
electronics

Article

Flexible 5G New Radio LDPC Encoder Optimized for High
Hardware Usage Efficiency

Vladimir L. Petrović 1,* , Dragomir M. El Mezeni 1 and Andreja Radošević 2

����������
�������

Citation: Petrović, V.L.; El Mezeni,

D.M.; Radošević, A. Flexible 5G New

Radio LDPC Encoder Optimized for

High Hardware Usage Efficiency.

Electronics 2021, 10, 1106. https://

doi.org/10.3390/electronics10091106

Academic Editors: Byeong

Yong Kong and Hoyoung Yoo

Received: 12 April 2021

Accepted: 6 May 2021

Published: 8 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11120 Belgrade, Serbia;
elmezeni@etf.bg.ac.rs

2 Tannera LLC, 401 Wilshire Blvd, 12th Floor, Santa Monica, CA 90401, USA; andreja@tannera.io
* Correspondence: petrovicv@etf.bg.ac.rs

Abstract: Quasi-cyclic low-density parity-check (QC–LDPC) codes are introduced as a physical
channel coding solution for data channels in 5G new radio (5G NR). Depending on the use case
scenario, this standard proposes the usage of a wide variety of codes, which imposes the need for
high encoder flexibility. LDPC codes from 5G NR have a convenient structure and can be efficiently
encoded using forward substitution and without computationally intensive multiplications with
dense matrices. However, the state-of-the-art solutions for encoder hardware implementation can be
inefficient since many hardware processing units stay idle during the encoding process. This paper
proposes a novel partially parallel architecture that can provide high hardware usage efficiency (HUE)
while achieving encoder flexibility and support for all 5G NR codes. The proposed architecture
includes a flexible circular shifting network, which is capable of shifting a single large bit vector or
multiple smaller bit vectors depending on the code. The encoder architecture was built around the
shifter in a way that multiple parity check matrix elements can be processed in parallel for short
codes, thus providing almost the same level of parallelism as for long codes. The processing schedule
was optimized for minimal encoding time using the genetic algorithm. The optimized encoder
provided high throughputs, low latency, and up-to-date the best HUE.

Keywords: channel coding; 5G new radio; low-density parity-check (LDPC) codes; encoder architec-
ture; hardware usage efficiency; circular shifter; genetic algorithm optimization

1. Introduction

Fifth-generation wireless technology standard for broadband cellular networks (5G
NR) [1] introduces LDPC codes [2] for data channel coding. Due to their excellent error-
correcting performance and the possibility of achieving high parallelization in decoding
procedures, LDPC codes outperform turbo codes [3], as their predecessor in 3G and 4G
LTE [4,5]. The main channel coding challenges posed by novel 5G-centric applications
are multigigabit throughputs, low latency (in certain use cases), and high flexibility while
keeping high error-correcting performance. In addition to that, the channel coding solution
should support incremental redundancy hybrid automatic repeat request (IR–HARQ)
procedures. LDPC codes can face all those challenges better than turbo codes. Most
importantly, they have higher coding gain and have better error-correcting performance in
the error floor region [5].

LDPC codes are linear block codes, meaning that they are completely defined by their
parity check matrices (PCM). One of the reasons for their increasing adoption in many
communication standards is the computational efficiency of the decoding procedure, which
is achieved by designing the sparse PCM. In addition, the PCM of practical LDPC codes is
always structured in a way that can achieve high parallelization of both the encoder and
the decoder. On the other hand, turbo code decoding is inherently serial. Although it can
be parallelized to some extent, high degrees of parallelism are hardly achievable. Moreover,
the throughput of turbo decoders is usually not dependent on the code rate, whereas

Electronics 2021, 10, 1106. https://doi.org/10.3390/electronics10091106 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-2268-6547
https://doi.org/10.3390/electronics10091106
https://doi.org/10.3390/electronics10091106
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10091106
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10091106?type=check_update&version=3

Electronics 2021, 10, 1106 2 of 24

LDPC decoder throughput increases along with the code rate since PCM for higher code
rate is usually smaller than the PCM for low code rate. This property enables achieving
higher peak throughput at high spectral efficiencies and high values of signal-to-noise ratio
(SNR) [5].

The most common structured LDPC family is known as quasi-cyclic (QC) LDPC
codes [6–8]. Their PCM consists of circularly shifted identity submatrices or square
zero submatrices. Such submatrices are frequently called circulant permutation matri-
ces (CPM) [8,9]. The size of CPMs is referred to as lifting size or lifting factor (Z) [5].
QC–LDPC codes are usually designed based on the so-called base graph (BG) matrix,
which defines a macroscopic structure of a code. The final PCM is constructed by placing
CPMs at appropriate positions defined by the BG matrix. Since CPMs are either circularly
shifted identity matrices or zero matrices, the PCM can be stored as a matrix of integer
numbers that represent corresponding shift values or zero matrix identification. Such
description is frequently called a permutation matrix [7] or exponent matrix [9] and is very
much convenient for 5G NR since the number of supported codes is very high. The great
diversity of code rates and codeword lengths additionally requires a unification of code
descriptions; therefore, the representation using exponent matrices is essential [5,9].

Another important property of an LDPC code is its regularity. An LDPC code is
regular if all columns in the PCM have the same number of nonzero entries, i.e., if they all
have the same weights, and if all rows in the PCM have the same weights. However, the
error-correcting performance of such LDPC codes is usually not as good as the performance
of irregular LDPC codes [10]. Hardware that supports irregular LDPC codes is usually
more challenging to design since irregular code structure can significantly affect HUE [11].
Nevertheless, 5G NR introduces a large number of irregular LDPC codes with various
codeword lengths and code rates. Therefore, hardware that supports 5G NR codes must
provide a high level of flexibility [11].

Multiple encoding methods for LDPC codes have been developed [12–35]. A straight-
forward method is to use a generator matrix for encoding [12–16]. Such a method is
computationally very expensive since, in general, the generator matrix is not sparse. Re-
duction of complexity can be obtained for systematic codes if the PCM is divided into two
parts [17–19]. This way, the encoding can be performed by multiplication with two smaller
matrices of which the first one is sparse, but the second one is dense. An approximately
linear complexity can be obtained by using the Richardson and Urbanke (RU) method [20].
This method is based on the offline preprocessing algorithm that permutes columns and
rows of the PCM so that the permuted matrix has a specific structure that is convenient for
encoding. If the proper restructuring is achieved, the encoding can be performed mainly
by multiple sequential forward substitutions and one multiplication with a small matrix,
which is why this is a widely used approach [21–27]. A hybrid method has been used
in [28,29], which proposes the calculation of one part of the parity bits using the generator
matrix and another part using the RU method. However, many practical codes can be
encoded using only forward substitutions, due to the convenient code structure [30–35].
Of note, 5G NR codes belong to this class of codes.

This paper focuses on the hardware implementation of a flexible 5G NR encoder
that supports all codes defined by the standard and achieves high throughput for a wide
spectrum of codes while keeping hardware resources as low as possible. The encoding
process is optimized for high hardware usage efficiency expressed in terms of achieved
throughput divided by used hardware resources. Optimizing HUE can minimize required
hardware resources for an arbitrary target throughput. As long as the latency of the system
is acceptable, it is always more efficient to employ multiple optimized encoders in parallel
and achieve the required throughput than to use a highly parallel implementation that
takes significantly more resources. In general, the encoding latency is usually not an
issue since the soft-decision LDPC decoding is usually a bottleneck of the entire physical
layer [28]. In addition to that, resource-efficient hardware design is strongly linked to
energy efficiency. Idle processing blocks consume leakage energy, which is an increasingly

Electronics 2021, 10, 1106 3 of 24

significant energy component in modern technology processes [36]. Therefore, optimizing
HUE can lead to a more energy-efficient design.

In general, 5G NR LDPC codes are highly irregular and their base graph matrices
are mostly sparse. This property drastically reduces the efficiency of highly parallel
architectures since many hardware processing units frequently remain idle. Therefore, in
this work, a partially parallel architecture is proposed in order to obtain high HUE.

The main contributions of this paper are (1) high flexibility of the LDPC encoder
that supports all codes from 5G NR. This is primarily obtained by the proper design of a
circular shifting network, which is the key hardware processing unit in the system; (2) by
exploiting partially parallel processing, the circular shifter and other hardware processing
units are rarely idle, which highly increases the hardware usage efficiency; and (3) the
encoder is capable of changing the encoding schedule in runtime so as to exploit high
parallelism both for codes with high values of lifting size and for codes with smaller lifting
sizes. Encoding schedules are optimized for minimum encoding time, which provides
a minimum latency and the maximum throughput for the observed architecture. Such
optimization significantly increases the HUE.

The rest of the paper is organized as follows. Section 2 presents an overview of com-
monly used methods for LDPC encoding. In Section 3, 5G NR LDPC encoding is discussed,
first by introducing the structure of 5G NR codes and then by describing the efficient
encoding algorithm. Section 4 introduces a critical comparison of various approaches for
the implementation of the aforementioned algorithm. Afterward, an optimization method
for the selected implementation strategy is presented. The proposed encoder architecture
is described in Section 5, whereas results are shown in Section 6. Section 7 concludes
the paper.

2. Encoding of LDPC Codes

Depending on the code structure and properties, various methods have been de-
veloped for encoding LDPC codes [12–35]. This section briefly introduces mostly used
methods that have been applied in LDPC encoders.

