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Abstract: Cyber attackers exploit a network of compromised computing devices, known as a botnet,
to attack Internet-of-Things (IoT) networks. Recent research works have recommended the use of
Deep Recurrent Neural Network (DRNN) for botnet attack detection in IoT networks. However, for
high feature dimensionality in the training data, high network bandwidth and a large memory space
will be needed to transmit and store the data, respectively in IoT back-end server or cloud platform
for Deep Learning (DL). Furthermore, given highly imbalanced network traffic data, the DRNN
model produces low classification performance in minority classes. In this paper, we exploit the
joint advantages of Long Short-Term Memory Autoencoder (LAE), Synthetic Minority Oversampling
Technique (SMOTE), and DRNN to develop a memory-efficient DL method, named LS-DRNN. The
effectiveness of this method is evaluated with the Bot-IoT dataset. Results show that the LAE method
reduced the dimensionality of network traffic features in the training set from 37 to 10, and this
consequently reduced the memory space required for data storage by 86.49%. SMOTE method
helped the LS-DRNN model to achieve high classification performance in minority classes, and
the overall detection rate increased by 10.94%. Furthermore, the LS-DRNN model outperformed
state-of-the-art models.

Keywords: botnet; cybersecurity; machine learning; deep learning; intrusion detection; network
traffic; Internet of Things

1. Introduction

The Internet of Things (IoT) and the Industrial IoT (IIoT) are part of the main in-
formation and communication technologies of the fourth industrial revolution (Industry
4.0) [1–3]. To a large extent, the global coronavirus (COVID-19) pandemic that started in
2020 has restricted human contacts and economic activities in most countries. In view of
this, IoT and IIoT technologies will help in connecting people, homes, and businesses to a
large-scale of computers, smart devices, sensors, vehicles, and industrial machines in smart
cities. Unfortunately, IoT has become the primary target of malicious botnet (A botnet is
a network of computing devices that are coordinated by a botmaster to perform specific
tasks [4].) operators due to their proliferation and distributed nature. A large number
of connected IoT devices are insecure because their default usernames and passwords
remain unchanged [5,6]. A malicious botnet poses a serious cybersecurity threat to the
Internet of Things (IoT) networks and their applications [7–10]. IoT devices are vulnerable
to various botnet attacks such as Denial of Service (DoS), Distributed DoS (DDoS), Oper-
ating System (OS) fingerprinting, service scanning, data exfiltration, and keylogging [11].
Recently, a new IoT Peer-to-Peer (P2P) botnet, named HEH, exploited insecure Telnet
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services on ports 23 and 232 to wipe out all the data in IoT devices using the brute force
method [12]. Therefore, IoT networks must be properly monitored and protected to detect
and prevent cyberattacks.

Cybersecurity mechanisms such as encryption, authentication, and access control may
not be strong enough to protect IoT networks against botnet attacks [13,14]. Therefore, an
efficient Network Intrusion Detection System (NIDS) is needed to complement existing
security mechanisms. NIDS will scan and monitor all the network traffic traces gener-
ated in IoT networks to detect botnet attacks. Signature-based NIDS can detect known
attacks with high accuracy but it cannot identify zero-day (unknown) attacks. On the other
hand, anomaly-based NIDS can detect unknown attacks but it has a higher False Positive
Rate (FPR) than signature-based NIDS. Machine Learning (ML) method can be used to
detect both known and unknown malicious network traffic traces in IoT networks [15–19].
Popular ML methods include Random Forest (RF), Support Vector Machine (SVM), De-
cision Tree (DT), k-Nearest Neighbour (kNN), Random Tree (RT), and Naive Bayes (NB).
However, IoT networks generate massive network traffic data at very high velocity, and
shallow neural networks cannot handle such big data because they have a limited number
of trainable parameters.

Deep Learning (DL) is an advanced ML method that has more than one hidden layer
in its neural network and it learns the feature representation of training data using multiple
levels of abstraction [20–22]. Common DL architectures include Deep Neural Network
(DNN), Convolutional Neural Network(CNN), Recurrent Neural Network (RNN), Deep
Belief Network (DBN), Autoencoder (AE) and Restricted Boltzmann Machine (RBM). RNN
is a type of neural network in which the connections between the neurons form a directed
graph along a temporal sequence. Unlike other DL methods, it considers the temporal
dependencies among the features in the training set. Most times, RNN is combined with
fully-connected dense layer(s) to improve model’s classification performance. The inte-
grated model architecture is referred to as Deep RNN (DRNN). In fact, DRNN models have
been successfully applied to botnet detection in recent literature [11,21–23]. Therefore, we
select DRNN model architecture because of its ability to model the temporal relationships
among the features in network traffic data. However, for high feature dimensionality in
the training data, a high network bandwidth and a large memory space will be needed to
transmit and store the data, respectively in IoT back-end server or cloud platform for DL.
Furthermore, given a highly imbalanced network traffic data, DRNN models will produce
poor classification performance in minority classes.

