
electronics

Article

Comparison of Different Design Alternatives for
Hardware-in-the-Loop of Power Converters

Elyas Zamiri , Alberto Sanchez , Marina Yushkova , Maria Sofia Martínez-García and Angel de Castro *

����������
�������

Citation: Zamiri, E.; Sanchez, A.;

Yushkova, M.; Martínez-García, M.S.;

de Castro, A. Comparison of Different

Design Alternatives for Hardware-

in-the-Loop of Power Converters.

Electronics 2021, 10, 926. https://

doi.org/10.3390/electronics10080926

Academic Editors: Miro Milanovic,

Enric Vidal Idiarte and Eric

Monmasson

Received: 15 March 2021

Accepted: 8 April 2021

Published: 13 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

HCTLab Research Group, Universidad Autónoma de Madrid, 28049 Madrid, Spain; elyas.zamiri@uam.es (E.Z.);
alberto.sanchezgonzalez@uam.es (A.S.); marina.yushkova@uam.es (M.Y.); sofia.martinez@uam.es (M.S.M.-G.)
* Correspondence: angel.decastro@uam.es; Tel.: +34-914-972-802

Abstract: This paper aims to compare different design alternatives of hardware-in-the-loop (HIL)
for emulating power converters in Field Programmable Gate Arrays (FPGAs). It proposes various
numerical formats (fixed and floating-point) and different approaches (pure VHSIC Hardware
Description Language (VHDL), Intellectual Properties (IPs), automated MATLAB HDL code, and
High-Level Synthesis (HLS)) to design power converters. Although the proposed models are simple
power electronics HIL systems, the idea can be extended to any HIL system. This study compares
the design effort of different coding methods and numerical formats considering possible synthesis
tools (Precision and Vivado), and it comprises an analytical discussion in terms of area and speed.
The different models are synthesized as ad-hoc modules in general-purpose FPGAs, but also using
the NI myRIO device as an example of a commercial tool capable of implementing HIL models. The
comparison confirms that the optimum design alternative must be chosen based on the application
(complexity, frequency, etc.) and designers’ constraints, such as available area, coding expertise, and
design effort.

Keywords: real time systems; field programmable gate arrays; power electronics; emulation; high-
level synthesis; digital circuits

1. Introduction

Power converters and their controllers are becoming more complex, especially since
GaN or SiC semiconductors were integrated into this field, and the switching frequency
increased drastically. Furthermore, power electronics are increasingly applied to electrical
systems that are bigger and more complex than power converters [1]. This complexity
invokes the necessity of finding some reliable, economical, fast, non-destructive, and yet
at the same time, accurate methods to test several critical scenarios encountered in real-
world systems.

Recently, using the hardware-in-the-loop technique (HIL), it became possible to em-
ulate parts of the system (controllers and power converters) using digital hardware in a
non-invasive condition. The HIL model aims to imitate the behavior of real converters
so it can be a substitute for them and interacts directly with the controllers in real time
(RT), so the rest of the system is not aware if the converters are the real ones or HIL mod-
els [2,3], as shown in Figure 1. In order to do that, there are two requirements: that the
HIL model is executed in RT, and that it presents the same interface with the controller.
Therefore, an HIL model must generate its outputs as analog signals through digital-to-
analog converters (DAC) and read the controller commands through the on/off signals
that control the switches. Regarding the implementation of the HIL models, it can be based
on any digital hardware capable of implementing the equations of the model, ranging from
computers to Field Programmable Gate Arrays (FPGAs). This paper will focus on FPGA
implementations, as explained later. HIL models can be used to test different controllers to
reduce the cost of debugging, avoid any damage to the real system, and reduce the overall
test effort [4,5].

Electronics 2021, 10, 926. https://doi.org/10.3390/electronics10080926 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-4622-1269
https://orcid.org/0000-0002-3189-150X
https://orcid.org/0000-0003-0442-3513
https://orcid.org/0000-0002-6733-2283
https://orcid.org/0000-0003-4357-7857
https://doi.org/10.3390/electronics10080926
https://doi.org/10.3390/electronics10080926
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10080926
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10080926?type=check_update&version=2

Electronics 2021, 10, 926 2 of 20

HIL

Model
Real

Hardware

DAC

Control signals

FPGA Programming

Figure 1. Basic elements of a general FPGA-based HIL system.

For numerous power electronic applications that operate with a switching frequency
in the range of hundreds or even thousands of kilohertz, fast responding time from the HIL
simulator is vital to model higher switching frequency converters or interact with them [6].
Therefore, an advanced HIL system must be able to calculate the model quickly [7,8]. Apart
from the necessity to reach the simulator’s speed response, as it was discussed in [9,10],
reducing the simulation step in HIL models results in increasing the accuracy of them. It
was shown in [11] that the simulation step is proportional to the model’s error, so reducing
it is usually the best approach to raise accuracy. The simulation step is recommended to be
at least 100 times less than the switching period for keeping the precision [11]. However,
it is hard to reach that goal in mid-high-frequency HIL applications due to the minimum
latency needed for executing the model equations [12].

HIL systems based on microprocessors have been proposed for power converters
in the frequency range of less than 10 kHz [13]. However, it is nearly impossible to use
microprocessors for high-frequency power converters in RT because of the small needed
simulation step. For instance, a digital signal processor (DSP)-based HIL system for power
converters such as Boost converter with a time step of 1 µs was proposed in [14]. Using the
rule of 100 simulation steps per switching period, that would limit the switching period to
a minimum of 100 µs and therefore switching frequencies under 10 kHz.

The solution is using Field Programmable Gate Arrays (FPGAs), which have excellent
parallel processing capabilities and low latency [15]. A detailed comparison between DSP
and FPGA boards for a voltage source converter-based static compensator application
is presented in [16] including the price and the advantages of each option. FPGAs can
compute all equations in parallel with a short execution time that makes them ideal for fast
RT emulation of power converters [17,18]. Just as a comparison, in [19], an FPGA-based
RT platform for power converters was presented, which achieved a time step of 200 ns for
simple models. It was claimed that even for more complex models of power converters,
the time step is less than 650 ns. Apart from FPGAs’ advantages, designers must take a
set of constraints into account for FPGA-based RT applications, such as timing and FPGA
implementation constraints, which was highlighted in [20].

The minimum achievable clock period and hardware resources in FPGAs are affected
by the used numerical format (NF), which will be discussed in this paper. A detailed
comparison including the synthesis results and the accuracy using several NFs is proposed
in [21] which uses hardcore floating-point (FlP) DSPs available in Intel Arria 10 FPGA
family. However, such hardcore DSPs are not available in most FPGA families. It is
proven in [21] that FlP is much slower and less accurate than fixed-point (FxP) in some
applications, although it needs less design effort. A similar comparison is also proposed
in [22] for FPGA-based electrical machines implementation, showing that FlP computation
may not lead to more accurate results than FxP in RT simulation.

Apart from the NF, the synthesis tools used to implement the models in FPGAs,
and design approaches such as using intellectual properties (IPs) in FlP can affect the area

Electronics 2021, 10, 926 3 of 20

and speed [23]. A comprehensive comparison of HIL systems and other design alternatives
is presented in [24] including the System Generator tool to translate high-level codes into
synthesizable code in FPGAs. It shows that System Generator—which translates M-code
of MATLAB/Simulink into synthesizable hardware description language (HDL) code for
Xilinx FPGAs—results in more resources and longer simulation step (about 50%) compared
to hand-coded implementation for a Boost converter without losses [24]. However, that
research uses an old FPGA, and also the software tool (ISE) is deprecated presently.

Several synthesis tools support different input languages (VHDL, Verilog, C, etc.).
In this paper, Vivado and Precision are used as synthesis tools. These tools offer their
internal optimization and give different results, even for very similar input descriptions.
Hence, it is challenging to compare their performances and find a trade-off between
hardware implementation with different complexity and NFs.

When designing digital circuits, the first step is to prepare a device architecture
description by codifying the system’s behavior, making it possible to standardize the
design process. The models can be codified at Register Transfer Level (RTL) using HDL
languages, such as VHDL [25,26] or Verilog [27,28]. However, the handcrafted HDL code
needs remarkable design effort because it must specify the functionality at a low level
of abstraction, where cycle-by-cycle behavior is entirely determined. The model can be
created in MATLAB/Simulink to reduce the design effort, and it can be translated into
HDL code using MATLAB HDL coder or System Generator if the target device is a Xilinx
FPGA. For instance, the HDL code of a back-to-back IGBT-base converter was obtained
in [29] using MATLAB/Simulink HDL Coder.