2.1. Straightforward Encoding With Generator Matrix Multiplication

As previously mentioned, LDPC codes are linear block codes. They are completely de-
fined by their parity check matrices, which are designed to be sparse so as to obtain smaller
decoding complexity. The parity check matrix H and the codeword vector x = [x1x2 . . . xn]
must satisfy the following equation:

xHT = 0. (1)

Most practical LDPC codes are systematic, meaning that their codeword can be
represented as follows:

x =
[

i p
]
, (2)

where the vector i = [i1i2 . . . ik] represents a sequence of information bits and the vector
p = [p1 p2 . . . pm] represents a sequence of parity bits. The encoding process implies
mapping the vector i to the vector x. However, in general, the code does not have to be
systematic, in which case information and parity bits are not divided into separate groups.
In any case, the straightforward encoding method is to multiply the information bits vector
with the generator matrix G as

x = iG. (3)

The generator matrix can be obtained by solving Equation (4) using the Gaussian elimination.

GHT = 0 (4)

The obtained generator matrix is generally dense, which causes quadratic encoding
complexity (O

(
n2)) [20]. However, when the generator matrix is precalculated, the required

Electronics 2021, 10, 1106 4 of 24

matrix multiplication for specific codes can be efficiently achieved in hardware. Therefore,
several previous encoders have been based on this method [12–16].

2.2. Partitioned PCM Two-Step Encoding

In cases when the LDPC code is systematic, the PCM can be partitioned into two
submatrices (H =

[
H1 H2

]
), where the first submatrix is of size m × k, and the second

submatrix is of size m × m. By transposing both the left-hand side and the right-hand side
of the equation, Equation (1) becomes

HxT = 0, (5)

which can further be written as[
H1 H2

][
i p

]T
= H1iT + H2pT = 0. (6)

Parity bits can now be calculated as follows:

pT = H−1
2 H1iT = 0. (7)

This way, the calculation is simplified since the submatrix H1 is sparse, and the vector
H1iT can be calculated with linear complexity (O(n)). However, the matrix H−1

2 is dense
and therefore leads to significantly high hardware cost in terms of computational complex-
ity and memory requirements. Nevertheless, when properly exploiting the matrix structure,
it is possible to achieve significant hardware cost reduction for certain codes [17–19].

2.3. Richardson–Urbanke LDPC Encoding Method

Richardson and Urbanke [20] proposed an LDPC encoding method that provides an
approximately linear computational complexity. The proposed method consists of two
steps: (1) offline preprocessing and (2) encoding. During the preprocessing step, the PCM is
transformed to the approximate lower triangular (ALT) form in such a way that codewords
can be represented in a systematic form as follows:

x =
[

i p1 p2
]
, (8)

where p1 represents a vector of g parity bits, whereas p2 represents a vector of remaining
(m − g) parity bits.

After the preprocessing step, the PCM has the following form:

H =

[
A B T
C D E

]
, (9)

where submatrices A (of size (m− g)× (n− m)), B (of size (m− g)× g)), C (of size g× (n−
m)), D (of size g× g), and E (of size g× (m− g)) are sparse matrices, whereas the submatrix
T (of size (m − g) × (m − g)) is a sparse lower triangular matrix. The preprocessing
transformation is performed by permuting rows and columns inside the PCM. Appropriate
permutations can be obtained by greedy algorithms described in [20], which provide g
to be as small as possible. In addition, it is required that the matrix −ET−1B + D stays
nonsingular in the Galois field GF(2).

If the PCM transformation is successfully completed, parity bits can be calculated
using the following equations:

pT
1 =

(
−ET−1B + D

)−1(
−ET−1A + C

)
iT, (10)

pT
2 = −T−1

(
AiT + BpT

1

)
. (11)

Electronics 2021, 10, 1106 5 of 24

Multiplications with A, B, C, and E are multiplications with sparse matrices, whose
computational complexity is linear (O(n)). Additions also have linear complexity. Since T
is a lower triangular matrix, all multiplications with T−1 can be replaced with a forward
substitution, given that T−1a = b is equivalent to the system a = Tb. Since T is also sparse,
the performed forward substitution is a process of linear complexity. The only quadratic
complexity calculation is multiplication by dense matrix

(
−ET−1B + D

)−1
(O
(

g2)), which
is why the transformation algorithm searches for permutations that will provide small g,
preferably g ∼

√
n. Such approximately linear encoding complexity is the main reason

why many LDPC encoders are essentially based on the RU method [20–27]. The reported
weaknesses of this method are the necessity for multiple consequent operations, which
generally leads to long critical paths in hardware implementations [28], and low potential
for encoding flexibility [14].

2.4. Straightforward and RU Hybrid Encoding

In order to avoid multiplication with a dense matrix
(
−ET−1B + D

)−1
from (10),

Cohen and Parhi [28] proposed a hybrid encoding of IEEE 802.3an codes, which instead
uses generator matrix for calculation of first g parity bits (p1) and then uses RU’s relation
from (11) to calculate remaining parity bits (p2). Such an approach allows easier trans-
formation of the PCM since the constraint for nonsingularity of the matrix −ET−1B + D
is removed. Additionally, the critical path can be shortened, which can lead to faster
hardware implementation. The hybrid encoding has also been used for LDPC codes in
space applications [29].

2.5. Forward Substitution-Based Encoding

Many standardized LDPC codes have a structure that can facilitate even more efficient
encoding than any of the previously described methods. For example, codes from Wi-
Fi 802.11n/ac/ax have a double diagonal structure of the right-hand side of the PCM,
whereas the left-hand side has a nonspecific conventional quasi-cyclic structure [37], as
shown in (12).

H =



h1,1 h1,2 · · · h1,kb
I(1) I 0 · · · 0 0 · · · 0

h2,1 h2,2 · · · h2,kb
0 I I · · · 0 0 · · · 0

...
...

. . .
...

...
...

...
. . .

...
...

. . .
...

hr−1,1 hr−1,2 · · · hr−1,kb
0 0 0 · · · I 0 · · · 0

hr,1 hr,2 · · · hr,kb
I 0 0 · · · I I · · · 0

hr+1,1 hr+1,2 · · · hr+1,kb
0 0 0 · · · 0 I · · · 0

...
...

. . .
...

...
...

...
. . .

...
...

. . .
...

hmb ,1 hmb ,2 · · · hmb ,kb
I(1) 0 0 · · · 0 0 · · · I


(12)

In (12), hj,k represents a single CPM in QC–LDPC code’s PCM, which can be either
circularly shifted identity matrix or zero matrix, kb is the number of information bit groups
each of which has Z bits, whereas the mb is the number of parity check equation groups
each of which contains Z parity check equations. I is an identity matrix. In general, W(s)

represents any matrix circularly shifted by s. The matrix is circularly shifted by circularly
shifting each of its sub vectors. A described deterministic PCM form can be exploited to
implement low-area encoders based on a forward substitution (FS) [30–34].

Since the code is quasi cyclic, the codeword can be grouped into kb information bit
groups and mb parity bit groups as follows:

x =
[

i1 i2 · · · ikb
p1 p2 · · · pmb

]
. (13)

Electronics 2021, 10, 1106 6 of 24

From (5), (12), and (13), it is simple to derive the following system of equations in
GF(2):

kb
∑

l=1
h1,liT

l + pT(1)
1 + pT

2 = 0, (1 st row)

kb
∑

l=1
hj,liT

l + pT
j + pT

j+1 = 0, for j ∈ {2, 3, . . . , r− 1} ∪ {r + 1, r + 2, . . . , mb − 1}
kb
∑

l=1
hr,liT

l + pT
1 + pT

r + pT
r+1 = 0, (rth row)

kb
∑

l=1
hmb ,liT

l + pT(1)
1 + pT

mb
= 0, (mth

b row)

(14)

Parity group p1 can be calculated by adding up all the equations from (14), which
gives the following expression:

pT
1 =

mb

∑
j=1

kb

∑
l=1

hj,li
T
l . (15)

In hardware, each of the mb sums ∑kb
l=1 hj,liT

l is usually calculated by circularly shifting
the information group vectors iT

l and by calculating the sum of shifted vectors using XOR
gates. If these sums are denoted with λj, then the rest of the parity bit vectors can be
calculated as follows:

pT
2 = λ1 + pT(1)

1 ; pT
j+1 = λj + pT

j , for j ∈ {2, 3, . . . , r− 2};
pT

mb
= λmb + pT(1)

1 ; pT
j = λj + pT

j+1, for j ∈ {mb − 1, mb − 2, . . . , r + 1};
pT

r = λr + pT(1)
1 + pT

r+1, if r > 2.

(16)

An almost identical approach has been recently used for encoding 5G NR LDPC codes
since their structure is essentially similar to the described structure of Wi-Fi codes [35].
Many codes from other standards have similar structural features, which can be similarly
used for achieving low complexity encoding [38,39].

The disadvantages of FS-based methods are that code information should be stored in
some storage memory and that there is still some sequential processing, which can limit
the achievable parallelism. However, since FS is dominantly used for structured codes, the
memory requirements in previously described architectures [30–35] come down to only
CPM positions inside the base graph matrix and the corresponding circulant shift values,
i.e., there is no need for storage of the entire PCM. Additionally, these methods do provide
high flexibility, which is increasingly required in modern communication standards [1].

3. Encoding of 5G NR LDPC Codes

The structure of 5G NR LDPC codes is illustrated in Section 3.1. After that, Section 3.2
gives a description of the efficient encoding algorithm that is used in this paper.

3.1. Description of LDPC Codes in 5G NR

All 5G NR LDPC codes are quasi cyclic. As for every QC–LDPC code, the PCM
consists of submatrices (CPMs) of size Z × Z, which can be a circularly shifted identity
matrix or a zero matrix. The general structure of a 5G NR LDPC code’s PCM is

H =

[
A B 0
C D I

]
, (17)

where A (of size 4Z× kbZ), C (of size (mb − 4)Z× kbZ) and D (of size (mb − 4)Z× 4Z) have
conventional nonspecific quasi-cyclic structure, and B (of size 4Z × 4Z) has a form similar

Electronics 2021, 10, 1106 7 of 24

to the right-hand side of IEEE 802.11n/ac/ax PCMs described in Section 2.5. Depending
on the base graph, the matrix B can have one of the following structures:

BBG1 =


I(1) I 0 0

I I I 0
0 0 I I

I(1) 0 0 I

; BBG2 =


I I 0 0
0 I I 0

I(1) 0 I I
I 0 0 I

. (18)

A scatter diagram of the base graph for both BG1 and BG2 matrices is shown in
Figure 1.