In this paper, we propose a memory-efficient DL method, named LS-DRNN, for botnet
attack detection in IoT networks. S-DRNN method employs SMOTE and DRNN algorithms
only but LS-DRNN combines Long Short-Term Memory Autoencoder (LAE), SMOTE, and
DRNN algorithms to achieve an efficient performance. AE is an unsupervised DL that is
particularly suitable for feature representation as well as feature dimensionality reduction.
There are different variants of AE including Stacked AE (SAE), Variational AE (AE), Sparse
AE (SpAE), Convolutional AE (CAE), Deep AE (DAE), Denoising AE (DeAE), and Long
Short-Term Memory AE (LAE). Unlike other variants of AE and similar to RNN, LAE uses
Long Short-Term Memory (LSTM) to account for long-term dependencies among features
while learning their representation and reducing the dimensionality. So, LAE is a good fit
for feature dimensionality reduction in the botnet detection task. The main contributions
of this paper are as follows:

1. LAE reduces the feature dimensionality of large-scale network traffic data using
unsupervised DL method;

2. SMOTE generates additional samples for minority classes in low-dimensional network
traffic data to achieve class balance;

3. DRNN performs multi-class classification of network traffic samples in balanced,
low-dimensional data using supervised DL method;
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4. DRNN, S-DRNN, and LS-DRNN models are trained, validated, and tested with net-
work traffic samples in the Bot-IoT dataset [11], and their classification performance
in 11-class classification scenario is evaluated.

2. Review of Related Works

In this section, we review related works to establish the novelty and the main con-
tributions of this paper. Table 1 presents a summary of the state-of-the-art feature dimen-
sionality reduction methods and class balance methods proposed for botnet detection in
IoT networks.

Koroniotis et al. [11] used Pearson Correlation Coefficient (PCC) and joint entropy
techniques to select the 10 most relevant features. Support Vector Machine (SVM), DRNN,
and Long Short-Term Memory (LSTM) models were trained with these features to perform
binary classification. The reduction in the number of features shortened the time taken to
train the ML and DL models, but the classification performance was lower than when the
full features were used for model training. Furthermore, the authors did not evaluate the
performance of the feature selection method in a multi-class classification scenario. The
same set of features was also used for ML-based intrusion detection in [24–30].

Table 1. Review of related works.

Dimensionality Reduction Method Class Balance Method References

Feature selection None [11,24–36]
PCA None [37–39]
t-SNE None [40]
LAE None [10]
None Up-sampling [41]
None SMOTE [42–45]
Feature selection Focal loss [46]
Feature selection SMOTE [47]
LAE SMOTE This paper

Kumar et al. [31] proposed a hybrid feature selection method, which combined PCC
with Random Forest Mean Decrease Accuracy (RFMDA) and Gain Ratio (GR), to select
the 10 most important features. Random Forest (RF), k-Nearest Neighbour (kNN), and
Extreme Gradient Boosting (XGBoost) models were trained with these features to perform
5-class classification. Kumar et al. [32] used a mutual information-based feature selection
method to select the 10 most relevant features. RF and XGBoost models were trained with
these features for the 5-class classification task. Shafiq et al. [33,35] proposed a new feature
selection algorithm based on the wrapper technique and Area Under Curve (AUC) metric.
Then, C4.5, Naive Bayes (NB), RF, and SVM models were trained for 8-class classification.
Koroniotis et al. [34] developed Multilayer Perceptron (MLP) and RNN models using
13 network traffic features. Asadi et al [36] proposed Particle Swarm Optimisation (PSO)
algorithm to select 10 outstanding features. These features were used to train ML/DL
models for binary classification. Popoola et al. [10] performed feature dimensionality
reduction based on the LAE algorithm, while the Bidirectional LSTM (BLSTM) algorithm
was used for the 5-class classification task. Other feature dimensionality reduction methods
include Principal Component Analysis (PCA) in [37–39], and t-distributed Stochastic
Neighbour Embedding (t-SNE) in [40].

Khan and Kim [48] proposed a hybrid intelligent model using both anomaly-based
and misuse-based NIDS approaches. At the first stage, Logistic Regression (LR) and
XGBoost algorithms were used to develop anomaly-based NIDS, while the LAE algorithm
was used for misuse-based NIDS in the second stage of the system. The effectiveness
of the hybrid model was evaluated with the ISCX-2012 data set. Roopak et al. [49]
investigated the effectiveness of Multi-Layer Perceptron (MLP), CNN, LSTM, and CNN-
LSTM models for DDoS attack detection in IoT networks. The authors simulated these
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models with the CICIDS2017 data set. Liaqat et al. [41] used the up-sampling method
to increase the number of benign samples in the training data set. In [42–45], Synthetic
Minority Oversampling Technique (SMOTE) method was used to generate additional
samples for the minority classes. Mulyanto et al. [46] performed feature selection to reduce
dimensionality while focal loss function was used to address class imbalance problem.
Similarly, Injadat et al. [47] selected the most relevant features and additional minority
samples were generated using SMOTE.