Another possibility to codify the models is using high-level synthesis (HLS) languages
such as C, C++, or System C [30,31]. HLS can be used to design FPGA circuits, where
hardware implementations can be easily described and replaced in the target device using
shorter and more abstract structures instead of using verbose and extremely detailed HDL
structures [32,33]. HLS can accelerate the design process and improve flexibility because the
code can be translated directly into HDL using, for example, Xilinx Vivado HLS. However,
the abstraction of high-level languages can lead to worse synthesis results. An HLS tool to
develop FPGA-based RT simulators for power converters has been studied in [34] with a
conclusion that the time step would be enormous for RT applications. It would use almost
all the FPGA resources if the model is complex.

Recently, some commercial HIL platforms such as Typhoon HIL [35], Opal-RT [36],
and National Instruments (NI) RIO family [37] have appeared to implement HIL models.
The latter, programmed through LabVIEW software, is used for several applications, not
only HIL. In this paper, NI myRIO synthesis results are achieved as a possible solution to
implement HIL models using a common commercial tool.

The objective of this paper is to compare different design alternatives for HIL when the
implementation is going to be based on FPGAs. FPGAs are the only option for HIL models
of mid-high switching frequency converters (around hundreds of kHz or higher), but of
course can also be used for lower switching frequencies. Once the choice of using FPGAs for
implementation is taken, there are a lot of design alternatives, such as NF, design language,
or synthesis tools. The purpose of this paper is to present a comprehensive comparison
of these alternatives so the designer can take the most appropriate alternative for each
application. Although the paper presents two implementation examples, the intention is
to give general guidelines that should be valid for any power converter. In fact, similar
conclusions could be extracted for other applications apart from power converters.

The rest of this paper is organized as follows: In Section 2, a brief explanation of how
to model two different power electronic converters (a Buck converter without losses and
a Full-bridge converter with losses) is shown, and the equations are obtained. Section 3
introduces several possible design approaches and synthesis tools that have been used for
the implementation of HIL models in an FPGA. The experimental results and a complete
comparison in terms of area, time, and design effort are accomplished in Section 4. Finally,
Section 5 provides conclusions.

Electronics 2021, 10, 926 4 of 20

2. Power Converters Used as Application Examples

This paper focuses on FPGA-based power converter HIL systems. The application
examples are an asynchronous Buck converter without losses as a simple model and a Full-
bridge converter considering electrical losses to represent a more complex model, as shown
in Figure 2. Two different models are included to check if the equations’ complexity has any
remarkable or unexpected impact on the HIL simulation. In this study, both topologies are
used as step-down dc-dc converters to regulate the output voltage, although the Full-bridge
converter can act as a multilevel inverter to create different voltage steps in its output.

Q

D

L

C R

Vin

iL

+ -
vL

ic

+

-

vc

+

-

vo

(a)

L
C

iL

+ vc -
Q1

Rdson
RD

VD

Q2

Rdson
RD

VD

Q4

Rdson
RD

VD

Q3

Rdson
RD

VD

RL

RESR

Ro

+ vo -

iC

Vin

(b)

Figure 2. Power converter topologies with two different levels of complexity; (a) Ideal dc/dc Buck
converter, (b) Full-bridge converter with losses.

The model of the ideal Buck converter is shown in Figure 2a, which represents a model
of a simple dc/dc converter. It consists of a MOSFET (Q), a diode (D), a dc input voltage
source (Vin), and the LC filter in its output. The output voltage (vo) can be regulated by
controlling the MOSFET’s switching frequency and duty cycle. For the sake of simplicity,
losses of different components such as the MOSFET, the diode, the inductor, and the
capacitor are ignored in this model.

A Full-bridge converter with non-ideal elements (parasitic resistances and electrical
losses) is employed to represent a more complex model, as shown in Figure 2b. This
converter allows delivering at the output a dc or ac voltage according to the switching pat-
tern. The series resistance of the diode (RD), MOSFET (Rdson), inductor (RL), and capacitor
(RESR) are shown in Figure 2b. The input dc source and the diode’s forward voltage have
been denoted by Vin and VD, respectively. Furthermore, the output LC filter is considered
while the values of L and C can be chosen based on the switching pattern.

HIL Models Equations

This section’s main idea is to extract the related equations appropriate for FPGA imple-
mentation with a constant discrete time step. Different discretization methods (Euler [38],
Tustin [39], zero-order hold (ZOH) [40], and Runge–Kutta [41]) are found in the literature

Electronics 2021, 10, 926 5 of 20

to solve the differential equations of the models, and they can be implemented in FPGAs.
Although the different discretization methods can play an essential role in the model, this
paper focuses on the FPGA implementation issues: numerical format (FxP or FlP), coding
method used in the design, or synthesis tools. Discretization methods are not discussed
in this paper, but any of them could be used independently of this paper’s different ap-
proaches. For the sake of clarity, an explicit Euler method is chosen. The embedded system
(HIL model implemented in FPGA) computes the state variables (the inductor current
(iL) and the capacitor voltage (vC)) from the previous values by adding the incremental
values to them each time step. State variables of the Buck and the Full-bridge converters
are defined by the evolution of the capacitor voltage and inductor current, as seen in (1)
and (2):

vC(k) = vC(k − 1) +
∆t
C

· (iL(k − 1)− GLvo(k − 1)) (1)

iL(k) = iL(k − 1) +
∆t
L

· vL(k − 1) (2)

where k is a step of the state variables, ∆t is the simulation time step and GL = 1
RO

is the
conductance of the output load. In (2), vL is the voltage across the inductor in different
switching states which can be formulated as (3) and (4) for the Buck and the Full-bridge
converter, respectively.

vL,B =


Vin − vo Q : ON
−vo Q : OFF & iL > 0
0 Q : OFF & iL ≤ 0

(3)

vL,FB =



Vin − vo − (2Rdson + RL)iL Q1 : ON & Q3 : ON
−Vin − vo − (2Rdson + RL)iL Q2 : ON & Q4 : ON
−Vin − vo − 2VDsgn(iL)−
(2RD + RL)iL All switches : OFF & iL > 0
Vin − vo − 2VDsgn(iL)−
(2RD + RL)iL All switches : OFF & iL ≤ 0
−vo − VDsgn(iL)−
(Rdson + RD + RL)iL Only Q1 or Q3 : ON & iL > 0
Vin − vo − VDsgn(iL)−
(Rdson + RD + RL)iL Only Q1 or Q3 : ON & iL ≤ 0
−Vin − vo − VDsgn(iL)−
(Rdson + RD + RL)iL Only Q2 or Q4 : ON & iL > 0
−vo − VDsgn(iL)−
(Rdson + RD + RL)iL Only Q2 or Q4 : ON & iL ≤ 0

(4)

The sign function (sgn) in (4) extracts the sign of the inductor current, which can be +1
or −1 for positive or negative values, respectively. Notably, regulators usually turn on pair
switches Q1 and Q3 or Q2 and Q4 while they usually consider a dead time (all switches
must be OFF in that short interval) to avoid a short circuit. However, as can be seen in (4),
all switching states must be formulated (and they must be implemented in FPGAs, as will
be explained later) to represent the correct behavior of the converter in all unexpected
conditions. Both models’ output voltage can be formulated as (5).

vo(k) =
{

vC(k) Buck converter
vC(k) + RESR · (iL(k − 1)− GLvo(k − 1)) Full − bridge converter

(5)

3. Design Possibilities for Implementation of HIL Models in an FPGA

There are several possibilities to implement HIL models in an FPGA regarding dif-
ferent NFs, coding possibilities, and synthesis tools. This section proposes an assortment
of design alternatives of HIL models for power converters. The first election lies in de-

Electronics 2021, 10, 926 6 of 20

ciding between FlP and FxP numerical formats, which are the two most used formats for
digital systems.

Different coding possibilities are also available for each NF, which will be introduced
in Section 3.2. Notably, not all different coding languages are supported by every synthesis
tool, so the synthesis tool selection is not entirely free in all cases. However, when more
than one synthesis tool is possible, not all of them lead to the same results in terms of area
and delay, so the impact of synthesis tools is also analyzed.

3.1. Numerical Formats

Equations (1) to (5) must be implemented in FPGA to imitate the converters’ behav-
ior in RT. Two different synthesizable NFs (FlP and FxP) are used for any FPGA-based
hardware design, while the design effort, accuracy, area, and time results can be different.

The fundamental FlP formats provided in the IEEE-754 standard are 16-bit half-
precision, 32-bit single-precision (SP), 64-bit double-precision, and 128-bit quadruple-
precision. The most common NF for a wide range of digital electronics applications is the
SP FlP format, which can be the first choice for designers because of its flexibility and user-
friendliness. All signals in this NF use 32 bits, and it can be implemented in VHDL-2008
float_pkg package. In FlP format, each number contains a sign, exponent, and mantissa.
The sign bit can be either ‘0’ or ‘1’ for positive or negative values, respectively, while in
the case of SP format, the exponent is represented in 8 bits, and the mantissa is a 23-bit
integer number. Using SP FlP format, an extended dynamic range of numbers (values up
to ±2127) can be represented, and the model usually will not face underflow or overflow
issues. Regarding resolution, as there are 23 mantissa bits, the resolution is 2−23 multiplied
by the maximum representable number for a given exponent. For example, if the capacitor
voltage is 100 V (100 < 27), its resolution would be 2(7−23) = 1.53 × 10−5 V. The main
reason for using the SP format is its reasonable trade-off between resolution and required
resources for FPGA implementation in comparison with other FlP formats.