Electronics 2021, 10, x FOR PEER REVIEW 7 of 26

[35]. Many codes from other standards have similar structural features, which can be sim-
ilarly used for achieving low complexity encoding [38,39].

The disadvantages of FS-based methods are that code information should be stored
in some storage memory and that there is still some sequential processing, which can limit
the achievable parallelism. However, since FS is dominantly used for structured codes,
the memory requirements in previously described architectures [30–35] come down to
only CPM positions inside the base graph matrix and the corresponding circulant shift
values, i.e., there is no need for storage of the entire PCM. Additionally, these methods do
provide high flexibility, which is increasingly required in modern communication stand-
ards [1].

3. Encoding of 5G NR LDPC Codes
The structure of 5G NR LDPC codes is illustrated in Section 3.1. After that, Section

3.2 gives a description of the efficient encoding algorithm that is used in this paper.

3.1. Description of LDPC Codes in 5G NR
All 5G NR LDPC codes are quasi cyclic. As for every QC–LDPC code, the PCM con-

sists of submatrices (CPMs) of size Z × Z, which can be a circularly shifted identity matrix
or a zero matrix. The general structure of a 5G NR LDPC code’s PCM is

 
=  
 

,
A B 0

H
C D I (17)

where A (of size 4Z × kbZ), C (of size (mb − 4)Z × kbZ) and D (of size (mb − 4)Z × 4Z) have
conventional nonspecific quasi-cyclic structure, and B (of size 4Z × 4Z) has a form similar
to the right-hand side of IEEE 802.11n/ac/ax PCMs described in Section 2.5. Depending on
the base graph, the matrix B can have one of the following structures:

   
   
   = =   
   

     

(1)

BG1 BG2 (1)

(1)

; .

I I 0 0I I 0 0
0 I I 0I I I 0

B B
I 0 I I0 0 I I
I 0 0 II 0 0 I

 (18)

A scatter diagram of the base graph for both BG1 and BG2 matrices is shown in Fig-
ure 1.

Base graph 1 Base graph 2

mb,BG1 = 46kb,BG1 = 22
mb,BG2 = 42kb,BG2 = 10

Figure 1. Base graph matrix structures for codes in 5G NR.

The codeword (of length nbZ, where nb = kb + mb) can be represented in systematic
form as

Figure 1. Base graph matrix structures for codes in 5G NR.

The codeword (of length nbZ, where nb = kb + mb) can be represented in systematic
form as

x =
[

i pc pa
]
, (19)

where pc represents a vector of so-called core parity bits and pa is a vector of so-called
additional parity bits [40]. The information bits vector is of length kbZ, whereas the parity
bit vectors are of length 4Z and (mb − 4)Z, respectively. Since the upper right submatrix of
the PCM is a zero matrix, all core parity bits can be calculated from information bits using
submatrices A and B. Additional parity bits can be calculated from information and core
parity bits using submatrices C and D.

The lifting size Z can take values from 2 to 384 and must have a form of

Z = a · 2j, (20)

where a can take values from the set {2, 3, 5, 7, 9, 11, 13, 15}, which gives a total of 51
different lifting size values.

There are two base graph matrices (BG1 and BG2) available from which all codes
are derived. Each base graph matrix has a corresponding set of base exponent matrices.
The set includes one matrix for each possible value of parameter a from (20), defined for
the corresponding maximum lifting size (256, 384, 320, 224, 288, 352, 208, or 240). Every
exponent matrix contains nonnegative and negative entries. Nonnegative entries represent
the values by which the corresponding identity submatrices are circularly shifted. All other
entries are equal to −1 and represent zero submatrices. The structure of a base exponent
matrix is

V =


V1,1 V1,2 · · · V1,nb
V2,1 V2,2 · · · V1,nb

...
...

. . .
...

Vmb ,1 Vmb ,2 · · · Vmb ,nb

. (21)

Electronics 2021, 10, 1106 8 of 24

Base exponent matrices define exponent matrices for every other lifting size whose
structure is the same as

P =


P1,1 P1,2 · · · P1,nb
P2,1 P2,2 · · · P1,nb

...
...

. . .
...

Pmb ,1 Pmb ,2 · · · Pmb ,nb

. (22)

Shift values Pj,l are calculated as follows:

Pj,l =

{
−1, if Vj,l = −1
Vj,lmodZ, if Vj,l > −1

, (23)

where mod represents modulo operation [1,5,9].
Up until today, the 5G NR standard introduces the highest number of possible LDPC

codes. A practical system must have all the codes supported since the choice of which code
is used is made in the runtime. Therefore, the encoder and the decoder need to be flexible,
which defines a challenge for designers of practical systems.

3.2. Efficient Algorithm for Flexible Encoding

As mentioned earlier, the 5G NR communication standard imposes the necessity
for high LDPC encoder flexibility. There are a total of 102 codes derived just from two
base graph matrices by lifting each with every one of 51 lifting sizes. The standard also
introduces the shortening of base graph matrices, which additionally increases the number
of possible codes by tens of times [1]. This flexibility cannot be achieved by any method
that requires either multiplying with generator matrix or any matrix inversion without
extremely high usage of memory or logic resources. Therefore, the flexible encoding must
be achieved based on the previously described forward substitution method.

The forward substitution-based encoding for BG1 codes has been presented in [35]. It
has been shown that this method is multiple times more efficient than straightforward and
RU methods and that fast encoding can be achieved.

The first step is the calculation of core parity bits. After that, the additional parity
bits can be calculated using only the lower part of the PCM. Similar to Wi-Fi codes, the
encoding process solves the following system of equations:

HxT = 0⇒
[

A B 0
C D I

] iT

pT
c

pT
a

 = 0. (24)

This system can be split into the smaller system of equations from which core parity
bits can be calculated (25) and the set of equations from which additional parity bits are
afterward calculated (26).


a1,1 a1,2 . . . a1,kb
a2,1 a2,2 . . . a2,kb
a3,1 a3,2 . . . a3,kb
a4,1 a4,2 . . . a4,kb

×


iT
1

iT
2
...

iT
kb

+


b1,1 b1,2 b1,3 b1,4
b2,1 b2,2 b2,3 b2,4
b3,1 b3,2 b3,3 b3,4
b4,1 b4,2 b4,3 b4,4

×


pT
c,1

pT
c,2

pT
c,3

pT
c,4

 = 0, (25)

pT
a =


c1,1 c1,2 . . . c1,kb

d1,1 d1,2 d1,3 d1,4
c2,1 c2,2 . . . c2,kb

d2,1 d2,2 d2,3 d2,4
...

...
. . .

...
...

...
...

...
cmb−4,1 cmb−4,2 . . . cmb−4,kb

dmb−4,1 dmb−4,2 dmb−4,3 dmb−4,4

×
[

iT

pT
c

]
. (26)

Electronics 2021, 10, 1106 9 of 24

For BG1 codes, the system (25) is just a special case of the system (12), where r = 2.
Therefore, if the intermediate results are denoted as

λT
j =

kb

∑
l=1

aj,li
T
l , j ∈ {1, 2, 3, 4}, (27)

core parity bits can be calculated using the following expressions:

pc,1 =
4
∑

j=1
λj; pc,2 = λ1 + p(1)

c,1 ; pc,4 = λ4 + p(1)
c,1 ; pc,3 = λ3 + pc,4 . (28)

In [35], the system (25) is solved only for BG1 codes. In this paper, flexibility was a key
requirement. Therefore, the analysis is expanded to codes defined by BG2 too. For BG2,
the system (25) can be written as follows:

kb
∑

l=1
a1,liT

l + pT
c,1 + pT

c,2 = 0,

kb
∑

l=1
a2,liT

l + pT
c,2 + pT

c,3 = 0,

kb
∑

l=1
a3,liT

l + pT(1)
c,1 + pT

c,3 + pT
c,4 = 0,

kb
∑

l=1
a4,liT

l + pT
c,1 + pT

c,4 = 0.

(29)

By adding up all the above equations, it is simple to obtain the first core parity bit
group circularly shifted by 1 position as

p(1)
c,1 =

4

∑
j=1

λj. (30)

This vector should be shifted back by 1 to obtain the first core parity bit group in
the appropriate arrangement. With the first group available, all other groups are directly
calculated from equations in (29) as follows:

pc,2 = λ1 + pc,1; pc,3 = λ2 + pc,2; pc,4 = λ4 + pc,1 . (31)

The described algorithm is used in this paper for efficient hardware implementation.

4. Optimal Encoding Schedules in Partially Parallel Encoding

The encoding algorithm described in Section 3.2 can be implemented with various
levels of parallelism. Fully parallel implementation would require extremely high logic
usage and a relatively long critical path since the codeword can be up to 26,112 bits long and
since flexibility is one of the main requirements in 5G NR. Partially parallel implementations
can provide a compromise between achievable throughput and utilization of hardware
resources. This section describes various approaches for partially parallel encoding and
analyses corresponding hardware usage utilization for each of the approaches.

4.1. Partially Parallel Processing in 5G NR LDPC Encoding

The encoding process mainly consists of circular shifting Z-bit vectors and calculating
the XOR operation of all the shifted values. In partially parallel processing, the hardware
that is used for shifting, later in the text called circular shifter (CS), must be generic, i.e., it
needs to support all shift values and all shift (lifting) sizes that are defined by the standard.
A requirement for the flexibility of CSs drastically increases their hardware resources
requirements to the point where shifters take the most hardware resources in the entire

Electronics 2021, 10, 1106 10 of 24

encoder. Therefore, if the hardware usage efficiency is the key requirement, it is important
that these components are utilized as much as possible, i.e., that they are rarely idle.