3. LS-DRNN: A Memory-Efficient Deep Learning Method

In this section, we explain how the LS-DRNN method is developed for botnet at-
tack detection in IoT networks. LS-DRNN employs an unsupervised DL method (LAE),
a sampling method (SMOTE), and a supervised DL method (DRNN).

3.1. LSTM Autoencoder

LAE method is an unsupervised DL method and it was used to reduce the dimen-
sionality of network traffic features. Consequently, this process is expected to reduce the
amount of memory space that will be required to store training data for DL in IoT back-end
server or cloud platform.

A high-dimensional network traffic feature set is represented with X ∈ Rn×a, where n
is the total number of network traffic samples, and a is the feature dimensionality. This
matrix was reshaped to form a sequential 3D tensor, X ∈ Rn×1×a. LSTM is a recurrent
neural network which learns latent space representation of network traffic features using
input gate, forget gate, memory cell state, output gate, and hidden state. A single LSTM
layer was used to reduce the dimensionality of the feature set based on Equations (1)–(6):

i1 = σr(Wix1x + Wih1h0 + bi1), (1)

f1 = σr

(
W f x1x + W f h1h0 + b f 1

)
, (2)

c̃1 = σh(Wc̃x1x + Wc̃h1h0 + bc̃1), (3)

c1 = i1 � c̃1 + f1 � c0, (4)

o1 = σr(Wox1x + Woh1h0 + bo1), (5)

henc = o1 � σh(c1), (6)

where i is the input gate vector; f is the forget gate vector; c is the memory cell state vector;
o is the output gate vector; h is the hidden state vector; W(·) are the weight matrices; b(·)
are the bias vectors; σr is a sigmoid activation function; and σh is a Rectified Linear Unit
(ReLU). The weight matrices were initialised using He uniform technique [50].

Similarly, a single LSTM layer was also used to reconstruct the original high-dimensional
features from the encoded, low-dimensional features based on Equations (7)–(12):

i2 = σr(Wix2henc + Wih2h0 + bi2), (7)

f2 = σr

(
W f x2henc + W f h2h0 + b f 2

)
, (8)

c̃2 = σh(Wc̃x2henc + Wc̃h2h0 + bc̃2), (9)

c2 = i2 � c̃2 + f2 � c0, (10)

o2 = σr(Wox2henc + Woh2h0 + bo2), (11)

hdec = o2 � σh(c2). (12)

3.2. Synthetic Minority Oversampling Technique

High class imbalance adversely affects the classification performance of ML/DL
models. The class imbalance problem is usually handled by either under-sampling or
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over-sampling the data in the training set to achieve class balance. However, the under-
sampling approach is not suitable for cases where the number of samples in one of the
minority classes is very small (<10). In our case, there are only four samples in one of the
minority classes (more details will be provided later in Section 4). Therefore, we simply
ruled out the option of the under-sampling approach.

Recent studies recommended SMOTE as an efficient over-sampling method [42–45,47,51].
Therefore, SMOTE algorithm was proposed to deal with the high class imbalance problem
in the training set in an 11-class classification scenario. Unlike the method in [52,53],
which over-samples minority classes with replacement, the method employed in this paper
generates synthetic examples by using techniques such as rotation and skew in order to
achieve class balance [54].

These synthetic network traffic data were generated along the line segments joining
any or all of the k nearest neighbours of the minority classes, where k = 3. Therefore,
neighbours from the three nearest neighbours were randomly selected. The step-wise
process of SMOTE is presented in Algorithm 1. The generation of synthetic samples (S)
in the minority classes depends on the number of minority class samples (T), the over-
sampling rate (N%), and the number of nearest neighbours (k). If N is less than 100%,
the minority class samples are randomised. We compute k nearest neighbours for each
of the minority class only. This is a function of N, the current minority class sample (i),
the integral multiples of 100 in N (j), and an array of random numbers (nn_array). Z is an
array of original minority class samples; r is the count of a number of synthetic samples
generated, and V is an array of synthetic samples.

Algorithm 1: SMOTE Algorithm
Input: T, N, k
Output: S
Initialization: k = 3, q = 37, r = 0

1 if N < 100 then
2 Randomise the T minority class samples
3 S = (N/100)× T
4 N = 100
5 end
6 N = (j)(N/100)
7 for i = 1 to T do
8 Compute k nearest neighbours for i
9 while N 6= 0 do

10 nn = random(1, k)
11 for c = 1 to q do
12 f = Z[nn_array[nn]][c]− Z[i][c]
13 g = random(0, 1)
14 V[r][c] = Z[i][c] + (g× f )
15 end
16 r = r + 1
17 N = N − 1
18 end
19 end

3.3. Deep Recurrent Neural Network

Given a low-dimensional network traffic feature set, X, and a corresponding ground
truth label vector, y, the goal of DRNN is to learn the function that determines the output
target whenever the input data sequences are presented. First, a new hidden state vector, h,
is produced at each time step implementing an activation function on the previous hidden
state, h0, and the current input, x.
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Unlike Feedforward Neural Network (FNN), RNN has a hidden state which helps
to model temporal dynamics of input data. RNN learns the temporal dynamics of a mini-
batch of highly imbalanced network traffic features, Xk, by transforming the input data
and initial hidden state, hinit, with trainable parameters as stated in Equation (13):

h1k = σh(WxXk + Whhinit + bh), (13)

where h1k is the new hidden state when RNN is trained with the kth mini-batch; Wx and
Wh are the weights used for linear transformation of Xk and hinit respectively; and bh is
the bias. RNN layer output is further processed based on Equations (14)–(20) to produce
DRNN layer output. Complete information about DRNN is presented in Algorithm 2.