Apart from FlP, the other NF is FxP. The FxP format can be the best choice for RT
emulations when small simulation steps (higher resolution) are needed because FxP needs
fewer resources than FlP, obtaining shorter clock cycles (faster execution). The FxP NF is a
variant of the typical integer representation (2’s-complement signed in this study) where
a point location is fixed, splitting the integer and the fractional parts of the number. The
designer must decide the number of integer and fractional bits for FxP, which is not trivial.
This format can be specified with two integer numbers (QX.Y), where X depicts the number
of integer bits while Y represents the number of fractional bits. A total of X +Y + 1 bits are
used to include the sign. Each FxP variable can store values up to ±2X with a resolution
of 2−Y.

The main advantage of FlP is the smaller design effort compared with FxP. The point
location of different FlP variables is shifted dynamically by changing the exponent field
of the number. Thus, there is no need to calculate in advance the number of integer
and fractional bits for different signals. Therefore, the designer just declares all signals
in the model as SP FlP, being a code easy to generate, read and maintain. Moreover,
after designing the model in FxP, it can work only in a specific numerical range because
the number of integer bits is determined, while in FlP, the point location can be shifted
automatically. Therefore, given these advantages of FlP over FxP, FlP is the natural choice
when the obtained performance is enough. However, FlP operations have longer latency
and require more logic resources to be implemented in FPGAs. For example, the FxP model
of a synchronous Buck converter proposed in [42] achieves a three times smaller simulation
step in FxP than in FlP. Similar results are obtained in this paper, as will be shown in
section 4. FlP finds a barrier to reach simulation steps under 50 or 100 ns. Following the
rule of 100 simulation steps per switching period, that would indicate that FlP models can
only be used for switching frequencies under 200 kHz approximately. Apart from shorter
simulation steps, FxP models use fewer resources, so a designer may opt to use FxP when
models are big, complex, or area becomes critical because of cost reasons.

Electronics 2021, 10, 926 7 of 20

Regarding resolution, SP FlP should have enough resolution for most applications.
There is an exception found in [24], where the resolution of an SP FlP model of a Boost
converter used in Power Factor Correction was demonstrated to be not enough. However,
FxP allows optimizing the trade-off between hardware resources and resolution since the
resolution of each individual signal is decided during the design phase. Deciding the
optimal resolution is a topic beyond the scope of this paper. More details about resolution
issues for both FlP and FxP can be found respectively in [43–45].

In this paper, a Buck and a Full-bridge converters’ models are proposed, which
can be implemented in FPGAs to compare different design alternatives for both FlP and
FxP numerical formats. Word length optimization for the FxP format has been studied
to avoid overflows, optimize the hardware, and keep the accuracy [46,47]. The main
contribution of this paper is the comparison of the synthesis results obtained by different
design approaches for implementing the same model, regardless of the used signal format,
to reveal the differences between several design alternatives. In this study, the signal
width in the proposed FxP models is selected based on [44] to save hardware resources for
computational processing and at the same time to have a reasonable error. It is notable that
in the case of SP FlP, the format is always 32 bits as defined in the standard IEEE-754. Thus,
there is no need to determine the width of the signals.

3.2. Design Approaches and Tools

After choosing the NF, the next step for the designer is to codify the model of the
converter in a language ready for FPGA synthesis. This task consists of translating
Equations (1) to (5) into code. For the Buck converter, the Pseudocode would be the
following one:

if q is on {
vL = Vin − vo;

}
else {

if q is off and iL ≤ 0 {
vL = 0;

} else {
vL = −vo;

}
}

iC = iL − iR;

iL = iL + vL * dtL;
vo = vo + iC * dtC;

while for the Full-bridge the Pseudocode would be:

if (q1 is on) and (q3 is on) {
vL = Vin − vo − (2 * Rdson + RL) * iL;

} else if (q2 is on) and (q4 is on) {
vL = − Vin − vo − (2 * Rdson + RL) * iL;

} else if (all qs are off) and (iL > 0) {
vL = − Vin − vo − 2 * VD * sign(iL) − (2 * RD + RL) * iL;

} else if (all qs are off) and (iL ≤ 0) {
vL = Vin − vo − 2 * VD * sign(iL) − (2 * RD + RL) * iL;

} else if (only q1 or q3 is on and (iL > 0) {
vL = − vo − VD * sign(iL) − (Rdson + RD + RL) * iL;

} else if (only q1 or q3 is on and (iL ≤ 0) {
vL = Vin − vo - VD * sign(iL) − (Rdson + RD + RL) * iL;

} else if (only q2 or q4 is on and (iL > 0) {

Electronics 2021, 10, 926 8 of 20

vL = − Vin − vo − VD * sign(iL) − (Rdson + RD + RL) * iL;
} else if (only q2 or q4 is on and (iL ≤ 0) {

vL = − vo − VD * sign(iL) − (Rdson + RD + RL) * iL;
}

iR = GL * vo;
iC = iL − iR;
VRESR = RESR * iC;

iL = iL + vL * dtL;
vC = vC + iC * dtC;
vo = vC + VRESR;

Now the question is which language to use for implementing the Pseudocode in
synthesizable code. Furthermore, not all languages are supported by any synthesis tool, so
pairs language-synthesis tool must be considered. The selection of the language to be used
is not just a question of the designers’ knowledge or preferences but also impacts both
design effort and hardware resources, even for the same FPGA-based HIL model. Five
different approaches (VHDL, IPs, HLS, MATLAB, and graphical language (G language))
are considered to codify the converter’s model, although all methods are not available for
both NFs. Figure 3 shows all the possibilities explored in this paper regarding NF, coding
method, and synthesis tools.

The first approach to codify the model can be using the VHDL language. By the
moment, the IEEE VHDL-2008 FlP standard library is not supported by Vivado, as Vivado
is not fully compatible yet with the standard VHDL-2008 [48]. The alternatives for FlP
implementation in VHDL using Vivado would be using non-standard FlP libraries or
hand-coding FlP arithmetics. These options require further knowledge from the designer
and much more effort for hand-coded FlP implementation, so the proposed alternative
is simply to use another synthesis tool that does support IEEE VHDL-2008 FlP standard
libraries, like Precision from Mentor Graphics.

Floating-point

VHDL IP HLS MATLAB

Precision Vivado

G language

LabVIEW

(a)

Fixed-point

VHDL HLS MATLAB

Precision Vivado

G language

LabVIEW

(b)

Figure 3. Design alternatives; (a) Floating-point design possibilities, (b) Fixed-point design possibilities.

Electronics 2021, 10, 926 9 of 20

The next approach uses IPs provided by the FPGA vendors, which are ready-to-
use solutions for FlP units and can be one of the main components in any computing
architecture. IPs implement arithmetic operations, but to do so, they must be instantiated.
So, the difference in the code would be from:

Q <= (A + B);

to:

Adder1 : floating_point_adder(
In1 => A,
In2 => B,
Output => Q
);

So, IPs increase the syntax overhead and make the code less human-friendly, but they
can be a good option for optimum synthesis results. Most operators’ latency using IPs
can be set between 1 clock cycle and a maximum number that depends on the chosen
parameters. However, pipeline structures are not recommended in this application because
each step’s results are fed back to the next step, so all IPS must be configured as fully
combinational at the expense of increased hardware resources.

The third coding possibility, apart from VHDL and IPs, is HLS. High-Level Synthesis
included in all Xilinx Vivado HLx Editions can support both NFs by transforming C
functions written in C, C++, or System C into an RTL implementation to be directly
integrated into Xilinx FPGAs. For the results of this paper, the Pseudoce has been codified
using C++. The Vivado HLS tool can translate high-level codes into synthesizable code
automatically. However, it is not the only possibility to avoid an arduous hand-coded
VHDL or IP approach.

To get rid of the design effort caused by hand-coded HDL, Equations (1) to (5) can
also be written in M-code files (MATLAB language), and HDL Coder can be employed
to translate them into VHDL codes. Using HDL Coder, the model can be configured by
selecting the target device (e.g., Xilinx Artix FPGA) and the pipeline technique’s usage level
(no pipeline). These two last coding methods (HLS and MATLAB) reduce the differences be-
tween software programming and FPGA programming. Therefore, using these approaches,
many details such as time schedule and low-level implementation are abstracted.

