowledge base populated. Initially, the algorithm loads the aforementioned
dictionaries. Then, it first creates the base taxonomy and defines the object properties. The
initial structure is composed of the high-level classes as depicted in Figure 2, namely, “Plan-
tae”, “Plant Product”, “Pest” (and its hierarchy), “Symptom”, and “Control Method” (and
its hierarchy). Then, the method starts evolving the ontology’s hierarchy by inserting crops.
To integrate the crops in the CropPestO ontology, an algorithm has been implemented that
recursively traverses through the AGROVOC hierarchy, collecting the upper categories
of a given concept. When a term referring to either a plant product or a plant is retrieved
from one of the entered dictionaries, the method localizes the concept in AGROVOC and
recursively iterates through upper categories, systematically adding each concept found
as subclasses in the hierarchy. The process finishes when the top concept “Plantae” or
“Plant Product” is found. As a result, the whole path from the given concept to those
high-level classes is inserted in the CropPestO ontology. Next, it inserts the symptoms
relating them with the crops and the pests. As described above, the symptoms dictionary
not only contains lists of “plant part–damage” pairs; it also indicates the pest producing
those symptoms and the affected. When a pair is inserted in the ontology as an instance of
“Symptom”, its relationship with the condition causing such effects (i.e., “Pest”) is defined
employing the “influences” object property, and also is the relationship between the later
and the plant product (i.e., “Plant Product”) afflicted by such disease through the “hasPest”
object property. Finally, the method integrates the treatments (i.e., “Control Method”). As
pointed out above, in the guides, each treatment is related to a particular pest. Thus, to
relate this information, it is enough to look for each pest in the model and associate its
respective treatment.

As a general overview of the content of the populated ontology, in Table 1. the plant
products connected to the highest number of pests are enumerated. Then, in Table 2. the
pests linked to the highest number of symptoms are put forward. Finally, the symptoms
associated with the highest number of pests are listed in Table 3.

Table 1. Plant products and number of associated pests.

Plant Product #Pests

1 “Grapes” 46
2 “Peaches” 38
3 “Apples” 36
4 “Almonds” 31
5 “Cherries” 23

Table 2. Pests and number of associated symptoms.

Pest #Symptoms

1 “Cryphonectria parasitica” 65
2 “Armillaria mellea” 49
3 “Phomopsis actinidiae” 49
4 “Taphrina spp” 39
5 “Botryosphaeria dothidea” 37
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Table 3. Symptoms and number of associated pests (partially in Spanish).

Symptom #Pests

1 “Hojas podredumbre” 11
2 “Flores caída” 7
3 “Ramas manchas” 5
4 “Tronco anillos” 3
5 “Troncos chancros” 2

3.4. Crop Symptoms Analyzer

The analyzer represents the input of the system, and it provides the farmer with a
natural language interface to interact with it. Through this interface, a farmer can describe
the symptoms observed in a determined plant (the input is composed of (i) the plant, from
a list of plants supported by the system, that is, plants available in the knowledge base,
and (ii) a list of observed symptoms), and the module will answer with a list of pests and
diseases ranked based on matches found with the symptoms of the diseases described in
the knowledge base. Thus, when the module receives a symptom description, it employs
the algorithm described above (see Algorithm 1) to decompose the sentence and keep
only those tokens related to the plant domain. As a result, a list of pairs will be retrieved
where each pair expresses a plant part and its damage. In the next stage, the populated
CropPestO ontology is utilized to find the symptoms linked to each pair. Certainly, for
each pair elaborated from the user input, the analyzer tries to find instances of the class
“Symptom” matching with such a pair. If a match is found, then the instances of “Pest”
related to such an instance of “Symptom” are automatically selected as a candidate to be
put in the pests’ recommendation list. For example, let us suppose that the farmer writes
the following sentence: “The almond tree produces black fruit”. First, the module would
employ the algorithm to keep those terms related to the plants’ domain. The algorithm
would analyze the sentence, and it would obtain “black fruit”, “black almond” as a list of
symptoms. Next, for each pair, the populated ontology would be queried to find an exact
match. If such a coincidence is found, then the method selects the associated pests, and it
adds them to the recommendation list of pests to be sent back to the farmer.