Algorithm 2: DRNN Algorithm
Input: X
Target: y
Output: ỹ

1 h0 = hinit
2 for e = 1 to u do
3 for k = 1 to n do
4 h1k = σh(Wx1xk + Wh1h0 + b1h)
5 for m = 2 to (d + 1) do
6 hmk = σh

(
Whmh(m−1)k + bmh

)
7 end
8 ỹk = σy

(
Wyhmk + by

)
9 Lk = θ(yk, ỹk)

10 end

11 L = 1
n

n

∑
k=1

Lk

12 W
′
(·), b

′
(·) = ψ

(
W(·), b(·)

)
13 end

The hidden states of the four dense hidden layers are obtained by Equation (14):

hmk = σh

(
Whmh(m−1)k + bmh

)
(14)

where m = [2, 3, 4, 5]; hmk is the hidden state of mth hidden layer; h1k = hk; Whm is the
weight used for linear transformation of previous hidden state, h(m−1)k; bmh is the bias of
mth hidden layer; and σh is a Rectified Linear Unit (ReLU) activation function given by
Equation (15):

σh(a) = max(0, a). (15)

If a is a negative value, the function returns 0; but the same a is returned when it is a
positive value.

The hidden state of the fourth dense layer, h5k, is transformed by the dense output
layer as stated in Equation (16):

ỹk = σy
(
Wyh5n + by

)
, (16)

where n is the sample size of mini-batch of X and n = p/µ; µ is the batch size and µ = 512;
Wy is the weight used for linear transformation of h5k; by is the bias of dense output layer;
and σy is the activation function of dense output layer.

In multi-class classification scenario, σy is a softmax function given by Equation (17):
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ỹk =
e(Wyh5k+by)

γ

∑
ω=1

e(Wyh5k+by)
, (17)

where γ is the number of classes in y. while the difference between ỹ and y is measured by
categorical cross-entropy loss function (θc) in Equation (18):

L = θc(yk, ỹk) = −
1
n

n

∑
τ=1

γ

∑
ω=1

[
yτ,ω log(ỹτ,ω)

]
. (18)

The performance of DRNN was validated with a different previously unknown
highly imbalanced network traffic data, Xva, and its corresponding ground-truth labels, yva.
Training loss and validation loss are minimized in mini-batches over u epochs using an
efficient first-order stochastic gradient descent algorithm named Adam in [55]. Trainable
parameters of densely-connected DL model are represented by Equation (19):

Φ =
[
W(·), h(·), b(·)

]
. (19)

For each epoch, Adam optimizer, ψ, updates Φ to minimize L as stated in Equation (20):

Φ
′
= ψ(Φ, L, α, β1, β2), (20)

where Φ
′

is the new set of trainable parameters; α is the learning rate (0.0001); and β1 and
β2 are the exponential decay rates (0.9 and 0.999 respectively).

4. Simulation and Performance Evaluation

In this section, we implement and evaluate the effectiveness of DRNN, S-DRNN, and
LS-DRNN models with the Bot-IoT data set [11]. The research methodology involves data
pre-processing, model development, and model evaluation, as shown in Figure 1.

Figure 1. Block diagram showing the proposed methodology.

Bot-IoT data set [11] contains the information about the features of 477 benign network
traffic samples that were generated by five IoT scenarios, namely: a weather station, a smart
fridge, motion-activated lights, a remote-controlled garage door, and a smart thermostat.
Furthermore, the data set contains the features and the corresponding labels of 3,668,045
malicious network traffic samples that represent different botnet attack scenarios including
DDoS, DoS, reconnaissance, and data theft. All the network traffic samples in the Bot-IoT
dataset were grouped into 10 attack classes and a benign class namely: DDoS-HTTP (DDH),
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DDoS-TCP (DDT), DDoS-UDP (DDU), DoS-HTTP (DH), DoS-TCP (DT), DoS-UDP (DU),
normal, OS Fingerprinting (OSF), Service Scanning (SS), Data Exfiltration (DE), and Key
Logging (KL).

Data pre-processing stage involved input feature selection, label encoding, input fea-
ture normalization and random data splitting as described in [10]. The sample distribution
of the BoT-IoT data set for training, validation and testing in Table 2 shows that the network
traffic data is highly imbalanced across the 11 classes. All the 37 network traffic features
have continuous values; and these values were scaled to a range of [0, 1] using min-max
transformation given by Equation (21):

X̃ =
X− Xmin

Xmax − Xmin
(21)

where Xmin and Xmax are the minimum and maximum values of X respectively. Data pre-
processing operations were implemented using Numpy, Pandas and Scikit-learn libraries
developed for Python programming language.