All the previous methods are based on codifying the equations of the converters (1)
to (5) in different text languages and tools. The last analyzed alternative is to codify the
converters’ equations using a graphical language (G programming language) instead of
a written language. In this approach, the LabVIEW environment automatically connects
to the synthesis tool, making the process transparent to the user, including downloading
the design to the FPGA. However, the choice of target boards is restricted to NI platforms
(CompactRIO, sbRIO, roboRIO, FlexRIO, NI R Series, and NI myRIO-1900).

4. Results and Comparison

This section compares the different possible design approaches previously introduced,
quantifying the differences, such as hardware resources and the minimum simulation step.
Furthermore, the design effort and the accuracy of all tested design alternatives are com-
pared to help developers decide on the appropriate design option based on the application.

The models explained in Section 2 have been implemented in a Digilent Arty 7-35T
development board, which includes a Xilinx Artix-7 FPGA, model xc7a35ticsg324-1L. This
FPGA includes 5200 slices (every slice comprises four 6-input Look-Up Tables (LUTs) and
eight flip-flops (FFs)) and 90 DSP blocks. The models coded in G language have been
implemented into the NI myRIO-1900 platform (see Figure 4), which includes a Xilinx
Zynq-7010 FPGA. Although they are different FPGAs, the Zynq-7000 family uses the same
fabric logic of the Artix-7 family, so the synthesis results are very similar in both families,
as will be shown later.

Electronics 2021, 10, 926 10 of 20

Figure 4. RT NI myRIO-1900 board constructed for implementing the models coded in G language.

4.1. Floating-Point Discussion

As explained in Section 3.2, the FlP models of the Buck and Full-bridge converters are
written in VHDL and verified only with the Precision tool because the standard VHDL-2008
IEEE FlP library is not supported by Vivado. The implementation results for the FlP VHDL
models will be presented and compared with other design possibilities.

The proposed models using IPs (Xilinx Floating-point IP, version 7.1 (Rev. 7)) are
also available, and it is expected that the usage of IP cores can improve the synthesis
results. However, different configurations for FlP IPs are possible, resulting in a quite
different resource usage and minimum RT simulation step, as shown in Table 1. All IPs in
the proposed models, which implement additions, subtractions, and multiplications, use
single-precision and are configured as purely combinational (no pipeline). The architecture
optimization of add or subtract IPs can be chosen between high-speed and low-latency,
affecting the synthesis results. For multiplications, there is an additional parameter to be
chosen, which is how many DSP blocks are used per multiplication.

Table 1. FPGA resources used by different IP configurations and the timing results.

IP Configuration

Optimization DSP Usage LUTs FFs DSPs Tclk,min(ns)

Buck converter without losses

High-speed Max usage 1060 122 17 61.086
High-speed No usage 2395 126 0 66.066
Low-latency Max usage 2003 126 9 51.041
Low-latency No usage 2743 126 0 55.298

Full-bridge converter with losses

High-speed Max usage 2599 150 37 87.362
High-speed No usage 5627 158 0 91.802
Low-latency Max usage 3646 158 15 70.332
Low-latency No usage 5646 158 0 76.749

Table 1 provides an assessment of different IPs configurations in terms of the number
of LUTs, FFs, DSP blocks, and the minimum achievable clock period (Tclk,min, which is
equal to the simulation step because the simulation step is solved in a single clock cycle) to
find the best IP configuration for implementing the HIL models in RT. It should be taken
into account that these HIL models are fed back, i.e., the result of the capacitor voltage is
used for the calculus of the inductor current and vice-versa. Therefore, the only important

Electronics 2021, 10, 926 11 of 20

parameter is the total latency of the calculus. That is why it is recommended to use a
single clock cycle which is equal to the simulation step of the model, so no pipeline is
used. As listed in Table 1, low-latency IPs with the maximum usage of DSP blocks reach the
minimum possible clock period and hardware resources for both converters. Thus, this
IP configuration, which is highlighted in Table 1, will be used in the rest of the paper to
compare the IP solution with other design alternatives for FlP.

Apart from pure VHDL and VHDL with IPs, other design alternatives are to obtain
the models in high-level languages and implement them from a higher level of abstraction.
In this study, Equations (1) to (5) written in C++ and MATLAB language (M-code) are
implemented into an FPGA using Vivado HLS tool and MATLAB HDL Coder plus Vivado,
respectively. The last discussed FlP design possibility is to use LabVIEW for programming
the NI myRIO-1900 platform as a commercial HIL tool.

Table 2 shows the synthesis results of various FlP design alternatives of the Buck
and the Full-bridge converters. It can be seen that although using FlP IPs consumes
fewer hardware resources and reaches a smaller emulation step than other approaches to
implement the Full-bridge model, the synthesis results of IP and HLS approaches for Buck
converter are very similar. It can also be observed that using the standard FlP library of
VHDL-2008 and Precision synthesizer, the necessary resources and the minimum achievable
clock period are increased in both converters. The reason may be a low optimization of
the FlP library or the low optimization of the Precision synthesizer for Xilinx FPGAs.
Nevertheless, this synthesizer is required since Vivado does not support that library by
now, as was commented before. Automated MATLAB HDL code enhances synthesis
results and time steps compared with the pure VHDL approach. However, compared to
other design alternatives, it needs more area and reaches a greater time step, especially for
complex models.

Table 2. FPGA resources use in RT for floating-point design alternatives.

Design Approaches

Alternatives DSP Usage LUTs FFs DSPs Tclk,min(ns)

Buck converter without losses

VHDL, Precision Enable 5144 112 4 95.281
VHDL, Precision Disable 5661 111 0 125.288

IPs, Vivado Max usage 2003 126 9 51.041
IPs, Vivado No usage 2743 126 0 55.298

HLS, Vivado Enable 1242 64 14 50.533
HLS, Vivado Partially disable 1214 64 14 49.930

MATLAB, Vivado Enable 2575 64 2 72.110
MATLAB, Vivado Disable 2930 64 0 75.106

G, LabVIEW Enable 12,234 11,366 4 375.0

Full-bridge converter with losses

VHDL, Precision Enable 16,837 147 14 243.163
VHDL, Precision Disable 20,238 150 0 248.588

IPs, Vivado Max usage 3646 158 15 70.332
IPs, Vivado No usage 5646 158 0 76.749

HLS, Vivado Enable 4806 147 50 128.539
HLS, Vivado Partially disable 8598 125 24 131.095

MATLAB, Vivado Enable 16,301 100 7 158.962
MATLAB, Vivado Disable 17,706 100 0 163.530

G, LabVIEW Enable 27,227 19,714 8 -

Empty VI, LabVIEW Enable 8362 8235 0 25.0

LabVIEW FPGA uses a fixed amount of myRIO’s programmable FPGA resources to
be ready for implementing any possible design. An empty virtual instrument (VI) occupies
64.7% of the total available resources in the myRIO’s FPGA. Thus, the available resources
are limited, and complex models cannot be implemented in this device, especially the
FlP models that need more hardware resources. As shown in Table 2, the float model

Electronics 2021, 10, 926 12 of 20

of the Full-bridge converter with losses cannot fit into the myRIO’s FPGA. The number
of available slice LUTs is 17600; however, the Full-bridge converter’s float model needs
27,227 slice LUTs.

The synthesis results’ analysis demonstrates that the LabVIEW-myRIO approach
occupies more FPGA area than other design alternatives introduced previously, and it is
not as fast as them. However, it is possible to download and debug the model using a
graphical interface, and also the virtual oscilloscope is included in LabVIEW to monitor
the model implemented into the FPGA. Furthermore, using the front panel in LabVIEW
software, designers can interact with the model to change and control different parameters
while the model is running.

The same test has been accomplished disabling DSP blocks to determine the impact of
DSP blocks on the area and maximum achievable clock frequency. However, it is not sup-
ported by LabVIEW, and Vivado HLS does not fully support non-DSP FlP implementation,
so it works only partially, as can be seen in Table 2. It should be noted that synthesizing
without using DSP blocks is not recommended because it will increase the minimum clock
period; however, these results are useful for comparing the total combinational area, which
comes from both LUTs and DSPs. For instance, VHDL-Precision uses more LUTs but
fewer DSPs than the IPs-Vivado approach. However, when disabling the DSPs, so all the
combinational logic is implemented through LUTs, it becomes clear that VHDL-Precision
uses the most resources, and that is also the reason for its worse time results.

4.2. Fixed-Point Discussion

In this section, four main coding possibilities (VHDL, HLS, MATLAB, and G language)
to implement the converters’ FxP model in an FPGA are tested. Unlike FlP, the model
using the VHDL-2008 IEEE standard FxP libraries can be synthesized using both Precision
and Vivado.