Partially parallel processing can be conducted in multiple ways. If only one CS is
used, the encoding is performed serially by processing one CPM at a time. Note that this
encoding is still partially parallel since the CS takes the entire vector of Z bits. Figure 2
shows such architecture’s encoding schedule. The schedule is shown for BG1 codes since
BG2 codes have a similar structure but a smaller number of CPMs in the PCM. In Figure 2,
numbers at CPM positions represent ordinals of clock cycles in which the corresponding
CPMs are processed. In the beginning, the encoder takes information bit groups that
correspond to the first four base graph rows necessary for the calculation of vectors λ1, λ2,
λ3, and λ4. Based on calculated λ vectors, core parity bits are computed as in (28) or as in
(30) and (31). This can be performed in parallel with further information bit groups shifting
for later rows and their XOR sum calculation. Due to this parallel computation, all CPMs
that are used for core parity bits calculation, based on vectors λ1, λ2, λ3, and λ4, are placed
in the same clock cycle in Figure 2.

Electronics 2021, 10, x FOR PEER REVIEW 11 of 26

50 51 52 54 57 58 59 60 62 64 65 6661 63565553
67 68
69 70 71 72 73 74 75
76 77 78 79 80 82 8381
84 85 89888786
90 91 92 93 94 94 96 97 98

33 34 35 37 38 41 42 43 45 47 48 4944 46403936
18 19 21 24 25 26 28 29 31 3227 30232220

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

265264263
259 260 261 262

67
5
6
7
8
9

1
2
3
4

45
46

1 2 3 4 6 7 10 11 12 13 14 16 17 19 20 21 22 23 24 25 2615 18985 27 28 29 30 31 67 68

Figure 2. Encoding schedule for BG1 codes when serially processing single CPM at a time. Numbers
represent the ordinal of the clock cycle in which the corresponding CPM is processed.

The encoding throughput can be increased if a larger number of parallel processing
units is used, i.e., by exploiting higher parallelism. Figure 3 shows the encoding schedule
proposed in [34] for Wi-Fi codes but here applied to 5G NR codes. All CPMs that belong
to a single column are processed in parallel. After the first kb columns are processed, all λ
vectors are ready and core parity bits can be calculated. It is convenient to wait at least
one clock period for core parity bits to be ready before the remaining four columns are
processed. This is carried out because of the pipelining, which makes the critical path
much shorter. The schedule requires at least 27 (kb,BG1 + 1 + 4) clock periods for all parity
bits generation for BG1 codes and at least 15 (kb,BG2 + 1 + 4) clock periods for BG2 codes.
The described method requires a large number of CSs: 46 for BG1 codes and 42 for BG2
codes. Since the encoder should be flexible, it is necessary to use a larger of these two
numbers.

1 2 4 7 11 12 13 14 17 19 21 2215 18985
1 2
1 2 4 13 17 22 24
1 7 11 12 14 19 2118
1 2 15985
1 2 4 13 17 20 22 24 26

1 2 3 6 7 10 11 14 16 19 20 2115 18985
3 4 6 10 12 13 16 17 20 2215 18985

1 2 3 4 6 7 10 11 12 13 14 16 17 19 20 21 22

1 8
2

10 24
7 11

23
5
6
7
8
9

1
2
3
4

45
46

1 2 3 4 6 7 10 11 12 13 14 16 17 19 20 21 22 23 24 25 2615 18985 27 28 29 30 31 67 68

Figure 3. Encoding schedule for BG1 codes when processing the entire base graph matrix column
at the same time. Numbers represent the ordinal of the clock cycle in which the corresponding CPM
is processed.

In order to reduce used hardware resources, a row-based parallel encoding can be
executed [31,35]. Such a schedule is shown in Figure 4. All CPMs from a single row are
processed in a single clock period. Instead of shifting one bit group at a time, this schedule
requires that all information bits, and later core parity bits, are available in registers. Con-
sequently, it is often required to wait for information bits to be written to registers from
the serial input stream [35]. However, assuming that the double buffering is available at
the data input, this stall time can be avoided. The GF(2) sum of shifted vectors should be
calculated using XOR gates placed in a tree-like structure.

Figure 2. Encoding schedule for BG1 codes when serially processing single CPM at a time. Numbers
represent the ordinal of the clock cycle in which the corresponding CPM is processed.

The serial processing schedule requires 265 clock periods for all parity bits generation
for BG1 codes and 150 clock periods for BG2 codes. Although the throughput of such an
approach is the smallest of all partially parallel schedules, the HUE is the highest since
only one CS is used and is never idle.

A similar schedule has been presented in [32] for Wi-Fi codes, but its order of process-
ing was column oriented, meaning that the processing was performed column by column
with the storage of intermediate results in local memory.

The encoding throughput can be increased if a larger number of parallel processing
units is used, i.e., by exploiting higher parallelism. Figure 3 shows the encoding schedule
proposed in [34] for Wi-Fi codes but here applied to 5G NR codes. All CPMs that belong
to a single column are processed in parallel. After the first kb columns are processed, all
λ vectors are ready and core parity bits can be calculated. It is convenient to wait at least
one clock period for core parity bits to be ready before the remaining four columns are
processed. This is carried out because of the pipelining, which makes the critical path much
shorter. The schedule requires at least 27 (kb,BG1 + 1 + 4) clock periods for all parity bits
generation for BG1 codes and at least 15 (kb,BG2 + 1 + 4) clock periods for BG2 codes. The
described method requires a large number of CSs: 46 for BG1 codes and 42 for BG2 codes.
Since the encoder should be flexible, it is necessary to use a larger of these two numbers.

Electronics 2021, 10, 1106 11 of 24

Electronics 2021, 10, x FOR PEER REVIEW 11 of 26

50 51 52 54 57 58 59 60 62 64 65 6661 63565553
67 68
69 70 71 72 73 74 75
76 77 78 79 80 82 8381
84 85 89888786
90 91 92 93 94 94 96 97 98

33 34 35 37 38 41 42 43 45 47 48 4944 46403936
18 19 21 24 25 26 28 29 31 3227 30232220

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

265264263
259 260 261 262

67
5
6
7
8
9

1
2
3
4

45
46

1 2 3 4 6 7 10 11 12 13 14 16 17 19 20 21 22 23 24 25 2615 18985 27 28 29 30 31 67 68

Figure 2. Encoding schedule for BG1 codes when serially processing single CPM at a time. Numbers
represent the ordinal of the clock cycle in which the corresponding CPM is processed.

The encoding throughput can be increased if a larger number of parallel processing
units is used, i.e., by exploiting higher parallelism. Figure 3 shows the encoding schedule
proposed in [34] for Wi-Fi codes but here applied to 5G NR codes. All CPMs that belong
to a single column are processed in parallel. After the first kb columns are processed, all λ
vectors are ready and core parity bits can be calculated. It is convenient to wait at least
one clock period for core parity bits to be ready before the remaining four columns are
processed. This is carried out because of the pipelining, which makes the critical path
much shorter. The schedule requires at least 27 (kb,BG1 + 1 + 4) clock periods for all parity
bits generation for BG1 codes and at least 15 (kb,BG2 + 1 + 4) clock periods for BG2 codes.
The described method requires a large number of CSs: 46 for BG1 codes and 42 for BG2
codes. Since the encoder should be flexible, it is necessary to use a larger of these two
numbers.

1 2 4 7 11 12 13 14 17 19 21 2215 18985
1 2
1 2 4 13 17 22 24
1 7 11 12 14 19 2118
1 2 15985
1 2 4 13 17 20 22 24 26

1 2 3 6 7 10 11 14 16 19 20 2115 18985
3 4 6 10 12 13 16 17 20 2215 18985

1 2 3 4 6 7 10 11 12 13 14 16 17 19 20 21 22

1 8
2

10 24
7 11

23
5
6
7
8
9

1
2
3
4

45
46

1 2 3 4 6 7 10 11 12 13 14 16 17 19 20 21 22 23 24 25 2615 18985 27 28 29 30 31 67 68

Figure 3. Encoding schedule for BG1 codes when processing the entire base graph matrix column
at the same time. Numbers represent the ordinal of the clock cycle in which the corresponding CPM
is processed.

In order to reduce used hardware resources, a row-based parallel encoding can be
executed [31,35]. Such a schedule is shown in Figure 4. All CPMs from a single row are
processed in a single clock period. Instead of shifting one bit group at a time, this schedule
requires that all information bits, and later core parity bits, are available in registers. Con-
sequently, it is often required to wait for information bits to be written to registers from
the serial input stream [35]. However, assuming that the double buffering is available at
the data input, this stall time can be avoided. The GF(2) sum of shifted vectors should be
calculated using XOR gates placed in a tree-like structure.

Figure 3. Encoding schedule for BG1 codes when processing the entire base graph matrix column at
the same time. Numbers represent the ordinal of the clock cycle in which the corresponding CPM
is processed.

In order to reduce used hardware resources, a row-based parallel encoding can be
executed [31,35]. Such a schedule is shown in Figure 4. All CPMs from a single row are
processed in a single clock period. Instead of shifting one bit group at a time, this schedule
requires that all information bits, and later core parity bits, are available in registers.
Consequently, it is often required to wait for information bits to be written to registers from
the serial input stream [35]. However, assuming that the double buffering is available at
the data input, this stall time can be avoided. The GF(2) sum of shifted vectors should be
calculated using XOR gates placed in a tree-like structure.

Electronics 2021, 10, x FOR PEER REVIEW 12 of 26

4 4 4 4 4 4 4 4 4 4 4 44 4444
5 5
6 6 6 6 6 6 6
7 7 7 7 7 7 77
8 8 8888
9 9 9 9 9 9 9 9 9

3 3 3 3 3 3 3 3 3 3 3 33 3333
2 2 2 2 2 2 2 2 2 22 2222

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

45 45
46

45 45
46 46

5
5
6
7
8
9

1
2
3
4

45
46

1 2 3 4 6 7 10 11 12 13 14 16 17 19 20 21 22 23 24 25 2615 18985 27 28 29 30 31 67 68

Figure 4. Encoding schedule for BG1 codes when processing the entire base graph matrix row at the
same time. Numbers represent the ordinal of the clock cycle in which the corresponding CPM is
processed.