Table 2. Network traffic samples in the training, validation, and testing sets.

Class Training Validation Testing

DDH 588 197 204
DDT 586,393 195,713 195,274
DDU 568,760 189,407 190,088
DH 906 311 268
DT 369,965 122,861 122,974
DU 619,414 206,772 206,789
Norm 290 86 101
OSF 10,795 3537 3582
SS 43,949 14,806 14,413
DE 4 1 1
KL 48 14 11

Figures 2–4 show the overview of the implementation of LAE, SMOTE, and DRNN
methods, respectively. The classification performance of ML/DL model depends on the
quality of the training data and the choice of the right network topology. Therefore, we
performed extensive experimentation with different recurrent layer, dense layer, activation
function, batch size, and epochs to determine the most suitable DRNN architecture. The
optimal DRNN structure shown in Figure 4 has a single recurrent layer, four dense layers,
and an output layer. There were 100 neurons each in the recurrent layer and the four
dense layers. On the other hand, the number of neurons in the output layer depends on
the number of classes in the training set. Hence, the number of neurons in the output
layer was set to 11. ReLU activation function was used in the recurrent and dense layers,
while softmax activation function was employed in the output layer. DRNN, S-DRNN, and
LS-DRNN models were trained using mini-batch stochastic gradient descent algorithm [55],
and we used a batch size of 64. These models were trained and validated for a period of
20 epochs using categorical cross-entropy loss function. Data processing were performed
using open-source frameworks and libraries such as Pandas (https://pandas.pydata.org/),
Numpy (https://numpy.org/), Sklearn (https://scikit-learn.org/stable/), and Imblearn
(https://pypi.org/project/imblearn/). Model training, validation and testing were imple-
mented using TensorFlow (https://www.tensorflow.org/) and Keras (https://keras.io/)
frameworks developed for Python programming running on Ubuntu 16.04 LTS worksta-
tion with the following specifications: RAM (32 GB), processor (Intel Core i7-9700K CPU @
3.60 GHz × 8), Graphics (GeForce RTX 2080 Ti/PXCIe/SSE2) and OS type (64-bit). The
data sizes of the features in the training sets are analysed to determine the amount of stor-
age space required for DL in memory-constrained IoT devices. Then, training losses and
validation losses are analysed to evaluate the robustness of DL models against under-fitting

https://pandas.pydata.org/
https://numpy.org/
https://scikit-learn.org/stable/
https://pypi.org/project/imblearn/
https://www.tensorflow.org/
https://keras.io/


Electronics 2021, 10, 1104 9 of 18

and over-fitting, respectively. Lastly, the accuracy, precision, recall, F1 score, FPR, Negative
Predictive Value (NPV), Balanced accuracy (BACC), Geometric Mean (GM), and Matthews
Correlation Coefficient (MCC) of DL models are analysed to evaluate their classification
performance. The time required to train DL models with the network traffic samples in the
training sets and the time required to test the models with the network traffic samples in the
testing sets is analysed to evaluate their training speed and detection speed, respectively.

Figure 2. LAE model for feature dimensionality reduction.

Figure 3. SMOTE method for the generation of synthetic network traffic features.
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Figure 4. DRNN model for multi-class classification.

5. Results and Discussion

In this section, we evaluate and compare the effectiveness of learning the discrimina-
tive features of benign network traffic and botnet attack traffic from highly imbalanced
data using DRNN, S-DRNN, and LS-DRNN methods.

5.1. Results of DRNN Model

The data size of the feature set used for the training of the DRNN model was
1085.88 MB, as shown in Table 3. This implies that a large memory space (>1 GB) will be
required to store training data for DL-based botnet attack detection in IoT back-end server
or cloud platform. Figure 5 shows that the training loss of the DRNN model decreased from
0.1762 to 0.0027 as the number of epochs increased from 1 to 20. Similarly, its validation loss
decreased from 0.0601 to 0.0036, as shown in Figure 6. The consistent decrease in training
loss and validation loss, as the number of epochs increased, implies that the DRNN model
neither under-fit nor over-fit the network traffic data in the training and validation sets,
respectively.

Table 3. Data size and computation time.

Model Data Size (MB) Encoding Time (s) Sampling Time (s) Train Time (s) Test Time (s)

Ferrag et al. [21] 1085.88 - - - -
Ferrag et al. [22] 1085.88 - - - -
Ferrag et al. [56] 1085.88 - - - -
Alkadi et al. [23] 1085.88 - - - -

DRNN 1085.88 - - 207.72 0.7552
S-DRNN 2680.24 - 548.72 603.83 0.7558

LS-DRNN 146.74 204.67 15.37 616.96 0.7181

Table 4 shows that DRNN model achieved high accuracy (>99%), high NPV (>99%),
and low FPR (≈0%) in each of the 11 classes. In addition, the precision, recall, F1 score,
BACC, GM, and MCC of the DRNN model were high for the majority classes; however,
the values of these performance metrics were relatively low for the minority classes.
Consequently, the mean values of precision (88.58%), recall (88.81%), F1 score (88.63%),
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BACC (94.40%), GM (89.71%), and MCC (88.66%) were not very close to 100% as expected.
This means that high class imbalance in the training set degraded the ability of the DRNN
model to correctly classify the network traffic samples in the minority classes. Furthermore,
the time taken to train the DRNN model with 2,201,112 network traffic samples in the
training set and the time taken to test the model with 1,467,410 samples in the testing set
were 207.72 s and 0.7552 s, respectively.
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Figure 5. Cross-entropy losses during training.
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Figure 6. Cross-entropy losses during validation.

