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Abstract: In this paper, we introduce a novel method for establishing an efficiency map of interior
permanent-magnet synchronous motors that are used for electric vehicle propulsion, by employing
the finite-element method (FEM) and a neural network (NN) to reduce the analysis time. The
electro-magnetic analysis of motors using the FEM, particularly iron loss analysis, is significantly
time-consuming owing to the nonlinearity and the post-processing. Moreover, to obtain an efficiency
map, a data map of the d-q flux linkages based on the d-q currents should be established. At this
stage, we compute the flux densities in all the elements, and they are learned by the NN to obtain a
function of the d-q currents. Subsequently, the iron losses at all operating points are calculated using
the learned data via the harmonic loss method. The results of the proposed method indicate that the
time required to obtain the efficiency map is reduced; furthermore, the results are validated via a
comparison with the FEM results.

Keywords: efficiency map; electric vehicle propulsion; finite-element method (FEM); interior
permanent-magnet synchronous motors; iron loss analysis; reduced time

1. Introduction

Interior permanent-magnet synchronous motors (IPMSMs) have been widely used
for electric vehicle (EV) propulsion owing to their high torque density, high efficiency, and
wide operating range, which are attributed to their high saliency and the use of rare-earth
permanent-magnets [1–4].

Given that EVs have wide operating regions, the establishment of an efficiency map
for propulsion motors is highly time-consuming. Moreover, to identify the input current at
each operating point, a data map of the d- and q-axis flux linkages based on the d- and q-axis
currents should be obtained previously [5,6]. Copper loss and torque can be calculated
using coil resistance and mapping data, whereas the finite-element method (FEM), which
requires a long analysis time owing to the nonlinearity and the post-processing, should be
used to calculate iron loss accurately. For these reasons, establishing an efficiency map for
EV propulsion motors is costly and time-consuming.

Meanwhile, because the driving distance of EVs per charge with identical battery
capacity is a crucial design requirement, it is essential to establish an efficiency map, and
design for matching maximum efficiency distribution and energy consumption regions [4].
For this requirement, a proper motor concept should be chosen by comparing the effi-
ciency distribution of each model [7]. Moreover, for the designed model, the efficiency
maps according to the several driving conditions, such as the current and voltage con-
strains(minimum, nominal, and maximum conditions), and the operating temperature(low
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and high temperatures), are required for control strategy [8,9]. However, it is not easy to
carry out these analyses owing to a high time cost, as explained previously.

To address these weaknesses, we proposed a novel method for obtaining an efficiency
map of IPMSMs for EV propulsion by employing machine learning. Learning techniques
have been used in various methods involving motors owing to their remarkable predic-
tion performance. Asanuma et al. investigated topology optimization method of IPMSM
by combining a genetic algorithm with a convolution neural network (NN) [10], and
Qian et al. proposed a motor control method using an iterative learning control method
for speed ripple minimization [11]. Furthermore, it has been widely used for the diagnosis
of motor faults. Kao et al. and Zaman et al. presented an effective motor fault diagno-
sis algorithms by applying convolution NN and graph-based semi-supervised learning,
respectively [12,13]. In this paper, we apply a NN for calculating the iron loss at all op-
erating points within a reduced time. The NN and the FEM are combined to accurately
predict the flux density data at each operation point, and the iron loss is calculated using
these data, the frequency, and the loss coefficients [14,15]. Using the proposed method,
an efficiency map of propulsion IPMSM is obtained, and validated through a comparison
with the FEM results. Moreover, the approach is applied to a modified motor model for
further validation.

2. The Process of the Proposed Method

The conventional and proposed methods for establishing an efficiency map are de-
picted in Figure 1. In the conventional method, shown in Figure 1a, a data map, for which
the analyzed points are defined as shown in Figure 2, of the d-q flux linkages according to
the d-q currents are composed via the two-dimensional FEM (2D-FEM) software, JMAG.
The input current at each operating point is defined by calculating maximum torque per
ampere under the limit conditions, such as the maximum current and DC battery voltage,
and used equations are as follows [16]:

Vd = Rid −ωλq (1)

Vq = Riq + ωλd (2)

Vph =
√

V2
d + V2

q (3)

Te =
3
2

P
2
{λdiq − λqid} (4)

where R and ω are the phase resistance and angular velocity, respectively, and λd, λq, id, and
iq are the d-q flux linkages and d-q currents, respectively. Using the mapping data, the d-q
and phase voltages, and torque, which are expressed as Vd, Vq, Vph, and Te, are calculated
by the above equations.