Apart from the design possibilities mentioned before, the methods used for limiting
the number of digits (bits in binary) impact the trade-off between accuracy and hardware
resources. From now on, these methods will be called NBL (number of bits limitation),
which can affect the right or left bits. For instance, when limiting the number of bits in
the right (least significant bit or LSB), FxP can use rounding toward the nearest value
(choosing the nearest solution with a limited number of fractional bits, option by default) or
truncating (eliminating the right bits). Of course, rounding is more accurate but demands
more hardware resources. In the same way, when the number grows beyond the range limit
of the chosen FxP format (overflow in the left or most significant bit, MSB), FxP can saturate
(choose the nearest solution with a limited number of integer bits, option by default) or
wrap (eliminate the left bits, which leads to entirely different solution). Again, saturating is
more accurate but demands more hardware resources than wrapping. Therefore, the two
extreme NBL options would be rounding and saturating (RS) for maximum accuracy
but using more hardware resources and truncating and wrapping (TW) for minimum
hardware resources.

The RS method tries to reduce the error using two techniques: the rounding increases
the resolution of the number in 0.5 bits virtually, and the saturation prevents the value from
being overflowed without using one extra bit, obtaining numerical error but less than in an
overflow condition. An alternative is not using any of those methods but using directly
two-guard bits.

Applying two-guard bits to the TW method (TW + 2), one for the integer part to avoid
overflow and the other one to the fractional part to avoid inaccuracy, can be the third
NBL method to have the benefits of both previous methods. In this section, a comparison
between the three commented possibilities has been carried out to find the optimum
NBL method for HIL models to provide a more accurate and efficient model. To avoid
overflow and reach acceptable precision, all signal widths are chosen based on the algorithm
proposed in [45]. However, different NBL methods are included in three different tests to

Electronics 2021, 10, 926 13 of 20

compare needed hardware resources and the achievable clock period regarding different
design methods.

The comparison of synthesis and timing results for different NBL methods of FxP
models for both converters are shown in Tables 3–5 when using VHDL with Precision,
VHDL with Vivado synthesizer, and HLS, respectively. As expected, the TW method
always needs fewer resources than using RS. The synthesis results show that although the
RS method offers a higher level of accuracy than the TW method, an increase in HIL models’
minimum achievable clock period increases the error at each time step. As shown in [11],
the HIL model’s error is basically proportional to the clock period. Consequently, the RS
method may reduce the RT emulation results’ accuracy and increase the final cost of the
models implemented in FPGAs. If the TW method’s obtained accuracy is not good enough,
it is better to increase the number of bits (TW + 2) than using RS. TW + 2 method may
guarantee more accurate results because, as shown in Tables 3–5, it reaches a smaller clock
period with fewer hardware resources than the RS method, although the mathematical
error is very similar to the RS method. Thus, in the following, TW + 2 is used to compare
different FxP design alternatives.

Table 3. VHDL-2008 synthesis results for fixed-point using Precision tool.

Design Approaches

NBL Methods DSP Usage LUTs FFs DSPs Tclk,min(ns)

Buck converter without losses

RS Enable 279 72 4 22.294
RS Disable 794 72 0 32.871
TW Enable 172 72 4 12.741
TW Disable 721 72 0 25.914

TW + 2 Enable 183 76 4 12.825
TW + 2 Disable 740 76 0 26.012

Full-bridge converter with losses

RS Enable 1080 90 9 41.335
RS Disable 3014 88 0 55.785
TW Enable 350 89 9 20.455
TW Disable 1974 88 0 51.729

TW + 2 Enable 362 95 9 20.708
TW + 2 Disable 2022 95 0 51.814

Table 4. VHDL-2008 synthesis results for fixed-point using Vivado tool.

Design Approaches

NBL Methods DSP Usage LUTs FFs DSPs Tclk,min(ns)

Buck converter without losses

RS Enable 355 72 4 24.064
RS Disable 1049 72 0 25.977
TW Enable 250 72 4 13.411
TW Disable 934 72 0 16.571

TW + 2 Enable 268 76 4 12.871
TW + 2 Disable 1022 76 0 17.715

Full-bridge converter with losses

RS Enable 1550 90 7 42.368
RS Disable 2652 90 0 51.888
TW Enable 645 73 7 19.247
TW Disable 1786 89 0 21.105

TW + 2 Enable 759 77 7 19.264
TW + 2 Disable 2074 95 0 21.080

Electronics 2021, 10, 926 14 of 20

Table 5. HLS synthesis results for fixed-point using Vivado tool.

Design Approaches

NBL Methods DSP Usage LUTs FFs DSPs Tclk,min(ns)

Buck converter without losses

RS Enable 389 72 4 22.057
RS Partially disable 1890 76 0 23.646
TW Enable 292 75 4 12.395
TW Partially disable 2152 81 0 15.786

TW + 2 Enable 309 82 4 12.009
TW + 2 Partially disable 2600 94 0 15.934

Full-bridge converter with losses

RS Enable 1999 92 10 35.906
RS Partially disable 3681 92 4 45.633
TW Enable 1523 92 10 33.009
TW Partially disable 3616 92 2 32.569

TW + 2 Enable 1788 212 10 32.652
TW + 2 Partially disable 4258 212 2 32.725

Synthesis and timing results of different FxP design alternatives using the TW + 2
method are summarized in Table 6. As can be seen, the simple model results (Buck
converter without losses) are quite different from the complex model (Full-bridge with
losses). It can be concluded that for simple models, using different FxP design alternatives
results in a very similar achievable clock period (about 12 ns), while HLS and MATLAB
approaches need more hardware resources. Moreover, the timing results of the LabVIEW
approach are the worst. As can be seen, the FxP Buck converter implemented in NI myRIO
hardware is 12.5 times slower than the HLS approach. The timing results are even worse for
the Full-bridge converter than the FxP Buck converter if the model is coded in G language
(LabVIEW).

Table 6. FPGA resources use in RT for fixed-point design alternatives using TW + 2 NBL method.

Design Approaches

Alternatives DSP Usage LUTs FFs DSPs Tclk,min(ns)

Buck converter without losses

VHDL, Precision Enable 183 76 4 12.825
VHDL, Precision Disable 740 76 0 26.012
VHDL, Vivado Enable 268 76 4 12.871
VHDL, Vivado Disable 1022 76 0 17.715
HLS, Vivado Enable 309 82 4 12.009
HLS, Vivado Partially disable 2600 94 0 15.934

MATLAB, Vivado Enable 261 76 4 12.717
MATLAB, Vivado Disable 2018 76 0 17.670

G, LabVIEW Enable 9366 9524 7 150.0

Full-bridge converter with losses

VHDL, Precision Enable 362 95 9 20.708
VHDL, Precision Disable 2022 95 0 51.814
VHDL, Vivado Enable 759 77 7 19.264
VHDL, Vivado Disable 2074 95 0 21.080
HLS, Vivado Enable 1788 212 10 32.652
HLS, Vivado Partially disable 4258 212 2 32.725

MATLAB, Vivado Enable 837 97 10 19.769
MATLAB, Vivado Disable 2779 97 0 24.335

G, LabVIEW Enable 11,936 13174 11 575.0

As listed in Table 6, disabling DSP blocks, the Buck model uses 2600, 2018, 1022,
and 740 LUTs for HLS, automated MATLAB HDL code, VHDL synthesized in Vivado,
and VHDL synthesized in Precision, respectively. Thus, the optimum alternative for simple
designs can be selected based on the simplicity of the design process or the available
developers’ choices as the area and clock period differences can be neglected.

Electronics 2021, 10, 926 15 of 20

Notably, the HLS and MATLAB coding methods need less programming effort, but the
latter needs more software and hardware requirements. In a short word, according to less
design effort of the HLS approach, it can be the best option to design simple FxP models.

Nevertheless, the HLS approach reaches a significantly higher clock period for com-
plex systems (about 32 ns for the Full-bridge converter with losses while the other methods
are around 20 ns) and requires more hardware resources than other design possibilities.
The complex models codified in VHDL-2008 (using both synthesizers) or MATLAB reach
very similar results for complex models, so the choice should be made according to design
effort or available tools. They all are more accurate than HLS models because of the smaller
achieved clock period. It was supposed that MATLAB-to-VHDL translation is not an
optimal choice as the code is translated automatically by MATLAB HDL Coder. However,
the translation is from MATLAB to signed type, which is faster than the FxP format used in
hand-coded VHDL. Thus, both overhead sources (automatic translation to the signed type
and using the FxP type) are quite balanced, and that is the main reason why the results
are similar.

It can be seen in Table 6 that the FxP Full-bridge converter implemented in NI myRIO
uses 13174 FFs, which is 37.4% of the total FFs of the FPGA. Notably, all these FFs are
not used for the Full-bridge model as the empty VI occupied 8235 FFs. Thus, to compare
these synthesis results with those obtained from other alternatives, the empty VI is sub-
tracted from the total area in latter comparisons, such as Table 7 (net LabVIEW-myRIO
synthesis results).