Table 4. Classification performance of DRNN model.

Metric DDH DDT DDU DH DT DU Norm OSF SS DE KL Overall

Accuracy 99.99 99.94 100.00 99.99 99.95 100.00 100.00 100.00 100.00 100.00 100.00 99.99
Precision 95.04 99.79 99.99 92.09 99.99 100.00 100.00 100.00 99.98 0.00 87.50 88.58

Recall 85.35 100.00 100.00 94.29 99.68 99.99 97.65 100.00 100.00 0.00 100.00 88.81
F1 score 89.93 99.89 99.99 93.18 99.84 99.99 98.81 100.00 99.99 0.00 93.33 88.63

FPR 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
NPV 100.00 100.00 100.00 100.00 99.94 99.99 100.00 100.00 100.00 100.00 100.00 99.99

BACC 92.67 99.96 100.00 97.14 99.84 99.99 98.82 100.00 100.00 50.00 100.00 94.40
GM 97.48 99.89 99.99 95.96 99.96 100.00 100.00 100.00 99.99 0.00 93.54 89.71

MCC 90.06 99.86 99.99 93.18 99.80 99.99 98.82 100.00 99.99 0.00 93.54 88.66
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5.2. Results of S-DRNN Model

SMOTE method was introduced to mitigate the adverse effect of high class imbalance
on the classification performance of the DRNN model as earlier discussed in Section 5.1.
This method generated a total of 4,612,442 synthetic network traffic samples in 548.72 s to
achieve class balance across the 11 classes. Table 5 shows the distribution of network traffic
samples that were used to train the S-DRNN model. Figure 5 shows that the training loss
of the S-DRNN model decreased from 0.0917 to 0.0005 as the number of epochs increased
from 1 to 20. Similarly, its validation loss decreased from 0.0473 to 0.0009. Compared to
the DRNN model, the initial training loss of the S-DRNN model reduced by 48%, and its
final training loss reduced by 83%. Likewise, the initial validation loss of the S-DRNN
model reduced by 21.19%, and its final validation loss reduced by 76.08%. Therefore, the
S-DRNN model was more robust against under-fitting and over-fitting than the DRNN
model. Tables 4 and 6 shows that the classification performance of the S-DRNN model was
better than that of the DRNN model, most especially in minority classes. Specifically, the
SMOTE method that was introduced in the training of the S-DRNN model increased the:

1. precision by 4.96%, recall by 14.65%, F1 score by 10.07%, BACC by 7.33%, GM by
2.52%, and MCC by 9.94%, for DDH class;

2. precision by 7.43%, recall by 5.23%, F1 score by 6.34%, BACC by 7.33%, GM by 2.52%,
and MCC by 9.94%, for DH class;

3. recall by 2.35%, F1 score by 1.19%, BACC by 1.18%, and MCC by 1.18%, for Norm class;
4. precision by 100%, recall by 100%, F1 score by 100%, BACC by 50%, GM by 100%,

and MCC by 100%, for DE class; and
5. precision by 12.50%, F1 score by 6.67%, GM by 6.46%, and MCC by 6.46%, for KL class.

However, Table 3 shows that the increase in the number of network traffic samples
increased the data size of the feature set used for the training of the S-DRNN model by
146.80%, compared to the data size of the feature set used for the training of the DRNN
model. The time taken to train the S-DRNN model with 6813554 network traffic samples in
its training set was 603.83 s, and the time taken to test the model with 1,467,410 samples in
its testing set was 0.7558 s. Therefore, more time was spent on training the S-DRNN model
than the DRNN model.

Table 5. Sample distribution of training set for S-DRNN model.

Class Original Data After Sampling Generated Samples

DDH 588 619,414 618,826
DDT 586,393 619,414 33,021
DDU 568,760 619,414 50,654
DH 906 619,414 618,508
DT 369,965 619,414 249,449
DU 619,414 619,414 0
Norm 290 619,414 619,124
OSF 10,795 619,414 608,619
SS 43,949 619,414 575,465
DE 4 619,414 619,410
KL 48 619,414 619,366
Total 2,201,112 6,813,554 4,612,442
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Table 6. Classification performance of S-DRNN model.