The required number of clock cycles for one codeword encoding is at least 46 (mb,BG1)
for BG1 codes and at least 42 (mb,BG2) for BG2 codes, which is significantly higher when
compared with the column-based parallel encoding. However, the required number of
CSs is reduced: 26 for BG1 codes and 14 for BG2 codes [35]. Again, it is necessary to use
the larger of these two numbers because of the flexibility.

The encoder information throughput can be calculated as follows:

= .b CLK

CPC

k Zf
Thr

N
 (32)

where fCLK is the encoder’s operating frequency, and NCPC is the number of clock cycles
necessary for a single codeword encoding –clocks per codeword. Since CSs take the largest
amount of logic resources, hardware usage can be approximately expressed in the number
of CSs. For a better comparison of approximate hardware usage efficiencies for described
encoding schedules, a circular shifter’s efficiency is defined as follows:

= ,CS
CS

ThrEff
N

 (33)

where Ncs is the number of used CSs. This parameter values calculated for the longest
codewords (kmax,BG1 = kb,BG1Zmax = 8448, and kmax,BG2 = kb,BG2Zmax =3840) are summarized in Ta-
ble 1. As can be inferred from the results, the most efficient schedule is serial processing,
although it gives the lowest throughput. Highly parallel encoding schedules are less effi-
cient because a large number of shifters are unused, which is a consequence of the fact
that the base graph matrix’s rows and columns are not fully filled.

Table 1. Comparison of approximated hardware usage efficiencies of a flexible encoder for vari-
ous encoding schedules and for the longest codeword (Z = 384) in b/cycle per circular shifter used.

Encoding Schedule
NCPC

NCS
EffCS (b/Cycle per CS)

BG1 BG2 BG1 BG2
Serial 265 150 1 31.9 25.6

Column based parallel 27 15 46 6.8 5.6
Row based parallel 46 42 26 7.1 3.5

For the reasons of efficiency, in this paper, serial CPM processing is implemented for
codes with high lifting size (Z > 192). Only one CS is used. However, the CS is designed
in such a way that it can be reconfigured to reuse logic resources and to work as two or
more independent CSs if codes with lower lifting size values are used. The CS design and
the entire encoder architecture are described in detail in Section 5.

Figure 4. Encoding schedule for BG1 codes when processing the entire base graph matrix row
at the same time. Numbers represent the ordinal of the clock cycle in which the corresponding
CPM is processed.

The required number of clock cycles for one codeword encoding is at least 46 (mb,BG1)
for BG1 codes and at least 42 (mb,BG2) for BG2 codes, which is significantly higher when
compared with the column-based parallel encoding. However, the required number of CSs
is reduced: 26 for BG1 codes and 14 for BG2 codes [35]. Again, it is necessary to use the
larger of these two numbers because of the flexibility.

The encoder information throughput can be calculated as follows:

Thr =
kbZ fCLK

NCPC
. (32)

where fCLK is the encoder’s operating frequency, and NCPC is the number of clock cycles
necessary for a single codeword encoding –clocks per codeword. Since CSs take the largest
amount of logic resources, hardware usage can be approximately expressed in the number

Electronics 2021, 10, 1106 12 of 24

of CSs. For a better comparison of approximate hardware usage efficiencies for described
encoding schedules, a circular shifter’s efficiency is defined as follows:

E f fCS =
Thr
NCS

, (33)

where Ncs is the number of used CSs. This parameter values calculated for the longest
codewords (kmax,BG1 = kb,BG1Zmax = 8448, and kmax,BG2 = kb,BG2Zmax = 3840) are summarized
in Table 1. As can be inferred from the results, the most efficient schedule is serial processing,
although it gives the lowest throughput. Highly parallel encoding schedules are less
efficient because a large number of shifters are unused, which is a consequence of the fact
that the base graph matrix’s rows and columns are not fully filled.

Table 1. Comparison of approximated hardware usage efficiencies of a flexible encoder for various
encoding schedules and for the longest codeword (Z = 384) in b/cycle per circular shifter used.

Encoding Schedule
NCPC

NCS
EffCS (b/Cycle per CS)

BG1 BG2 BG1 BG2

Serial 265 150 1 31.9 25.6
Column based parallel 27 15 46 6.8 5.6

Row based parallel 46 42 26 7.1 3.5

For the reasons of efficiency, in this paper, serial CPM processing is implemented for
codes with high lifting size (Z > 192). Only one CS is used. However, the CS is designed in
such a way that it can be reconfigured to reuse logic resources and to work as two or more
independent CSs if codes with lower lifting size values are used. The CS design and the
entire encoder architecture are described in detail in Section 5.

Since more than one CS is available for shorter codes, the serial encoding schedule
can be then parallelized to increase the HUE. The proposed encoding schedule processes
more than one row at a time. Its example of a situation when four shifters are available
is shown in Figure 5. The encoder takes information bit groups, shifts each of them, and
calculates intermediate results for all λ vectors. During the next four rows processing, core
parity bits are calculated and prepared for calculation of additional parity bits.

Electronics 2021, 10, x FOR PEER REVIEW 13 of 26

Since more than one CS is available for shorter codes, the serial encoding schedule

can be then parallelized to increase the HUE. The proposed encoding schedule processes

more than one row at a time. Its example of a situation when four shifters are available is

shown in Figure 5. The encoder takes information bit groups, shifts each of them, and
calculates intermediate results for all λ vectors. During the next four rows processing, core

parity bits are calculated and prepared for calculation of additional parity bits.

Using the described multirow serial schedule with four CSs, the encoding time can

be reduced to 180 clock cycles for BG1 codes and 94 clock cycles for BG2 codes. However,

during encoding, even three out of four available CSs are frequently idle due to the PCM’s

structure. This is easily noticeable in Figure 5 for all rows used in additional parity bits

calculation. The reason for such PCM design is an attempt to avoid pipeline conflicts that

happen in layered decoding [41] architectures because of read-after-write (RAW) data

hazards [5,11].

Although PCM has a structure designed to support decoder efficiency, it can be pro-

cessed in a way that is optimal for the encoder. For example, the sixth-row group shown

in Figure 5 uses almost the same information and core parity bits as the ninth-row group.

A significantly higher efficiency would be obtained if the sixth and ninth rows are pro-

cessed together. Consequently, instead of conventionally processing adjacent rows groups

in parallel, the encoding can be accomplished by processing the rows that use the same or

at least almost the same information and core parity bits. Therefore, the proposed encod-

ing schedule can be optimized for better hardware efficiency. A method for obtaining the

optimal schedule is described in Section 4.2.

1 2 4 7 11 12 13 14 17 19 21 2215 18985
23 24
23 24 25 32 35 39 40
23 27 30 31 33 37 3836
23 24 34292826
41 42 44 50 53 56 58 59 61

1 2 3 6 7 10 11 14 16 19 20 2115 18985
3 4 6 10 12 13 16 17 20 2215 18985

1 2 3 4 6 7 10 11 12 13 14 16 17 19 20 21 22

179176175
174 177 178 180

23
5

6

7

8

9

1

2

3

4

45

46

1 2 3 4 6 7 10 11 12 13 14 16 17 19 20 21 22 23 24 25 2615 18985 27 28 29 30 31 67 68

Figure 5. Proposed encoding schedule for BG1 codes when four CSs are available. Numbers repre-

sent the ordinal of the clock cycle in which the corresponding CPM is processed.

4.2. Multirow Serial Encoding Schedule Optimization

Finding the optimal processing order belongs to the traveling salesman problem class

and can be efficiently solved using a genetic algorithm (GA) [42,43]. The GA has been

previously used for finding the optimal layered decoding computation schedule [11,43].

The goal was to find the processing schedule that would provide the smallest number of

pipeline RAW data hazards. A schedule that provides the smallest data hazards number

should have a minimal data dependency between the adjacent rows. Therefore, the opti-

mization procedure results in the schedule that has adjacent rows whose CPMs are in the

different columns.

However, in this work, the schedule is optimized in a completely opposite manner;

the cost function is written to favor those processing orders whose adjacent rows have as

many as possible CPMs in the same columns. The result of the cost function returns the

number of clock cycles that are needed for encoding completion, and it is exclusively de-

pendent on the processing order. This criterion should result in a schedule that maximizes

the available CSs utilization and therefore gives the highest HUE.

Figure 5. Proposed encoding schedule for BG1 codes when four CSs are available. Numbers represent
the ordinal of the clock cycle in which the corresponding CPM is processed.

Using the described multirow serial schedule with four CSs, the encoding time can
be reduced to 180 clock cycles for BG1 codes and 94 clock cycles for BG2 codes. However,
during encoding, even three out of four available CSs are frequently idle due to the PCM’s
structure. This is easily noticeable in Figure 5 for all rows used in additional parity bits
calculation. The reason for such PCM design is an attempt to avoid pipeline conflicts

Electronics 2021, 10, 1106 13 of 24

that happen in layered decoding [41] architectures because of read-after-write (RAW) data
hazards [5,11].

Although PCM has a structure designed to support decoder efficiency, it can be
processed in a way that is optimal for the encoder. For example, the sixth-row group
shown in Figure 5 uses almost the same information and core parity bits as the ninth-row
group. A significantly higher efficiency would be obtained if the sixth and ninth rows
are processed together. Consequently, instead of conventionally processing adjacent rows
groups in parallel, the encoding can be accomplished by processing the rows that use the
same or at least almost the same information and core parity bits. Therefore, the proposed
encoding schedule can be optimized for better hardware efficiency. A method for obtaining
the optimal schedule is described in Section 4.2.