Subsequently, the iron loss is analyzed at defined points to obtain the efficiency map,
which is also carried out using 2D-FEM. By contrast, the proposed method requires the
radial and tangential (R-T) components of the flux density, which only depends on the d-q
currents regardless of frequency owing to the post-processing for iron loss calculation, at
all the elements on the electrical steel, in addition to the d-q flux linkages for composing
the data map, as shown in Figure 1b. Next, the harmonic orders of the obtained R-T flux
densities are analyzed using fast Fourier transform (FFT), and the relationship between
these data and the d-q currents is learned by employing an NN. Then, the harmonic orders
of the flux density at all the operating points are defined using the learned data, and the
loss coefficients are determined based on each harmonic of the flux density and frequency.
Finally, the iron loss is calculated using the harmonic loss method [15].
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(a) (b)

Figure 1. Flowcharts for establishing an efficiency map: (a) conventional method
(b) proposed method.

Figure 2. Analyzed points for the data map considering the maximum current.
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3. Establishing an Efficiency Map of a Propulsion Motor Using the Proposed Method
3.1. Composing a Data Map of the Analyzed Motor

The analyzed motor is IPMSM, shown in Figure 3, with a maximum rated power of
80 kW (300 Nm at 2550 rpm), and its detailed specifications are listed in Table 1. For the
2D-FEM, elements are generated as shown in Figure 4. Because of the many elements in
the stator, only the flux density in one-third part is computed and learned to enhance the
learning performance by reducing the amount of output data [17].

Figure 3. Propulsion motor.

Figure 4. Mesh for the 2D-FEM.
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Table 1. Design specification of analyzed motor.

Parameter Value

Poles & slots 8 & 48
Stack length [mm] 117.2

Outer diameter [mm] 250
Steel of stator & rotor 30PNF1600

Magnet grade N46UH
Max. current density [Arms/mm2] 15

Current limit [Apk] 640
Battery voltage [Vdc] 265

Max. speed [rpm] 10,000

Analysis for the data map is carried out at 83 points according to the d-q currents,
and the resultant d-q flux linkages and R-T flux densities are computed as shown in
Figures 5 and 6, respectively. In the case of the conventional method, because d-q param-
eters are repeated over six cycles owing to the phase harmonics [15], the analysis for
mapping data is carried out only for a sixth period [5]. On the other hand, for the proposed
method, because the waveforms of the R-T flux densities should be computed at this stage,
an electrical half-period analysis is requisite. That is why the period of the flux density
waveform on stator is identical with electrical period as shown in Figure 6a. The analysis
time of both methods for the data map are compared in Table 2.

(a) (b)

Figure 5. Flux linkage data map based on the d-q currents: (a) d-axis (b) q-axis.

Table 2. Computation time for obtaining data map of both methods.

Parameter Conventional Method Proposed Method

Analyzed Points 83
Analysis Step 21 (1/6 Period) 61 (1/2 Period)

Analysis Time (s) 10 23
Total Time (s) 830 1909
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(a) (b)

Figure 6. Sample of R-T flux density waveform at (a) Point1 (stator) (b) Point2 (rotor).

3.2. Calculating Iron Loss Using the Harmonic Loss Method

The iron loss density wi [W/kg] is calculated using the sum of the eddy current and
the hysteresis loss densities, we and wh, as follows [14]:

wi = we + wh = B2 f (ke f + kh) (5)

where B means maximum flux density, and f is its frequency. ke and kh denote the coef-
ficients of the eddy current and hysteresis losses, respectively, which are experimental
values. Equation (1) can be modified as follows:

wi
B2 f

= ke f + kh (6)

Figure 7 shows the graph of Equation (2) according to frequency. Because the loss
coefficients ke and kh are respectively determined as the gradient and intercept in Figure
7, they depend on the frequency and the flux density. Finally, the eddy current and
hysteresis losses, We and Wh, are calculated by the harmonic loss method, which employs
the harmonic orders of the flux density, obtained by FFT of waveform as shown in Figure 8,
at each element and the loss coefficients as follows [15]:

We = ρ
∫

V
∑
n=1

ke( fn, B) f 2
n(B2

r,n + B2
t,n)dv (7)