Both possible numerical formats (FlP and FxP), including all mentioned design al-
ternatives, are tested and compared separately to evaluate the impact of various design
possibilities (coding methods and possible synthesis tools) on synthesis results. Finally,
a general comparison will be presented, taking all design alternatives into account to clarify
the advantages and disadvantages of the possible solutions for implementing HIL models
into FPGAs.

4.3. Results and Discussion

As shown in this section, the minimum achievable clock period, design effort, and hard-
ware resources using different design possibilities for different models are quite varied.
HIL designers’ main concern is to find a trade-off between design effort, resources, and sim-
ulation step in RT (which is connected to the simulation accuracy) based on the complexity
of the application.

Table 7 proposes a general comparison between all the possible design alternatives for
FPGA-based HIL models. As can be seen, the most significant impact on synthesis results,
both area and timing, comes from the NF. However, this selection also has a considerable
impact on design effort. The design language and tools also have some impact on synthesis
results, but not so deep.

It is important to note that the results of Table 7 are obtained synthesizing using an
Artix-7 FPGA, except for the G, LabVIEW results, which are obtained for a Zynq-7000
FPGA (see Section 4). However, both FPGA families use the same structure for fabric logic
(LUTs, FFs, DSPs) and therefore obtain almost identical synthesis results. Table 8 shows
the synthesis results of four cases that have been implemented using an Artix-7 FPGA
(xc7a35ticsg324-1L) and a Zynq-7000 device (xc7Z014sclg484-1). Almost identical results
are obtained for both FPGAs, showing that the comparison in Table 7 is adequate even
when using different target FPGAs.

In Figures 5 and 6, the bar charts of the number of LUTs and Tclk,min shown in Table 7
are illustrated highlighting the differences of the hardware resources and the minimum
achievable clock period in all design alternatives.

Electronics 2021, 10, 926 16 of 20

Table 7. The comparison of different possible design alternatives.

Design Approaches
Design Effort

Coding Methods NFs LUTs FFs DSPs Tclk,min(ns)

Buck converter without losses

VHDL, Precision FlP 5144 112 4 95.281 Medium
IPs, Vivado FlP 2003 126 9 51.041 High

HLS, Vivado FlP 1242 64 14 50.533 Low
MATLAB, Vivado FlP 2575 64 2 72.110 Medium

G, LabVIEW * FlP 3872 3113 4 375.0 Low
VHDL, Precision FxP 183 76 4 12.825 Very High
VHDL, Vivado FxP 268 76 4 12.871 Very High
HLS, Vivado FxP 309 82 4 12.009 Medium

MATLAB, Vivado FxP 261 76 4 12.717 High
G, LabVIEW * FxP 1004 1271 7 150.0 Medium

Full-bridge converter with losses

VHDL, Precision FlP 16,837 147 14 243.163 Medium
IPs, Vivado FlP 3646 158 15 70.332 High

HLS, Vivado FlP 4806 147 50 128.539 Low
MATLAB, Vivado FlP 16,301 100 7 158.962 Medium

G, LabVIEW * FlP 18,865 11,461 8 - Low
VHDL, Precision FxP 362 95 9 20.708 Very High
VHDL, Vivado FxP 759 77 7 19.264 Very High
HLS, Vivado FxP 1788 212 10 32.652 Medium

MATLAB, Vivado FxP 837 97 10 19.769 High
G, LabVIEW * FxP 3574 4921 11 575.0 Medium

* G, LabVIEW results are net results, after subtracting the necessary resources for an empty VI.

Table 8. Synthesis results comparison between Artix-7 and Zynq-7000.

FPGA Converter Coding Methods NFs LUTs FFs DSPs Tclk,min(ns)

Artix-7

Buck IPs, Vivado FlP 2003 126 9 51.041
Buck VHDL, Vivado FxP 268 76 4 12.871

Full-bridge IPs, Vivado FlP 3646 158 15 70.332
Full-bridge VHDL, Vivado FxP 759 77 7 19.264

Zynq-7000

Buck IPs, Vivado FlP 1997 126 9 51.502
Buck VHDL, Vivado FxP 268 76 4 13.635

Full-bridge IPs, Vivado FlP 3643 158 15 76.505
Full-bridge VHDL, Vivado FxP 645 105 7 18.801

VHDL, Precision IPs,Vivado HLS Vivado MATLAB,Vivado G,LabVIEW
FlP design alternatives

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
um

be
r

of
 L

U
T

s

104

Buck
Full-bridge

(a)

VHDL,Precision VHDL,Vivado HLS,Vivado MATLAB,Vivado G,LabVIEW
FxP design alternatives

0

500

1000

1500

2000

2500

3000

3500

4000

N
um

be
r

of
 L

U
T

s

Buck
Full-bridge

(b)

Figure 5. Number of LUTS for different design alternatives; (a) Floating-point design possibilities,
(b) Fixed-point design possibilities.

Electronics 2021, 10, 926 17 of 20

VHDL,Precision IPs,Vivado HLS,Vivado MATLAB,Vivado G,LabVIEW
FlP design alternatives

0

50

100

150

200

250

300

350

400

T
cl

k,
m

in

Buck
Full-bridge

(a)

VHDL,Precision VHDL,Vivado HLS,Vivado MATLAB,Vivado G,LabVIEW
FxP design alternatives

0

100

200

300

400

500

600

T
cl

k,
m

in

Buck
Full-bridge

(b)

Figure 6. Minimum clock period for different design alternatives; (a) Floating-point design possibili-
ties, (b) Fixed-point design possibilities.

There is no clear best option for all applications, so the first decision should be if
area and timing are critical rather than design effort. In this case, FxP must be chosen. G
language and LabVIEW can be discarded for optimal synthesis results, but the other four
possibilities in FxP (VHDL-Precision, VHDL-Vivado, HLS, or MATLAB with HDL Coder)
have similar results for simple models. In that case, the decision can be taken depending
on previously known languages or available tools. HLS obtains somewhat worse synthesis
results for more complex models, but its lower design effort can compensate in some
cases. If not, VHDL or MATLAB with HDL Coder gets the best synthesis results for
complex designs.

If design effort or design time is the primary goal, then FlP should be adopted. VHDL
can be discarded in this case because the predefined libraries of some synthesis tools (such
as Vivado) do not support it and, even using other synthesis tools (Precision) results in
more hardware resources and a worse clock period compared with IP, HLS, or MATLAB
coding methods. If looking for a graphical design method, G language, and LabVIEW is an
option at the expense of more area and longer timing, but it gives designers the freedom to
control the model when it is running and offers additional benefits as a virtual oscilloscope.
The analysis shows that the achievable clock period using the LabVIEW-myRIO method is
much larger than for the other methods. To have a comparison, the minimum clock period
achieved by this method for the FlP Buck converter (375 ns) is 7.4 times greater than the
one reached by the fastest alternative (HLS, 50.533 ns).

Despite the simple models’ synthesis results, which are very similar using IP, HLS,
or MATLAB coding methods, the complex models (Full-bridge converter with losses in this
case study) are quite different. Among text language-based solutions, HLS is the option for
decreased design effort, which would probably be the main goal when choosing FlP. IPs get
better synthesis results for complex models in FlP, but they suppose the most complicated
option among FlP solutions. Thus, better synthesis results may not compensate for the
extra effort. Automated MATLAB HDL code leads to a more straightforward programming
process, but it demands more tools, and its timing and area are not as efficient as other FlP
alternatives. Thus, HLS is recommended for simple models, but for more complex ones,
a trade-off between design effort and hardware results must be analyzed by developers for
each case.

5. Conclusions

This paper has proposed several FPGA-based HIL model design alternatives for
floating and fixed-point NFs, including different coding methods and synthesis tools.
The analyzed design approaches are VHDL-Precision, VHDL-Vivado, IP, HLS, MATLAB
with HDL Coder, and LabVIEW-myRIO, taking into account that they all are not available

Electronics 2021, 10, 926 18 of 20

for both NFs. Synthesis results demonstrate that FxP can reach the least hardware resources
and latencies. Different NBL methods have been compared for the FxP format, and it has
been proved that the TW + 2 method reaches better results than the RS method. Among
FxP design alternatives, Precision and Vivado have very similar results in all models
coded in VHDL so that designers can choose the synthesis tool. As shown in this paper,
the HLS approach may present scalability problems because more complex models use
more resources. The MATLAB automated HDL code can reach the same timing results as
VHDL for complex models in FxP but involving more tools. The models described in the G
language implemented in NI myRIO device are not as efficient as other FxP alternatives.
Thus, for simple FxP models, VHDL, HLS or MATLAB automated HDL code all reach
similar synthesis results. However, for more complex models, HLS gets worse synthesis
results. As FxP is usually chosen for optimizing synthesis results, the proposed methods
for FxP are VHDL or MATLAB.