The formula used to rank all candidate pests given the symptoms entered by the
farmer takes into account a measure of sensitivity (importance of the symptom in the total
pool of symptoms associated with a given pest) and specificity (number of pests to which a
given symptom is associated). The formula is as follows:

score
(

pj, s
)
=

∑n
i=1
(
sensitivity

(
si, pj

)
× speci f icity(si)

)
n

, (1)

where pj is one of the candidate pests considered, s is the list of all the symptoms entered
by the farmer, n is the total number of symptoms provided by the farmer, sensitivity is
calculated as follows:

sensitivity
(
si, pj

)
=

{ 1
|symptoms(pj)| , i f symtpomi ∈ symptoms

(
pj
)

0, i f symptomi /∈ symptoms
(

pj
) , (2)

where symptoms
(

pj
)

returns the set of all symptoms associated with pest pj; and speci f icity
is calculated as follows:

speci f icity(si) =
1

|pests(si)|
, (3)

where pests(si) returns the set of all pests associated with symptom si. The score in
Equation (1) is calculated for all the pests associated with the crop at hand when at least
one of the entered symptoms matches one of the symptoms associated with such a pest
in the knowledge base—that is, all candidate pests. The rationale behind that formula is
that (i) if a few symptoms are associated with a given pest and one of these symptoms has



Electronics 2021, 10, 905 13 of 21

been entered by the user, then that pest is a very likely candidate, and (ii) if a symptom is
associated with very few pests and this symptom is entered by the user, then those pests are
also very likely candidates. A candidate pest is included in the recommendation list to be
shown to the user if its score is above a given threshold (to be defined by the administrator).
Therefore, if the plantation is afflicted by more than one pest or disease, the farmer can
become aware of such a circumstance.

4. Evaluation

This section focuses on the evaluation of the pests and diseases recognition method
proposed in this work. First, an exemplary scenario is described representing how the pro-
posed tool can be accessed by its intended users. Then, some details about the dataset used
for this validation experiment are put forward and the evaluation metrics are enunciated.
Finally, the main results of the experiment are shown and discussed.

4.1. Exemplary Usage Scenario

In a typical usage scenario, farmers in the field would observe some worrying signs in
their plantation, the likely effects of an unknown pathogen. Under these circumstances,
farmers would open the “CropPestIdentifier” app and describe the observed symptoms
by means of statements in natural language. Then, the system would process the data
and return a list of the pests or diseases that are most probably causing such harm. The
flowchart of the app is depicted in Figure 3. The following three steps are required: (i)
farmers select the crop and input the observed damage in natural language sentences;
(ii) the system analyzes these inputs and leverages the knowledge base to obtain a set
of pests that might be producing those damages; and (iii) farmers can visualize detailed
information about each retrieved pest, including the recommended treatment.
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While our “Crop Symptoms Analyzer” returns a list of the most likely pests affecting
the farmer’s crops, for evaluation purposes, we only consider the pest that obtains the
highest score for each test case. Consequently, it can be treated as a classification problem
in which, given the crop under question and all the observed symptoms, the system has
to determine the pest associated with such a crop which is more likely to be causing such
symptoms. In sum, the classes into which one item of the dataset (i.e., set of symptoms)
can be classified are any of the conditions (i.e., pests and diseases) associated with the crop
at hand.

4.2. Dataset

For the purposes of this study, an evaluation dataset has been defined in which a
number of symptoms are associated with the corresponding condition affecting a given
crop. Therefore, for each pool of symptoms, the pest under question is known. The
symptoms are declared by means of sentences in natural language. This dataset has
been collected from a number of different webpages containing information about the
pests and diseases associated with the selected crops (e.g., https://agroes.es, accessed on
9 April 2021, https://www.fertibox.net, accessed on 9 April 2021, among others) by using
a web scrapping tool. An exemplary test case is shown in Table 4.

Table 4. Excerpt of the dataset (partially in Spanish).

Almond Tree Dataset

...
PEST NAME: Monilia o podredumbre parda (Monilinia sp.)
PEST SYMPTOMS AND DAMAGES:
las flores secas quedan adheridas al árbol, los frutos adquieren color negro y quedan momificados
en las ramas.
los chancros en los brotes son de color marrón claro con emisiones de goma que en madera de
más edad se abren.
...

In particular, the dataset built for this preliminary validation experiment contains a
total of 212 symptoms, connected to 75 pests and diseases in three different crops, namely,
almond tree (Prunus dulcis), olive tree (Olea europaea), and grape vine (Vitis vinifera).
These are some of the main crops that are cultivated in Mediterranean regions. In Table 5,
some additional details about this dataset are put forward. The whole test dataset is
available at http://agrisemantics.inf.um.es/datasets/ (accessed on 9 April 2021).

Table 5. Summary of the dataset content.