Wh = ρ
∫

V
∑
n=1

kh( fn, B) fn(B2
r,n + B2

t,n)dv (8)

where ρ represents the density of the steel. The nth harmonics of R-T flux densities (Br,n
and Bt,n), in Equations (3) and (4), for the iron loss analysis at each operating point are
computed via the FEM in the case of the conventional method, whereas we can obtain it
using the learning method in the proposed method, of which process is explained in next
section. Based on the flux density obtained by learned data, the losses and efficiency are
respectively calculated using Equations (3) and (4), and the following equation:

E f f iciency (%) =
Teω

Teω + 3I2
rmsR + We + Wh

× 100 (9)

where Te and w mean torque and angular velocity, respectively. Irms and R denote the root
mean square value of input current and phase resistance, respectively, used to calculate
copper loss. The efficiencies at all the operating points are calculated using Equation (5),
then we can establish an efficiency map of the propulsion motors using only data map
without loss analysis based on the FEM.
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Figure 7. Iron loss density per frequency and flux density according to the frequency (30PNF1600).

(a) (b)

Figure 8. Sample of harmonic orders of flux density: (a) Point1 (stator) (b) Point2 (rotor).

3.3. Learning Process for Flux Density Based on the NN

A NN is a learning model for obtaining non-linear functions that can be applied to a
system with numerous input and output data. A diagram of a NN, which comprises input
x, hidden z, and output layers y, is presented in Figure 9, and the relationship between
these layers is expressed using weights wji and wkj, biases wj0 and wk0, and activation
functions h and σ, as indicated by Equations (6) and (7) [18]:

zj = h(
D

∑
i=1

wjixi + wj0) (10)

yk = σ(
M

∑
j=1

wkjzj + wk0) (11)

where D, M, and K mean the number of inputs, hidden, and output units, respectively. In
this study, the harmonic orders of flux density, as shown in Figure 8, in all elements of
the steel are obtained when establishing the data map, and learned by the NN to make
a function of the d-q currents. Accordingly, the parameter D and K are set as 2 and 2956
or 5114, respectively, which mean d-q currents and the number of mesh elements on the
stator or rotor as shown in Figure 10, to learn each harmonic order on the elements; hence,
total 60 learning models are established to obtain the harmonics from 1st to 60th order. The
parameters and activation function applied to learning model are listed in Table 3. Training
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set means the number of analysis points for the data map as shown in Figure 2, and Logistic
sigmoid function, which is widely used for learning model, is employed for activation
function [18–22]. The ratio of training, test, and validation samples are determined as 0.7,
0.15, and 0.15, respectively, and learning process is carried out by employing MATLAB
Neural Network Pattern Recognition tool.

Figure 9. Structure of the NN diagram.

With above parameters, the examples of learning performance, which is defined as
mean squared error, on the stator and rotor are depicted in Figure 11. Additionally, the
learned harmonics on the elements are compared with FEM data in Figure 12. The 1st and
12th harmonic orders are chosen as examples on the stator and rotor, respectively, because
they are most significant orders on each part as shown in Figure 8, and the learning results
seem to agree well.

(a)

(b)

Figure 10. Learning diagram (e.g.,: nth harmonic order) : (a) stator. (b) rotor.
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Table 3. Learning Parameters.

Parameters Value

Training set 83
Activation function Logistic sigmoid

Input unit (d-q currents) 2

Output unit (Mesh elements)
Stator 2956
Rotor 5114

(a) (b)

Figure 11. Example of learning performance: (a) stator. (b) rotor.

(a) (b)

Figure 12. Comparison of harmonics by FEM and learning model: (a) stator. (b) rotor.

4. Results of the Proposed Method

We define 53 operating points to obtain the efficiency map, as shown in Figure 13,
and determine the input d-q currents at each point based on the data map. Additionally,
the flux density harmonics at all the points are computed using the learned data, and
the iron losses are calculated using Equations (3) and (4). The results, including the iron
loss and efficiency maps, of the conventional (FEM) and proposed methods are compared,
as shown in Figures 14 and 15, respectively, using a computer with a 3.60 GHz CPU and
32.0 GB memory.
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Figure 13. Analyzed operating points of the propulsion IPMSM.

(a) (b)

Figure 14. Iron loss maps: (a) conventional method. (b) proposed method.

(a) (b)

Figure 15. Efficiency maps: (a) conventional method. (b) proposed method.