4.2. Multirow Serial Encoding Schedule Optimization

Finding the optimal processing order belongs to the traveling salesman problem class
and can be efficiently solved using a genetic algorithm (GA) [42,43]. The GA has been
previously used for finding the optimal layered decoding computation schedule [11,43].
The goal was to find the processing schedule that would provide the smallest number of
pipeline RAW data hazards. A schedule that provides the smallest data hazards number
should have a minimal data dependency between the adjacent rows. Therefore, the
optimization procedure results in the schedule that has adjacent rows whose CPMs are in
the different columns.

However, in this work, the schedule is optimized in a completely opposite manner; the
cost function is written to favor those processing orders whose adjacent rows have as many
as possible CPMs in the same columns. The result of the cost function returns the number
of clock cycles that are needed for encoding completion, and it is exclusively dependent on
the processing order. This criterion should result in a schedule that maximizes the available
CSs utilization and therefore gives the highest HUE.

In Section 4.1, all core parity bits are treated in the same way as information bits in the
process of additional bits calculation. Whenever any core parity bits vector participates
in the GF(2) sum for calculation of additional parity bits, the encoder should allocate a
separate clock cycle for each of the core parity groups, as shown in Figure 5. However,
if there are free CSs available, it is possible to use them to circularly shift core parity bits
in parallel with the information bits shifting. In this way, there is no need for additional
clock cycles used for processing of core parity-related CPMs, and hence, the throughput is
increased. The illustration of repositioning the CPMs processing is shown in Figure 6. The
described repositioning is included in the optimization process.

Electronics 2021, 10, x FOR PEER REVIEW 14 of 26

In Section 4.1, all core parity bits are treated in the same way as information bits in
the process of additional bits calculation. Whenever any core parity bits vector partici-
pates in the GF(2) sum for calculation of additional parity bits, the encoder should allocate
a separate clock cycle for each of the core parity groups, as shown in Figure 5. However,
if there are free CSs available, it is possible to use them to circularly shift core parity bits
in parallel with the information bits shifting. In this way, there is no need for additional
clock cycles used for processing of core parity-related CPMs, and hence, the throughput
is increased. The illustration of repositioning the CPMs processing is shown in Figure 6.
The described repositioning is included in the optimization process.

23 24
23 24 25 32 35 39
23 27 30 31 33 37 3836
23 24 34292826
40 41 43 49 52 55 57

5
6
7
8
9

1 2 3 4 6 7 10 11 12 13 14 16 17 19 20 21 22 23 24 25 2615 18985

40 47 48 50 54 5653
41 51464544

40 41 49 52 57

41
42

10
11
12

Figure 6. Illustration of processing repositioning for core parity bits related CPMs.

Finally, it is important to mention that the results of the first four rows in the base
graph matrix are always calculated in the beginning since the core parity bits are necessary
for later calculation. Reordering is performed only for the processing of rows used for
additional parity bits calculation.

The GA optimization consists of the following phases: (1) generation of the initial
population, after which the later phases are iteratively repeated; (2) selection of the best
individuals; (3) crossover of the selected individuals; and (4) mutation. The initial popu-
lation contains a large set of vectors, which represent the rows processing order. Each
individual is a random permutation of the original processing order, which is a vector of
natural numbers valued from 5 to mb. After the population is generated, the set of pro-
cessing orders that give the smallest numbers of encoding clock-cycles is selected for re-
production.

The illustration of the crossover of two vectors (parents) is shown in Figure 7. For the
sake of simplicity, the example from Figure 7 uses individuals generated from a vector of
natural numbers from 1 to 20, but it demonstrates a procedure applicable to any vectors.
A subvector is cut from the first parent at random positions, after which it is placed in the
child vector at the same position where it stood in the parent vector. The remainder of the
child vector is filled with elements from the second parent vector while keeping the orig-
inal order of elements. Those elements which are the same as already placed elements
originating from the first vector are skipped. This is carried out to keep the uniqueness of
each element in a vector. The crossover is repeated until a new population is formed. A
mutation is performed by randomly switching two elements of some randomly selected
vectors. The newly generated population is used for another selection, and the process is
repeated until the maximal number of generations is reached.

Figure 6. Illustration of processing repositioning for core parity bits related CPMs.

Finally, it is important to mention that the results of the first four rows in the base
graph matrix are always calculated in the beginning since the core parity bits are necessary
for later calculation. Reordering is performed only for the processing of rows used for
additional parity bits calculation.

Electronics 2021, 10, 1106 14 of 24

The GA optimization consists of the following phases: (1) generation of the initial
population, after which the later phases are iteratively repeated; (2) selection of the best in-
dividuals; (3) crossover of the selected individuals; and (4) mutation. The initial population
contains a large set of vectors, which represent the rows processing order. Each individual
is a random permutation of the original processing order, which is a vector of natural
numbers valued from 5 to mb. After the population is generated, the set of processing
orders that give the smallest numbers of encoding clock-cycles is selected for reproduction.

The illustration of the crossover of two vectors (parents) is shown in Figure 7. For the
sake of simplicity, the example from Figure 7 uses individuals generated from a vector of
natural numbers from 1 to 20, but it demonstrates a procedure applicable to any vectors. A
subvector is cut from the first parent at random positions, after which it is placed in the
child vector at the same position where it stood in the parent vector. The remainder of
the child vector is filled with elements from the second parent vector while keeping the
original order of elements. Those elements which are the same as already placed elements
originating from the first vector are skipped. This is carried out to keep the uniqueness of
each element in a vector. The crossover is repeated until a new population is formed. A
mutation is performed by randomly switching two elements of some randomly selected
vectors. The newly generated population is used for another selection, and the process is
repeated until the maximal number of generations is reached.

Electronics 2021, 10, x FOR PEER REVIEW 15 of 26

Original
vector 5 6 7 8 9 10 11 12 13 14 17 18 19 2015 161 2 3 4

Parent 1 7 17 14 8 5 19 15 1 2 4 9 20 10 1218 136 3 16 11

15 10 13 18 8 9 1 5 17 11 3 4 19 76 1612 20 2 14

17 14 8 5 19 1512 20 2 10 13 18 9 1 11 3 4 76 16

Parent 2

Random selection
from parent 1

Fill in from
parent 2

15 10 13 18 8 9 1 5 17 11 3 4 19 76 1612 20 2 14

17 14 8 5 19 15
Crossover

MutationRandom
switch of

places
17 14 8 5 19 1512 20 2 10 13 18 9 1 11 3 4 76 16

17 14 8 5 19 1512 9 2 10 13 18 20 1 11 3 4 76 16
Mutated

child
Figure 7. Genetic algorithm crossover and mutation examples for 20-element vectors.

5. Proposed Hardware Realization of Flexible 5G NR LDPC Encoder
This section presents the hardware implementation of the proposed encoding algo-

rithm and scheduling. The flexible scheduling described in Section 4 requires a thorough
design of the circular shifting network. Therefore, in Section 5.1, the proposed design for
such a shifting network is presented. The architecture of the proposed encoder is pre-
sented in Section 5.2.

5.1. Circular Shifting Network for High Flexibility
The circular shifting network is designed to work in one of the following three

modes: (1) as a single CS when lifting size is in the range 192 < Z ≤ 384, (2) as two inde-
pendent CSs when lifting size is in the range 96 < Z ≤ 192, and (3) as four independent CSs
when lifting size is in the range 2 ≤ Z ≤ 96. For supporting such functionality, the chosen
basic component for the entire network is a CS that supports all 5G NR lifting sizes of up
to 96 (CS96). Four CS96 components are used as either independent CSs or as partial CSs
for higher lifting sizes.

A CS96 shifter is designed as a two-stage shifter as in [11,44], where the first stage is
a pre-rotator network and the second stage is a QSN (abbreviated from QC–LDPC Shift
Network) circular shifter [45]. As stated in (20), the 5G NR lifting size can take values of
the form Z = a∙2j, where j goes from 0 for smallest to 7 for largest lifting sizes. For lifting
sizes supported by the CS96 shifter, j is always less than or equal to 5. Given that j can
take values as small as 0, the pre-rotator network must have outputs for multiple rotation
sizes [11], which is obtained as in [46].

With CS96 available, CS for higher lifting sizes is realized using appropriate bit per-
mutations and reordering before and after CS96 blocks. A rationale for permutation and
reordering network design is based on the possibility of rearranging CPMs to a group of
smaller submatrices of which some are also circularly shifted identity matrices of size Z/D
× Z/D, where D is a natural number. Such rearranging has been previously used for the
design of LDPC decoders that support lower parallelism than Z and for preventing pipe-
line RAW data hazards [43], but here, it is applied to the design of CS. The CPM splitting
relies on row and column permutations. Both row and column indexes in the new matrix
are calculated using the following formula:

Figure 7. Genetic algorithm crossover and mutation examples for 20-element vectors.

5. Proposed Hardware Realization of Flexible 5G NR LDPC Encoder

This section presents the hardware implementation of the proposed encoding algo-
rithm and scheduling. The flexible scheduling described in Section 4 requires a thorough
design of the circular shifting network. Therefore, in Section 5.1, the proposed design for
such a shifting network is presented. The architecture of the proposed encoder is presented
in Section 5.2.

5.1. Circular Shifting Network for High Flexibility

The circular shifting network is designed to work in one of the following three modes:
(1) as a single CS when lifting size is in the range 192 < Z ≤ 384, (2) as two independent
CSs when lifting size is in the range 96 < Z ≤ 192, and (3) as four independent CSs when
lifting size is in the range 2 ≤ Z ≤ 96. For supporting such functionality, the chosen basic
component for the entire network is a CS that supports all 5G NR lifting sizes of up to 96

Electronics 2021, 10, 1106 15 of 24

(CS96). Four CS96 components are used as either independent CSs or as partial CSs for
higher lifting sizes.