Almond Tree Olive Tree GRAPE VINE

# of symptoms 86 42 102
# of pests 26 25 24

4.3. Evaluation Metrics

The metrics typically used to assess the performance of classification models such as
the one described here are accuracy, precision, recall and f-measure. These metrics have
traditionally been employed in the evaluation of information retrieval systems [94], but are
well suited to the quality assessment of classifiers: we wish to verify whether the system
properly identifies the pest or disease affecting the crops given some observable sign and
symptoms. Four outcomes for a predicted value are consequently possible. These values
are calculated for each pest in each dataset, and the results are aggregated by dataset (i.e.,
crop). For a given pest, (i) a True Positive (tp) occurs when the entered symptoms, which
are associated with the pest under question, are correctly classified as being caused by
this pest; (ii) a False Negative ( f n) occurs when the pool of symptoms associated with

https://agroes.es
https://www.fertibox.net
http://agrisemantics.inf.um.es/datasets/
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the pest are wrongly classified as being caused by another pest; (iii) a False Positive ( f p)
occurs when a pool of symptoms associated with another pest is wrongly classified as
being caused by the pest under question; and (iv) a True Negative (tn) occurs when a pool
of symptoms associated with another pest are not wrongly classified as being caused by
the pest under question.

In this context, Accuracy can be interpreted as the probability of being correct and is
calculated as follows:

Accuracy =
Correctly predicted

Total number o f predictions
=

tp + tn
tp + tn + f p + f n

, (4)

Precision, also known as positive predictive value, represents the proportion of diag-
nosed diseases that have been correctly classified and is obtained as follows:

Precision =
Correctly predicted as positive

Total number o f predicted as positive
=

tp
tp + f p

, (5)

Recall, also known as sensitivity or true positive rate, measures the system’s ability to
correctly classify diseases and is calculated as the proportion of actual diseases that have
been correctly classified by the system:

Recall =
Correctly predicted as positive

Total number o f positives
=

tp
tp + f n

, (6)

Finally, the F−measure, also known as F1 score, is the harmonic mean of precision
and recall, computed as follows:

F−measure = 2× Precision× Recall
Precision + Recall

. (7)

4.4. Results

In Table 6 the results of the experiments for the four metrics considered are illustrated
(more details about the results of the experiment are available at: http://agrisemantics.inf.
um.es/datasets/Evaluation_results.xlsx (accessed on 9 April 2021). The overall accuracy of
the proposed approach is 98.8%, achieving a 99% accuracy for both almond tree and grape
vine, and a 97% accuracy for olive tree. In a multiclass classification problem such as the
one faced in this work, the precision, recall and f-measure metrics provide the evaluation
on a per class basis. Given the characteristics of our dataset in which for each class (i.e.,
disease) only one pool of symptoms has been considered (i.e., one test for each disease),
and the results are shown aggregated by crop.

Table 6. Accuracy, precision, recall and F-measure.

Experiment Accuracy Precision Recall F-Measure

Almond tree 0.993 0.846 0.885 0.859
Olive tree 0.974 0.460 0.480 0.467

Grape vine 0.997 0.813 0.958 0.819
Overall 0.988 0.707 0.773 0.716

4.5. Discussion

Generally, the classifier has achieved promising results. In the experiments carried
out for both almond trees and grapes vines, only a few diseases have not been correctly
classified during the experiment. Conversely, in the olive tree experiments, only half
of the diseases were classified correctly, with no results for 7 of the 25 test cases. This
explains the worse precision and recall values obtained, i.e., 0.460 and 0.480, with respect
to 0.846 and 0.885 in the almond tree experiments and 0.813 and 0.958 in the grape vine
experiments. The test cases in which no disease has been identified are those for which

http://agrisemantics.inf.um.es/datasets/Evaluation_results.xlsx
http://agrisemantics.inf.um.es/datasets/Evaluation_results.xlsx
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our symptoms decomposition procedure could not retrieve any “plant part–damage” pair
from the entered text. A more versatile approach might be required for those situations in
which symptoms are not expressed as expected. On the other hand, “false positives” are
usually associated with cases in which the same “plant part–damage” pair representing a
symptom is linked to more than one disease. In consequence, while using common, more
generally used words might result in a more human-understandable knowledge base, the
overall performance of the system can be significantly degraded.

By examining the results of the evaluation process, we observed some other issues to
consider. First, some of the “false negatives” (i.e., pool of symptoms not correctly associated
with their corresponding disease) are due to deficiencies in the automatically generated
knowledge base. Not all the symptoms pointed out in the official guides processed to
populate the knowledge base have been adequately represented in the instantiated ontology.
Consequently, the NLP method conceived to automatically instantiate the knowledge base
should still be fine-tuned to fully tease out all relevant information. In line with this,
an exhaustive analysis of the ontology model and the automatically generated instances
is required to ensure the adequate representation of the original data. The method for
evaluating agricultural ontologies proposed in [95] could constitute a first step towards
this end.

Second, the results for diseases with few evidentiary facts are unstable. Such is the
case, for example, of the Eurytoma amygdali Enderlein wasp in almond trees. Only one
observable symptom has been identified (“black fruit”) and no matching has been found
with the test input. It would be desirable to extend the pool of symptoms associated with
such diseases so as to avoid this instability. Additionally, the presence of synonyms among
the symptoms stored in the knowledge base and the existence of symptoms associated with
more than one condition (pest or disease) can give rise to false positive results. A manual
revision of the contents of this part of the ontology might become necessary. Alternatively,
it is possible to simplify the way symptoms are entered in the system (and likewise
represented in the ontology) by following the example of AgriEnt [12]: to present users
with a list of symptoms (accompanied by representative images) from which to choose.