Among FlP design alternatives mostly used in low–mid-frequency applications, syn-
thesizing VHDL code in Precision can be discarded because of its worse synthesis results.
LabVIEW-myRIO can be a reasonable choice since the necessity of reaching a short clock
period is not the primary concern for FlP designs. Automated MATLAB HDL code is not
recommended as it involves more tools than other approaches, and also, it does not reach
small latency and area. The other two possibilities, IPs and HLS, have resulted in a very
similar area and speed for simple models, but there are more significant differences if the
model is complex. Thus, for simple FlP models, HLS, which needs less design effort, is the
best alternative. However, for more complex designs, a trade-off between design effort and
performance should be reached. The comparison has shown that a low-latency IP solution
results in a smaller clock period, and it can speed up the model up to 45%, 56%, and 71%
compared to HLS, MATLAB, and VHDL alternatives, respectively.

Author Contributions: Conceptualization, E.Z., A.S. and A.d.C.; methodology, E.Z. and A.d.C.;
software, E.Z., A.S., M.Y., and M.S.M.-G.; experiment, E.Z.; validation, E.Z., A.S., M.Y., A.d.C. and
M.S.M.-G.; formal analysis, E.Z. and A.d.C.; investigation, E.Z. and A.S.; resources, E.Z. and A.d.C.;
writing–original draft preparation, E.Z.; writing—review and editing, E.Z., A.S., M.Y., A.d.C. and
M.S.M.-G.; visualization, E.Z. and M.S.M.-G.; supervision, A.d.C. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xu, J.; Gu, L.; Ye, Z.; Kargarrazi, S.; Rivas-Davila, J.M. Cascode GaN/SiC: A Wide-Bandgap Heterogenous Power Device for

High-Frequency Applications. IEEE Trans. Power Electron. 2020, 35, 6340–6349. [CrossRef]
2. Lee, J.; Kang, D.; Lee, J. System Level Simulation of Microgrid Power Electronic Systems. Electronics 2021, 10, 644.
3. Xu, J.; Gu, L.; Ye, Z.; Kargarrazi, S.; Rivas-Davila, J.M. A Study on the Improved Capacitor Voltage Balancing Method for Modular

Multilevel Converter Based on Hardware-In-the-Loop Simulation. Electronics 2019, 8, 1070.
4. Saito, K.; Akagi, H. A Power Hardware-in-the-Loop (P-HIL) Test Bench Using Two Modular Multilevel DSCC Converters for a

Synchronous Motor Drive. IEEE Trans. Ind. Appl. 2018, 54, 4563–4573. [CrossRef]
5. Shin, D.-C.; Lee, D.-M. Development of Real-Time Implementation of a Wind Power Generation System with Modular Multilevel

Converters for Hardware in the Loop Simulation Using MATLAB/Simulink. Electronics 2020, 9, 606. [CrossRef]
6. Liu, C.; Ma, R.; Bai, H.; Li, Z.; Gechter, F.; Gao, F. FPGA-Based Real-Time Simulation of High-Power Electronic System With

Nonlinear IGBT Characteristics. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 7, 41–51. [CrossRef]
7. Liu, C.; Bai, H.; Zhuo, S.; Zhang, X.; Ma, R.; Gao, F. Real-Time Simulation of Power Electronic Systems Based on Predictive

Behavior, IEEE Trans. Ind. Electron. 2020, 67, 8044–8053. [CrossRef]
8. Yushkova, M.; Sanchez, A.; de Castro, A.; Martínez-García, M.S. A Comparison of Filtering Approaches Using Low-Speed DACs

for Hardware-in-the-Loop Implemented in FPGAs. Electronics 2019, 8, 1116. [CrossRef]
9. Vekić, M.S.; Grabić, S.U.; Majstorović, D.P.; Čelanović, I.L.; Čelanović, N.L.; Katić, V.A. Ultralow Latency HIL Platform for Rapid

Development of Complex Power Electronics Systems. IEEE Trans. Power Electron. 2012, 27, 4436–4444. [CrossRef]
10. Majstorovic, D.; Celanovic, I.; Teslic, N.D.; Celanovic, N.; Katic, V.A. Ultralow-Latency Hardware-in-the-Loop Platform for Rapid

Validation of Power Electronics Designs. IEEE Trans. Ind. Electron. 2011, 58, 4708–4716. [CrossRef]

http://doi.org/10.1109/TPEL.2019.2954322
http://dx.doi.org/10.1109/TIA.2018.2833424
http://dx.doi.org/10.3390/electronics9040606
http://dx.doi.org/10.1109/JESTPE.2018.2873157
http://dx.doi.org/10.1109/TIE.2019.2941135
http://dx.doi.org/10.3390/electronics8101116
http://dx.doi.org/10.1109/TPEL.2012.2190097
http://dx.doi.org/10.1109/TIE.2011.2112318

Electronics 2021, 10, 926 19 of 20

11. Zamiri, E.; Sanchez, A.; de Castro, A.; Martínez-García, M.S. Comparison of Power Converter Models with Losses for Hardware-
in-the-Loop Using Different Numerical Formats. Electronics 2019, 8, 1255. [CrossRef]

12. Lauss, G.; Strunz, K. Multirate Partitioning Interface for Enhanced Stability of Power Hardware-in-the-Loop Real-Time Simulation.
IEEE Trans. Ind. Electron. 2019, 66, 595–605. [CrossRef]

13. Lu, B.; Wu, X.; Figueroa, H.; Monti, A. A Low-Cost Real-Time Hardware-in-the-Loop Testing Approach of Power Electronics
Controls. IET Power Electron. 2007, 54, 919–931. [CrossRef]

14. Bastos, R.F.; Fuzato, G.H.; Aguiar, C.R.; Neves, R.V.A.; Machado, R.Q. Model, design, implementation of a low-cost HIL for
power converter, microgrid emulation using DSP. IET Power Electron. 2019, 8, 3833–3841. [CrossRef]

15. Montaño, F.; Ould-Bachir, T.; David, J.P. A Latency-Insensitive Design Approach to Programmable FPGA-Based Real-Time
Simulators. Electronics 2020, 9, 1838. [CrossRef]

16. Sepúlveda, C.A.; Muñoz, J.A.; Espinoza, J.R.; Figueroa, M.E.; Baier, C.R. FPGA v/s DSP Performance Comparison for a VSC-Based
STATCOM Control Application. IEEE Trans. Ind. Inform. 2020, 9, 1351–1360.

17. Liang, T.; Liu, Q.; Dinavahi, V.R. Real-Time Hardware-in-the-Loop Emulation of High-Speed Rail Power System With SiC-Based
Energy Conversion. IEEE Access 2020, 8, 122348–122359. [CrossRef]

18. Lamo, P.; de Castro, Á.; Brañas, C.; Azcondo, F.J. Emulator of a Boost Converter for Educational Purposes. Electronics 2020, 9, 1883.
[CrossRef]

19. Herrera, L.; Li, C.; Yao, X.; Wang, J. FPGA-Based Detailed Real-Time Simulation of Power Converters, Electric Machines for EV
HIL Applications. IEEE Trans. Ind. Appl. 2015, 51, 1702–1712. [CrossRef]

20. Dagbagi, M.; Hemdani, A.; Idkhajine, L.; Naouar, M.W.; Monmasson, E.; Slama-Belkhodja, I. ADC-Based Embedded Real-Time
Simulator of a Power Converter Implemented in a Low-Cost FPGA: Application to a Fault-Tolerant Control of a Grid-Connected
Voltage-Source Rectifier. IEEE Trans. Ind. Electron. 2016, 63, 1179–1190. [CrossRef]

21. Sanchez, A.; Todorovich, E.; de Castro, A. Impact of the hardened floating-point cores on HIL technology. Electr. Power Syst. Res.
2018, 165, 53–59. [CrossRef]

22. Tavana, N.R.; Dinavahi, V. A General Framework for FPGA-Based Real-Time Emulation of Electrical Machines for HIL Applica-
tions. IEEE Trans. Ind. Electron. 2015, 62, 2041–2053. [CrossRef]

23. Zhang, H.; Chen, D.; Ko, S. High performance, energy efficient single-precision, double-precision merged floating-point adder on
FPGA. IET Comput. Digit. Tech. 2018, 12, 20–29. [CrossRef]

24. Sanchez, A.; Castro, A.; Garrido, J. A Comparison of Simulation, Hardware-in-the- Loop Alternatives for Digital Control of Power
Converters. IEEE Trans. Ind. Inform. 2012, 8, 491–500. [CrossRef]

25. Mylonas, E.; Tzanis, N.; Birbas, M.; Birbas, A. An Automatic Design Framework for Real-Time Power System Simulators
Supporting Smart Grid Applications. Electronics 2020, 9, 299. [CrossRef]