A CS96 shifter is designed as a two-stage shifter as in [11,44], where the first stage is
a pre-rotator network and the second stage is a QSN (abbreviated from QC–LDPC Shift
Network) circular shifter [45]. As stated in (20), the 5G NR lifting size can take values of
the form Z = a·2j, where j goes from 0 for smallest to 7 for largest lifting sizes. For lifting
sizes supported by the CS96 shifter, j is always less than or equal to 5. Given that j can
take values as small as 0, the pre-rotator network must have outputs for multiple rotation
sizes [11], which is obtained as in [46].

With CS96 available, CS for higher lifting sizes is realized using appropriate bit
permutations and reordering before and after CS96 blocks. A rationale for permutation and
reordering network design is based on the possibility of rearranging CPMs to a group of
smaller submatrices of which some are also circularly shifted identity matrices of size Z/D
× Z/D, where D is a natural number. Such rearranging has been previously used for the
design of LDPC decoders that support lower parallelism than Z and for preventing pipeline
RAW data hazards [43], but here, it is applied to the design of CS. The CPM splitting relies
on row and column permutations. Both row and column indexes in the new matrix are
calculated using the following formula:

idxnew = (idxoldmodD) · Z
D

+

⌊
idxold

D

⌋
. (34)

Examples of presented permutations for D = 2 and D = 4 are shown in Figure 8. For
the sake of simplicity and clearer presentation, the original lifting size is 16. A generalized
illustration of CPM splitting for any lifting size is shown in Figure 9. One exponent matrix
entry P gives 2 × 2 = 4 new entries if D = 2, and 4 × 4 = 16 new entries if D = 4.

Electronics 2021, 10, x FOR PEER REVIEW 16 of 26

()  
= ⋅ +  

 
mod .old

new old

idxZidx idx D
D D (34)

Examples of presented permutations for D = 2 and D = 4 are shown in Figure 8. For
the sake of simplicity and clearer presentation, the original lifting size is 16. A generalized
illustration of CPM splitting for any lifting size is shown in Figure 9. One exponent matrix
entry P gives 2 × 2 = 4 new entries if D = 2, and 4 × 4 = 16 new entries if D = 4.

The described property proves that a single circular shift for a large lifting size can
be split into multiple circular shifts for a smaller lifting size. Therefore, the circular shifting
network for large lifting sizes can be designed by using independent smaller lifting sizes
CSs. This can be performed using the following steps. Input bits are firstly permuted using
the relation from (34) to obtain independent groups of data. Each group of data is circu-
larly shifted in shifters of smaller lifting sizes. The shifted data are in the permuted order
and hence need an inverse permutation to obtain the proper output bits arrangement. The
CS architecture that implements this method suitable for 5G NR codes is shown in Figure
10. In addition to the already mentioned permutations, the shifting network needs a group
reordering stage, which depends on the remainder after the division of the original shift
value with D. For example, for D = 4, if the remainder is 0, there is no need for reordering,
which can be concluded from positions of newly generated CPMs in Figure 9. However,
if the remainder is 1, the first bit group must be placed last, the second must be placed
first, the third must be placed second, the fourth must be placed third, etc.

(b)

4
5
6
7
8

0
1
2
3

11
12
13
14
15

9
10

4 5 6 7 80 1 2 3 1112131415109

(a)

8
10
12
14
1

0
2
4
6

7
9

11
13

3
5

8 101214 10 2 4 6 7 9 11131553

15

1
5
9

13
2

0
4
8

12

14
3
7

11

6
10

1 5 9 13 20 4 8 12 14 3 7 1115106

15

8 101214 10 2 4 6 7 9 11131553

4
5
6
7
8

0
1
2
3

11
12
13
14
15

9
10

(c) (d)
Figure 8. CPM splitting examples: (a) the original CPM, (b) original CPM with columns permuted
for D = 2, (c) final permuted CPM for D = 2, and (d) final permuted CPM for D = 4.

P
Q

−1

−1

Q

−1

Q + 1

Q

−1

Q

−1

−1

−1

−1

Q

−1

−1

−1

−1

Q

−1

−1

−1

−1

Q

−1

−1

−1

Q + 1

Q

−1

−1

−1

−1

Q

−1

−1

−1

−1

Q

−1

−1

−1

Q + 1

−1

−1

−1

−1

Q + 1

Q

−1

−1

−1

−1

Q

−1

−1

−1

Q + 1

−1

−1

−1

−1

Q + 1

−1

−1

−1

−1

Q + 1

Q

−1

−1

−1

P

 
=  
 2

PQ

=mod 2 0P =mod 2 1P

=mod 4 0P =mod 4 1P

=mod 4 2P =mod 4 3P

 
=  
 4

PQ

Figure 9. General circulant permutation matrix splitting results for D = 2 and D = 4. P is the shift
value from the exponent matrix. Exponent matrix entry value −1 represents a zero submatrix.

Figure 8. CPM splitting examples: (a) the original CPM, (b) original CPM with columns permuted
for D = 2, (c) final permuted CPM for D = 2, and (d) final permuted CPM for D = 4.

Electronics 2021, 10, x FOR PEER REVIEW 16 of 26

()  
= ⋅ +  

 
mod .old

new old

idxZidx idx D
D D (34)

Examples of presented permutations for D = 2 and D = 4 are shown in Figure 8. For
the sake of simplicity and clearer presentation, the original lifting size is 16. A generalized
illustration of CPM splitting for any lifting size is shown in Figure 9. One exponent matrix
entry P gives 2 × 2 = 4 new entries if D = 2, and 4 × 4 = 16 new entries if D = 4.

The described property proves that a single circular shift for a large lifting size can
be split into multiple circular shifts for a smaller lifting size. Therefore, the circular shifting
network for large lifting sizes can be designed by using independent smaller lifting sizes
CSs. This can be performed using the following steps. Input bits are firstly permuted using
the relation from (34) to obtain independent groups of data. Each group of data is circu-
larly shifted in shifters of smaller lifting sizes. The shifted data are in the permuted order
and hence need an inverse permutation to obtain the proper output bits arrangement. The
CS architecture that implements this method suitable for 5G NR codes is shown in Figure
10. In addition to the already mentioned permutations, the shifting network needs a group
reordering stage, which depends on the remainder after the division of the original shift
value with D. For example, for D = 4, if the remainder is 0, there is no need for reordering,
which can be concluded from positions of newly generated CPMs in Figure 9. However,
if the remainder is 1, the first bit group must be placed last, the second must be placed
first, the third must be placed second, the fourth must be placed third, etc.

(b)

4
5
6
7
8

0
1
2
3

11
12
13
14
15

9
10

4 5 6 7 80 1 2 3 1112131415109

(a)

8
10
12
14
1

0
2
4
6

7
9

11
13

3
5

8 101214 10 2 4 6 7 9 11131553

15

1
5
9

13
2

0
4
8

12

14
3
7

11

6
10

1 5 9 13 20 4 8 12 14 3 7 1115106

15

8 101214 10 2 4 6 7 9 11131553

4
5
6
7
8

0
1
2
3

11
12
13
14
15

9
10

(c) (d)
Figure 8. CPM splitting examples: (a) the original CPM, (b) original CPM with columns permuted
for D = 2, (c) final permuted CPM for D = 2, and (d) final permuted CPM for D = 4.

P
Q

−1

−1

Q

−1

Q + 1

Q

−1

Q

−1

−1

−1

−1

Q

−1

−1

−1

−1

Q

−1

−1

−1

−1

Q

−1

−1

−1

Q + 1

Q

−1

−1

−1

−1

Q

−1

−1

−1

−1

Q

−1

−1

−1

Q + 1

−1

−1

−1

−1

Q + 1

Q

−1

−1

−1

−1

Q

−1

−1

−1

Q + 1

−1

−1

−1

−1

Q + 1

−1

−1

−1

−1

Q + 1

Q

−1

−1

−1

P

 
=  
 2

PQ

=mod 2 0P =mod 2 1P

=mod 4 0P =mod 4 1P

=mod 4 2P =mod 4 3P

 
=  
 4

PQ

Figure 9. General circulant permutation matrix splitting results for D = 2 and D = 4. P is the shift
value from the exponent matrix. Exponent matrix entry value −1 represents a zero submatrix.
Figure 9. General circulant permutation matrix splitting results for D = 2 and D = 4. P is the shift
value from the exponent matrix. Exponent matrix entry value −1 represents a zero submatrix.

Electronics 2021, 10, 1106 16 of 24

The described property proves that a single circular shift for a large lifting size can be
split into multiple circular shifts for a smaller lifting size. Therefore, the circular shifting
network for large lifting sizes can be designed by using independent smaller lifting sizes
CSs. This can be performed using the following steps. Input bits are firstly permuted using
the relation from (34) to obtain independent groups of data. Each group of data is circularly
shifted in shifters of smaller lifting sizes. The shifted data are in the permuted order and
hence need an inverse permutation to obtain the proper output bits arrangement. The CS
architecture that implements this method suitable for 5G NR codes is shown in Figure 10.
In addition to the already mentioned permutations, the shifting network needs a group
reordering stage, which depends on the remainder after the division of the original shift
value with D. For example, for D = 4, if the remainder is 0, there is no need for reordering,
which can be concluded from positions of newly generated CPMs in Figure 9. However, if
the remainder is 1, the first bit group must be placed last, the second must be placed first,
the third must be placed second, the fourth must be placed third, etc.

Electronics 2021, 10, x FOR PEER REVIEW 17 of 26

Flexible Cyclic Shifter

Parameters calculation

Group
reordering

Inverse bit
permutation

Direct bit
permutation

D DP mod D Q/Q + 1

Shifter 1 (Z ≤ 96)

D Z/D

Z P1

Shifter 2 (Z ≤ 96)

Shifter 3 (Z ≤ 96)

Shifter 4 (Z ≤ 96)

P2 P3 P4

Input
data

Output
data

D
1 2 4

D
1 2 4

Figure 10. Shifting network architecture for the proposed 5G NR encoder. The network is capable
of circular shifting four independent groups of data if Z ≤ 96, two independent groups of data if 96
< Z ≤ 192, and one group of data if 192 < Z ≤ 384.