Metric DDH DDT DDU DH DT DU Norm OSF SS DE KL Overall

Accuracy 100.00 99.99 100.00 100.00 99.99 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Precision 100.00 99.99 100.00 99.52 99.94 100.00 100.00 100.00 99.99 100.00 100.00 99.95

Recall 100.00 99.97 100.00 99.52 99.99 100.00 100.00 99.96 100.00 100.00 100.00 99.95
F1 score 100.00 99.98 100.00 99.52 99.97 100.00 100.00 99.98 100.00 100.00 100.00 99.95

FPR 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NPV 100.00 99.99 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

BACC 100.00 99.98 100.00 99.76 99.99 100.00 100.00 99.98 100.00 100.00 100.00 99.97
GM 100.00 99.99 100.00 99.76 99.97 100.00 100.00 100.00 100.00 100.00 100.00 99.97

MCC 100.00 99.97 100.00 99.52 99.96 100.00 100.00 99.98 100.00 100.00 100.00 99.95

5.3. Results of LS-DRNN Model

LAE method was introduced to address the challenge of large memory space required
for the storage of the network traffic data that was used to train the S-DRNN model, as
previously discussed in Section 5.2. This method reduced the feature dimensionality of
3,668,045 network traffic samples in the training set from 37 to 10 in 204.67 s. Consequently,
Table 3 shows that the data size of the feature set of the LS-DRNN model reduced by
86.49% and 94.53%, compared to the data size of the feature sets that were used to train
DRNN and S-DRNN models, respectively. Figure 7 shows that the reconstruction loss of
the LAE method decreased from 0.0333 to 0.0009 as the number of epochs increased from 1
to 20. Similarly, its validation loss decreased from 0.0085 to 0.0037. Low reconstruction loss
implies that the output of LAE (i.e., low-dimensional network traffic features) is similar to
the high-dimensional network traffic features without any significant loss of information.

SMOTE method generated a total of 4,612,442 synthetic network traffic samples in
15.37 s to achieve class balance across the 11 classes. Table 3 shows that the LAE method that
was introduced in the LS-DRNN model reduced the sampling time by 97.20%, compared
to the sampling time in the S-DRNN model. Figure 5 shows that the training loss of the
LS-DRNN model decreased from 0.1860 to 0.0068 as the number of epochs increased from 1
to 20. Similarly, its validation loss decreased from 0.1313 to 0.0128. The consistent decrease
in training loss and validation loss, as the number of epochs increased, implies that the
LS-DRNN model neither under-fit nor over-fit the network traffic data in the training and
validation sets, respectively.
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Figure 7. Reconstruction losses of LAE model.

Tables 4 and 7 shows that the classification performance of the LS-DRNN model
was better than that of the DRNN model, and it is similar to that of the S-DRNN model.
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Specifically, the LAE and SMOTE methods that were introduced in the training of the
LS-DRNN model increased the:

1. recall by 14.01%, F1 score by 2.65%, BACC by 7%, and MCC by 2.74%, for DDH class;
2. recall by 5.71%, and BACC by 2.86%, for DH class;
3. recall by 2.35%, and BACC by 1.18%, for Norm class;
4. precision by 100%, recall by 100%, F1 score by 100%, BACC by 50%, GM by 100%,

and MCC by 100%, for DE class; and
5. precision by 12.50%, F1 score by 6.67%, GM by 6.46%, and MCC by 6.46%, for KL class.

The detail of the detection rates and misclassification rates of the LS-DRNN model
in each of the 11 classes is available in Figure 8. Tables 8 and 9 show that the LS-DRNN
model demonstrated better classification performance and faster detection speed than
state-of-the-art ML and DL models. The time taken to train the LS-DRNN model with
6,813,554 network traffic samples in its training set was 616.96 s, and the time taken to
test the model with 1,467,410 samples in its testing set was 0.7181 s. Table 3 shows that
having the lowest testing time, the LS-DRNN model achieved the fastest detection speed,
compared to DRNN and S-DRNN models. In summary, the results of this study show that
the LAE method reduced the dimensionality of network traffic features in the training set
from 37 to 10, and this consequently reduced the memory space required for data storage
by 86.49%. SMOTE method helped the LS-DRNN model to achieve high classification
performance in minority classes, and the overall detection rate increased by 10.94%.

Table 7. Classification performance of LS-DRNN model.

Metric DDH DDT DDU DH DT DU Norm OSF SS DE KL Overall

Accuracy 100.00 99.68 99.93 99.99 99.69 99.93 100.00 100.00 100.00 100.00 100.00 99.93
Precision 86.67 99.16 99.95 87.14 99.51 99.79 93.41 100.00 99.98 100.00 100.00 96.87

Recall 99.36 99.66 99.77 100.00 98.65 99.95 100.00 99.93 99.94 100.00 100.00 99.75
F1 score 92.58 99.41 99.86 93.13 99.08 99.87 96.59 99.96 99.96 100.00 100.00 98.22

FPR 0.00 0.31 0.02 0.01 0.10 0.08 0.00 0.00 0.00 0.00 0.00 0.05
NPV 100.00 99.88 99.92 100.00 99.73 99.98 100.00 100.00 100.00 100.00 100.00 99.95

BACC 99.68 99.67 99.87 100.00 99.28 99.93 100.00 99.96 99.97 100.00 100.00 99.85
GM 93.09 99.52 99.93 93.35 99.62 99.88 96.65 100.00 99.99 100.00 100.00 98.37

MCC 92.80 99.19 99.81 93.34 98.89 99.82 96.65 99.96 99.96 100.00 100.00 98.22
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Figure 8. Confusion matrix of LS-DRNN model.
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Table 8. Recall of ML and DL models across 11 classes.