26. Jhang, J.-Y.; Tang, K.-H.; Huang, C.-K.; Lin, C.-J.; Young, K.-Y. FPGA Implementation of a Functional Neuro-Fuzzy Network for
Nonlinear System Control. Electronics 2018, 7, 145. [CrossRef]

27. Kumar, P.; Kumar, V.; Pratap, R. FPGA implementation of an Islanding detection technique for microgrid using periodic maxima
of superimposed voltage components. IET Gener. Transm. Distrib. 2020, 14, 1673–1683. [CrossRef]

28. Kim, H.; Cho, J.; Jung, Y.; Lee, S.; Jung, Y. Area-Efficient Vision-Based Feature Tracker for Autonomous Hovering of Unmanned
Aerial Vehicle. Electronics 2020, 9, 1591. [CrossRef]

29. Iranian, M.E.; Mohseni, M.; Aghili, S.; Parizad, A.; Baghaee, H.R.; Guerrero, J.M. Real-Time FPGA-based HIL Emulator of Power
Electronics Controllers using NI PXI for DFIG Studies. IEEE J. Emerg. Sel. Top. Power Electron. 2020. [CrossRef]

30. Marquez-Viloria, D.; Castano-Londono, L.; Guerrero-Gonzalez, N. A Modified KNN Algorithm for High-Performance Computing
on FPGA of Real-Time m-QAM Demodulators. Electronics 2020, 10, 627. [CrossRef]

31. Lucia, S.; Navarro, D.; Lucía, Ó.; Zometa, P.; Findeisen, R. Optimized FPGA Implementation of Model Predictive Control for
Embedded Systems Using High-Level Synthesis Tool. IEEE Trans. Ind. Inform. 2018, 14, 137–145. [CrossRef]

32. Nane, R.; Sima, V.; Pilato, C.; Choi, J.; Fort, B.; Canis, A.; Chen, Y.T.; Hsiao, H.; Brown, S.; Ferrandi, F.; et al. A Survey, Evaluation
of FPGA High-Level Synthesis Tools. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2016, 35, 1591–1604. [CrossRef]

33. Li, Q.; Xiang, Y.; Mu, Q.; Zhang, X.; Li, X.; He, G. Exploration of FPGA-based electromagnetic transient real-time simulation
system design using high-level synthesis. J. Eng. 2019, 2019, 1217–1220. [CrossRef]

34. Montano, F.; Ould-Bachir, T.; David, J.P. An Evaluation of a High-Level Synthesis Approach to the FPGA-Based Submicrosecond
Real-Time Simulation of Power Converters. IEEE Trans. Ind. Electron. 2018, 65, 636–644. [CrossRef]

35. Ahmad, J.; Pervez, I.; Sarwar, A.; Tariq, M.; Fahad, M.; Chakrabortty, R.K.; Ryan, M.J. Performance Analysis, Hardware-In-the-
Loop (HIL) Validation of Single Switch High Voltage Gain DC-DC Converters for MPP Tracking in Solar PV System. IEEE Access
2020. [CrossRef]

36. Oruganti, V.S.R.V.; Dhanikonda, V.S.S.S.S.; Simões, M.G. Scalable Single-Phase Multi-Functional Inverter for Integration of
Rooftop Solar-PV to Low-Voltage Ideal, Weak Utility Grid. Electronics 2019, 8, 302. [CrossRef]

37. Markovska, M.; Taskovski, D.; Kokolanski, Z.; Dimchev, V.; Velkovski, B. Real-Time Implementation of Optimized Power Quality
Events Classifier. IEEE Trans. Ind. Appl. 2020, 56, 3431–3442. [CrossRef]

38. Xu, F.; Dinavahi, V.; Xu, X. Hybrid analytical model of switched reluctance machine for real-time hardware-in-the-loop simulation.
IET Electr. Power Appl. 2017, 11, 1114–1123. [CrossRef]

http://dx.doi.org/10.3390/electronics8111255
http://dx.doi.org/10.1109/TIE.2018.2826482
http://dx.doi.org/10.1109/TIE.2007.892253
http://dx.doi.org/10.1049/iet-pel.2019.0302
http://dx.doi.org/10.3390/electronics9111838
http://dx.doi.org/10.1109/ACCESS.2020.3006904
http://dx.doi.org/10.3390/electronics9111883
http://dx.doi.org/10.1109/TIA.2014.2350074
http://dx.doi.org/10.1109/TIE.2015.2491883
http://dx.doi.org/10.1016/j.epsr.2018.08.011
http://dx.doi.org/10.1109/TIE.2014.2361314
http://dx.doi.org/10.1049/iet-cdt.2016.0200
http://dx.doi.org/10.1109/TII.2012.2192281
http://dx.doi.org/10.3390/electronics9020299
http://dx.doi.org/10.3390/electronics7080145
http://dx.doi.org/10.1049/iet-gtd.2018.5914
http://dx.doi.org/10.3390/electronics9101591
http://dx.doi.org/10.1109/JESTPE.2020.3023100
http://dx.doi.org/10.3390/electronics10050627
http://dx.doi.org/10.1109/TII.2017.2719940
http://dx.doi.org/10.1109/TCAD.2015.2513673
http://dx.doi.org/10.1049/joe.2018.8879
http://dx.doi.org/10.1109/TIE.2017.2716880
http://dx.doi.org/10.1109/ACCESS.2020.3034310
http://dx.doi.org/10.3390/electronics8030302
http://dx.doi.org/10.1109/TIA.2020.2991950
http://dx.doi.org/10.1049/iet-epa.2016.0831

Electronics 2021, 10, 926 20 of 20

39. Song, B.; Xu, L.; Lu, X. A Modified KNN Algorithm for High-Performance Computing on FPGA of Real-Time m-QAM
Demodulators. In Proceedings of the 2014 4th IEEE International Conference on Information Science, Technology, Guangdong,
China, 26–28 April 2014; pp. 515–518.

40. Park, Y.J.; Lee, D.J.; Chong, K.T. The numerical solution of the point kinetics equation using matrix exponential method.
In Proceedings of the 2012 International Conference on Systems, Informatics (ICSAI2012), Yantai, China, 19–20 May 2012;
pp. 1145–1149.

41. Ozana, S.; Docekal, T. Numerical methods for discretization of continuous nonlinear systems used in SIL/PIL/HIL simulations.
In Proceedings of the 2019 22nd International Conference on Process Control (PC19), Strbske Pleso, Slovakia, 11–14 June 2019;
pp. 191–196.

42. Sanchez, A.; de Castro, A.; Garrido, J. Parametrizable fixed-point arithmetic for HIL with small simulation steps. IEEE J. Emerg.
Sel. Top. Power Electron. 2019, 7, 2467–2475. [CrossRef]

43. Sanchez, A.; Todorovich, E.; de Castro, A. Exploring the Limits of Floating-Point Resolution for Hardware-In-the-Loop Imple-
mented with FPGAs. Electronics 2018, 7, 219. [CrossRef]

44. Martínez-García, M.S.; de Castro, A.; Sanchez, A.; Garrido, J. Word length selection method for HIL power converter models. Int.
J. Electr. Power Energy Syst. 2021, 129, 106721. [CrossRef]

45. Martínez-García, M.S.; de Castro, A.; Sanchez, A.; Garrido, J. Analysis of Resolution in Feedback Signals for Hardware-in-the-Loop
Models of Power Converters. Electronics 2019, 8, 1527. [CrossRef]

46. Bellal, R.; Lamini, E.-S.; Belbachir, H.; Tagzout, S.; Belouchrani, A. Improved Affine Arithmetic-Based Precision Analysis for
Polynomial Function Evaluation. IEEE Trans. Comput. 2019, 10, 702–712. [CrossRef]

47. Grailoo, M.; Alizadeh, B.; Forouzandeh, B. Improved Range Analysis in Fixed-Point Polynomial Data-Path. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 2017, 36, 1925–1929. [CrossRef]

48. Vivado Design Suite User Guide. Available online: https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_
2/ug901-vivado-synthesis.pdf (accessed on 22 January 2020).

http://dx.doi.org/10.1109/JESTPE.2018.2886908
http://dx.doi.org/10.3390/electronics7100219
http://dx.doi.org/10.1016/j.ijepes.2020.106721
http://dx.doi.org/10.3390/electronics8121527
http://dx.doi.org/10.1109/TC.2018.2882537
http://dx.doi.org/10.1109/TCAD.2017.2666607
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug901-vivado-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug901-vivado-synthesis.pdf

	Introduction
	Power Converters Used as Application Examples
	Design Possibilities for Implementation of HIL Models in an FPGA
	Numerical Formats
	Design Approaches and Tools

	Results and Comparison
	Floating-Point Discussion
	Fixed-Point Discussion
	Results and Discussion

	Conclusions
	References