In the literature, the approaches closest to that presented here are AgriEnt and the
information retrieval system built upon the PCT-O ontology [70]. As mentioned above,
AgriEnt has been evaluated in terms of accuracy (i.e., correct diagnosis of all test cases) in
six different crops, reaching an average accuracy of 0.8221. It is not appropriate to compare
our respective accuracy values since they have been obtained from different experimental
settings. The dataset used in the evaluation of AgriEnt has not been made public and
the input is slightly different, since in AgriEnt farmers select the symptoms from a list of
available symptoms associated with a given crop. On the other hand, while the population
process of the PCT-O ontology and the actual ontology model are thoroughly revised in
their work, the authors of this approach do not provide any performance data concerning
the information retrieval or recommender system.

5. Conclusions and Future Work

Agriculture is one of the pillars for worldwide food provisioning, with fruits and
vegetables being essential for a healthy diet. A large proportion of the world’s population
live in countries where agriculture is the main source of livelihood [96]. Organic agriculture
presents several benefits over conventional agriculture, including improved environmental
health and reduction of costly external inputs [97]. However, its feasibility is often ques-
tioned due to the constraints on the use of synthetic products such as chemical fertilizers
and pesticides. For that reason, the general approach in organic agriculture is to deal with
the causes of a problem rather than treating the symptoms. Therefore, the early detection
of a pest or disease outbreak becomes crucial so as to allow the adoption of preventive
measures. Yet, in most cases farmers do not have the knowledge and resources necessary
to detect the trigger factors and act accordingly. Moreover, organic agriculture-compliant
treatments are still unknown to most people. It is thus necessary to provide farmers with
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the means to, first, recognize the presence of pests and diseases in their crops and, second,
develop preventive actions and use IPM practices allowed for organic production, to limit
their harmful effects.

Many ICT-enabled tools have been developed to facilitate the detection of pests and
diseases in crops. Most solutions rely on image processing and often require the use of
sophisticated high-resolution image capture devices or other types of sensors that are
not usually available to individuals responsible for agricultural holdings. Besides, the
syntactic-based core of existing approaches limits their ability to leverage the already vast
amount of information about plant pests, diseases, their causes, and their control measures.
In this work, we describe a semantic approach for the identification of crop pests and
diseases. The framework proposed in this paper makes use of ontologies to semantically
model the domain of interest. The final knowledge base contains a total of 338 plants (i.e.,
individuals under the top-level “Plantae” concept) and 513 crops (i.e., individuals under
the top-level “Plant Product” concept). The use of this formal model greatly facilitates
the automatic integration of data from multiple, heterogenous sources, resulting in a
complete knowledge base. Reasoning and inferencing mechanisms are then put in place to
determine the condition producing damages to crops and the required control measures
complying with organic agriculture regulations. Actually, since IPM guides have been
used to populate the knowledge base, the application can be easily extended to support
conventional growers.

For future work, the CropPestO ontology will be improved to make it more human
readable and incorporate more axioms to boost the inferencing capabilities. Those formal
underpinnings of ontologies can then be leveraged to carry out reasoning processes that
enhance pest recognition and related tasks. Besides, we plan to extend the framework to
support other evidentiary items as input, including images and environmental parameters.
Certainly, weather, soil conditions, affected area, affected crops, yield losses, etc., are some
of the factors that can help characterize the problem’s source, and the exhaustive analysis
of historic data can lead to insights into how and why certain crop pests and diseases
break out. The integration of different identification systems can result in efficiency and
effectiveness gains. On the other hand, currently the knowledge base has been solely
populated with data from official Spanish guides, and thus is only useful for Spanish-
speaking users. While the underlying ontology model has been labelled in both English
and Spanish, the NLP method used for ontology population should be adapted to support
other languages. Moreover, the pest control domain is an evolving, ever changing field,
and so we aim to develop a semisupervised ontology evolution tool. The ontology could
then be continuously enriched and updated by considering the state-of-the-art knowledge.
This tool would also assist in maintaining the ontology and keeping it up to date with
the changes in the reference vocabularies used. Finally, a more robust validation, in a real
environment (i.e., with tests provided by real users) and with large volumes of data, is
required to verify the scalability of the proposed approach. Under these circumstances the
use of spell-checker tools will be essential to deal with the foreseeable typos. Synonyms
should also be considered along with other matching measures such as the Levenshtein
distance. As part of this envisioned validation scenario, the use of other metrics such as
Mean Average Precision at k (MAP@k) and AUC-ROC (area under the ROC curve) will
be considered.
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