As shown in Table 4, the performance of the proposed method are compared with
those of the conventional method. In the case of the proposed method, the learning time
is 420 s, and the time required for the loss calculation using Equations (3) and (4) is only



Electronics 2021, 10, 1049 11 of 14

5 s per point; thus, the total time to establish the efficiency map is 2594 s. However, 95 s
per point is required for the loss analysis when using the conventional method, and the
total time is 5865 s, which is more than 2.3 times that required for the proposed method.
The maximum error ratios of iron loss and efficiency among the 53 points are 7.3% and
0.096%, respectively.

Table 4. Comparison of Results.

Performance Conventional Method Proposed Method

Data map Analysis (s) 830 1909
Analyzed Points 53 Points
Learning Time (s) - 420
Analysis Time (s) 95 5

Total Time (s) 5865 2594

Max. Error (%)
Iron Loss - 7.3
Efficiency - 0.096

The results obtained using the proposed method, as shown in Figures 14 and 15, and
Table 4, agree well with the results of the conventional method, and the time consumed is
also significantly reduced by approximately 55.8%. These results illustrate the effectiveness
of the proposed approach in obtaining the efficiency map within reduced time, and ensure
the high accuracy by employing a NN.

5. Additional Analysis for Validation of the Proposed Method by Applying
Modified Model
5.1. Configuration of Modified Model

As discussed in the previous section, we establish the efficiency map by using FEM
and NN, and the results are found to be highly accurate. However, to further validate the
performance of the proposed method, we analyze a modified model applied 2-layered
permanent-magnet rotor, as shown in Figure 16, with the design specifications shown in
Table 1.

Figure 16. Modified model with a 2-layered permanent-magnet rotor.
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5.2. Analysis and Validation of the Proposed Method

The validation is carried out by employing the identical learning parameters expressed
in Table 3. Of course, the number of output units of the rotor are changed to 4,333 owing
to the modified configuration. The operating points are also same as those in Figure 13.
Using the proposed method, the learning process for the modified model is carried out,
and the learned harmonics that are also chosen as the 1st and 12th harmonic orders of flux
density on all the elements are compared with the FEM data in Figure 17.

(a) (b)

Figure 17. Comparison of harmonics by the FEM and learning model for the modified model:
(a) stator. (b) rotor.

The learning results agree well along with the results in Figure 12. Using the learned
data, iron loss and efficiency maps are established and compared with those obtained
using the conventional method as shown in Figures 18 and 19, and the detailed results
are presented in Table 5. The total time required to establish the efficiency map using the
proposed method is reduced by 58.7%, i.e., from 5623 s to 2322 s. The maximum error
ratios of the iron loss and efficiency are 6.5% and 0.01%, respectively. There are differences
between the analysis times listed in Tables 4 and 5, because the number of elements in both
rotor models is not same as explained previously. From the analysis time and accuracy
points of view, it is apparent that the performance of the proposed method is validated by
the further analysis of the modified model.

(a) (b)

Figure 18. Iron loss maps: (a) conventional method. (b) proposed method.
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(a) (b)

Figure 19. Efficiency maps: (a) conventional method. (b) proposed method.

Table 5. Comparison of Analysis Results.

Performance Conventional Method Proposed Method

Data map Analysis (s) 747 1660
Analyzed Points 53 Points
Learning Time (s) - 397
Analysis Time (s) 92 5

Total Time (s) 5623 2322

Max. Error (%)
Iron Loss - 6.5
Efficiency - 0.10

6. Conclusions

In the case of motors with a wide operating region, such as EV propulsion motors,
because it is essential to obtain efficiency map, the FEM has been used to analyze iron
loss. Although this approach has high accuracy, it is highly time-consuming owing to the
nonlinearity and post-processing required for calculating iron loss. Therefore, in this paper,
we introduced a novel method that employs the FEM and an NN to obtain an efficiency
map of the propulsion IPMSMs.

When carrying out the analysis for the data map, the harmonic orders of the flux
density for all the elements on the electrical steel are computed and learned by applying
the NN. Using the learned data, we calculate the iron loss at each operating point via the
harmonic loss method, and establish an efficiency map.

As above-mentioned, compared with the conventional method, the proposed approach
reduced the computational time while also maintaining high accuracy. Moreover, further
validation is carried out by applying the modified rotor model, and the results agree with
those of the conventional method. These results indicate that the proposed method has
high performance in establishing the efficiency map of propulsion motors by combining
the FEM and learning methods.
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