Model DDH DDT DDU DH DT DU Norm OSF SS DE KL

RNN [21] 100.00 100.00 100.00 100.00 100.00 100.00 - 92.22 87.91 99.75 77.91
SVM [21] 62.24 89.56 98.14 70.14 71.26 100.00 - 70.14 72.82 89.67 65.12
RF [21] 82.26 88.28 55.26 82.20 81.77 82.99 - 82.20 69.82 86.55 81.56
NB [21] 50.78 78.67 78.50 68.68 65.56 100 - 68.68 65.21 66.55 65.62

DNN [22] 96.62 96.22 96.12 96.70 96.63 96.53 - 96.14 96.43 100.00 96.76
RNN [22] 96.56 96.65 96.67 96.87 96.77 96.76 - 96.76 96.87 100.00 97.00
CNN [22] 97.01 97.00 97.01 97.51 97.11 97.11 - 97.00 97.10 100.00 98.10
RBM [22] 96.54 96.51 96.52 96.80 96.57 96.56 - 96.30 96.30 100.00 97.11
DBN [22] 96.72 96.60 96.62 96.91 96.72 96.83 - 96.61 96.60 100.00 97.66
DBM [22] 96.21 96.08 96.11 96.99 96.33 96.65 - 96.08 96.07 100.00 98.22
DAE [22] 97.99 97.71 97.99 98.41 98.00 98.03 - 97.72 97.71 100.00 98.33

RDTIDS [56] 93.17 95.84 98.66 77.47 100.00 100.00 - 98.16 99.47 100.00 100.00
BLSTM [23] 99.25 99.10 99.45 99.75 99.65 99.79 - 92.77 92.20 96.50 89.90
LS-DRNN 99.36 99.66 99.77 100.00 98.65 99.95 100.00 99.93 99.94 100.00 100.00

Table 9. Overall classification performance of ML and DL models.

Model Accuracy Precision Recall F1
Score FPR NPV AUC GM MCC Ttrain

(s) Ttest (s)

RNN [21] 99.91 - - - 1.28 - - - - 201.70 44.23
SVM [21] - - - - 2.99 - - - - - -
RF [21] - - - - 4.29 - - - - - -
NB [21] - - - - 3.24 - - - - - -

DNN [22] 98.22 - - - 1.14 - - - - 991.60 -
RNN [22] 98.31 - - - 1.10 - - - - 1400.60 -
CNN [22] 98.37 - - - 1.00 - - - - 1367.20 -
RBM [22] 98.28 - - - 1.13 - - - - 2111.90 -
DBN [22] 98.31 - - - 1.12 - - - - 2921.70 -
DBM [22] 98.38 - - - 1.11 - - - - 2800.10 -
DAE [22] 98.39 - - - 1.11 - - - - 2816.20 -

RDTIDS [56] 97.00 - - - 1.12 - - - - 195.50 2.27
BLSTM [23] 98.91 - - - 1.20 - - - - 149.60 69.10
LS-DRNN 99.93 96.87 99.75 98.22 0.05 99.95 99.85 99.37 98.22 616.96 0.72

6. Conclusions

In this paper, we developed a memory-efficient DL method, named LS-DRNN, to
detect botnet attacks in IoT networks. This method exploited the combined benefits of
an unsupervised DL method (LAE), a sampling method (SMOTE), and a supervised DL
method (DRNN) for efficient performance. The effectiveness of the LS-DRNN method was
evaluated with the highly imbalanced network traffic features and their corresponding
labels in the Bot-IoT dataset. First, the LAE method reduced the dimensionality of the
network traffic features to minimise the memory space required for the storage of training
data in IoT back-end server or cloud platform. Then, SMOTE method generated a total of
4,612,442 synthetic network traffic samples to achieve class balance across the 11 classes.
Lastly, DRNN performed a multi-class classification of balanced, low-dimensional network
traffic features to identify botnet attacks in IoT networks.

The results of our experiments showed that the dimensionality of the network traffic
features reduced from 37 to 10. Consequently, the memory space required for the storage
of training data reduced by 86.49%. Furthermore, the LS-DRNN model achieved high
classification performance in the minority classes. Compared to the DRNN model, the
overall precision, recall, F1 score, BACC, GM, and MCC of the LS-DRNN model increased
by 8.29%, 10.94%, 9.59%, 5.45%, 8.66%, and 9.56%, respectively. Furthermore, the LS-
DRNN model demonstrated better classification performance and faster detection speed
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than state-of-the-art ML and DL models. Therefore, the findings of this study validate the
effectiveness of the LS-DRNN model for efficient botnet attack detection in IoT networks.
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