The described architecture provides another important feature. The shifted bits for
lifting sizes other than 96, 192, or 384 are aligned to one side of the data block. Several
examples are shown in Figure 10. Light green and dark green areas represent groups of Z
valid bits that should be shifted, whereas the hatched area represents nonvalid data. This
property is of crucial importance since such data alignment drastically simplifies the re-
maining encoder blocks: core parity bits calculator, input data interface, and output data
interface.

Finally, the proposed procedure can be easily applied to a more generic CS network
that can shift more than four independent blocks of data. However, in such cases, due to
the high irregularity of check nodes in 5G NR LDPC codes, in this particular application,
the ratio of the throughput gain with respect to the additional complexity would not be
as high as it is for the former cases. Additionally, the processing of the first four rows in
the base graph matrix cannot be further parallelized since core parity bits are necessary
for later processing. Nevertheless, other LDPC encoder or decoder architecture may have
more benefits from additional shifting network splitting. For example, in order to obtain
better HUE, row-based parallel architectures could use a shifter that processes all inputs
in parallel for small lifting size values but combine parallel and serial processing for
higher lifting sizes. Again, for 5G NR, PCM has a broad range of row weight values, and
such a shifter would not always be used in its full capacity, but for codes that have rela-
tively high row weights for all rows, not just for the first 4Z as in 5G NR, benefits to the
HUE would be significant. Similar conclusions apply to codes whose column regularity is
higher.

5.2. LDPC Encoder Architecture
The hardware architecture of the proposed flexible encoder is shown in Figure 11.

Information bits are stored in the input buffer dual-port memory. In order to implement
double buffering, the input buffer can receive information bits for two adjacent code-
words. One half of memory is used for reads during the current codeword encoding,
while the other half is used for information bits storage for the next codeword. Conse-
quently, there is no need for any information bits repackaging when the encoding starts,
which removes the need for additional clock cycles and increases the encoding speed.

Depending on the lifting size, the encoder can work in one of the three modes deter-
mined by the circular shifter. If lifting size is in the range 192 < Z ≤ 384, the encoder serially
processes one CPM per clock cycle, from one row of the base graph matrix. The infor-
mation bits group of maximum bit length 384 is read from the input buffer. Info bits are
shifted and used for the calculation of GF(2) sums for λ vectors. All GF(2) additions are
realized using the XOR operation. If lifting size is in the range 96 < Z ≤ 192, the encoder

Figure 10. Shifting network architecture for the proposed 5G NR encoder. The network is capable
of circular shifting four independent groups of data if Z ≤ 96, two independent groups of data if
96 < Z ≤ 192, and one group of data if 192 < Z ≤ 384.

The described architecture provides another important feature. The shifted bits for
lifting sizes other than 96, 192, or 384 are aligned to one side of the data block. Several
examples are shown in Figure 10. Light green and dark green areas represent groups of
Z valid bits that should be shifted, whereas the hatched area represents nonvalid data.
This property is of crucial importance since such data alignment drastically simplifies the
remaining encoder blocks: core parity bits calculator, input data interface, and output
data interface.

Finally, the proposed procedure can be easily applied to a more generic CS network
that can shift more than four independent blocks of data. However, in such cases, due to
the high irregularity of check nodes in 5G NR LDPC codes, in this particular application,
the ratio of the throughput gain with respect to the additional complexity would not be
as high as it is for the former cases. Additionally, the processing of the first four rows in
the base graph matrix cannot be further parallelized since core parity bits are necessary
for later processing. Nevertheless, other LDPC encoder or decoder architecture may have
more benefits from additional shifting network splitting. For example, in order to obtain
better HUE, row-based parallel architectures could use a shifter that processes all inputs in
parallel for small lifting size values but combine parallel and serial processing for higher
lifting sizes. Again, for 5G NR, PCM has a broad range of row weight values, and such a
shifter would not always be used in its full capacity, but for codes that have relatively high
row weights for all rows, not just for the first 4Z as in 5G NR, benefits to the HUE would
be significant. Similar conclusions apply to codes whose column regularity is higher.

Electronics 2021, 10, 1106 17 of 24

5.2. LDPC Encoder Architecture

The hardware architecture of the proposed flexible encoder is shown in Figure 11.
Information bits are stored in the input buffer dual-port memory. In order to implement
double buffering, the input buffer can receive information bits for two adjacent codewords.
One half of memory is used for reads during the current codeword encoding, while the
other half is used for information bits storage for the next codeword. Consequently, there
is no need for any information bits repackaging when the encoding starts, which removes
the need for additional clock cycles and increases the encoding speed.

Electronics 2021, 10, x FOR PEER REVIEW 18 of 26

serially processes up to two CPMs per clock cycle, from two adjacent rows defined by the
optimized schedule. In this case, a word that is read from the input buffer memory con-
sists of an information bits group (of maximum bit length 192), and its copy is placed in
the word’s high bits. This is provided by the input interface, which is not shown in Figure
11. Circular shifting network works as two independent CSs with shift sizes equal to the
given code lifting size. If lifting size is in the range 2 ≤ Z ≤ 96, the encoder serially processes
up to four CPMs per clock cycle, from four adjacent rows defined by the corresponding
optimized schedule. The input buffer now contains words that consist of four identical
copies of information bits groups. They are independently shifted in the CS and then used
for the calculation of four independent GF(2) sums. During the process of λ vectors calcu-
lation, information bits are also passed to the output codeword generator that writes the
data to the output buffer.

Since, as described, the parallelism of the λ vectors calculation is different for differ-
ent lifting sizes, there is a need for a separate block, marked as “Merge/Select λ” in Figure
11, which arranges the λ vectors data in the appropriate order for later core parity bits
calculation.

Encoder core

Calculate core parity bitsMerge/
Select λ

GF(2) Sum

en[3:0]

9
6

9
6

9
6

9
6

CS
Input
buffer

Info
bits

BG

λ1

λ2

λ3

λ4

pc,1

pc,2

pc,4

CS
(1)

pc,3

Output code word generator

Code word bits

BG

BG

1
2

1
2

2
1

Output buffer

3
8
4

3
8
4

3
8
4

3
8
4

Figure 11. Proposed 5G NR LDPC encoder architecture.

After the calculation of all λ vectors, the process continues in the same manner for
the next rows in the base graph matrix. During that time, core parity bits are calculated in
parallel. BG1 and BG2 have different equations for the calculation of core parity bits. How-
ever, most of the logic can be shared by inserting a few additional multiplexers that rear-
range data paths depending on the base graph selected. The circular shifter marked as
CS(1) shifts data only by 1, to the left or right depending on the base graph. Since the
shifter should support only two shift values, it can be implemented using just a fragment
of resources that are used for the main CS, although it should still support all lifting sizes
defined in the 5G NR standard. When calculated, the core parity bits are also passed to
the output codeword generator.

Figure 11. Proposed 5G NR LDPC encoder architecture.

Depending on the lifting size, the encoder can work in one of the three modes de-
termined by the circular shifter. If lifting size is in the range 192 < Z ≤ 384, the encoder
serially processes one CPM per clock cycle, from one row of the base graph matrix. The
information bits group of maximum bit length 384 is read from the input buffer. Info bits
are shifted and used for the calculation of GF(2) sums for λ vectors. All GF(2) additions are
realized using the XOR operation. If lifting size is in the range 96 < Z ≤ 192, the encoder
serially processes up to two CPMs per clock cycle, from two adjacent rows defined by the
optimized schedule. In this case, a word that is read from the input buffer memory consists
of an information bits group (of maximum bit length 192), and its copy is placed in the
word’s high bits. This is provided by the input interface, which is not shown in Figure 11.
Circular shifting network works as two independent CSs with shift sizes equal to the given
code lifting size. If lifting size is in the range 2 ≤ Z ≤ 96, the encoder serially processes
up to four CPMs per clock cycle, from four adjacent rows defined by the corresponding
optimized schedule. The input buffer now contains words that consist of four identical
copies of information bits groups. They are independently shifted in the CS and then
used for the calculation of four independent GF(2) sums. During the process of λ vectors
calculation, information bits are also passed to the output codeword generator that writes
the data to the output buffer.

Electronics 2021, 10, 1106 18 of 24

Since, as described, the parallelism of the λ vectors calculation is different for different
lifting sizes, there is a need for a separate block, marked as “Merge/Select λ” in Figure 11,
whicharranges the λ vectors data in the appropriate order for later core parity bits calculation.

After the calculation of all λ vectors, the process continues in the same manner for
the next rows in the base graph matrix. During that time, core parity bits are calculated
in parallel. BG1 and BG2 have different equations for the calculation of core parity bits.
However, most of the logic can be shared by inserting a few additional multiplexers that
rearrange data paths depending on the base graph selected. The circular shifter marked
as CS(1) shifts data only by 1, to the left or right depending on the base graph. Since the
shifter should support only two shift values, it can be implemented using just a fragment
of resources that are used for the main CS, although it should still support all lifting sizes
defined in the 5G NR standard. When calculated, the core parity bits are also passed to the
output codeword generator.

Calculated core parity bits are returned to the main CS input since they are used for
additional parity bits calculation. One of the four core parity bit groups is selected based on
the control CPM data. Depending on the lifting size, the selected core parity bits group is
copied in the same way as it has been for information bits in the input buffer. Finally, four
sets of multiplexers determine whether the information bits group or the core parity bits
group should be passed to the CS. Outputs of the “GF(2) Sum” block are now additional
parity bits, which are passed to the output codeword generator.

The entire architecture is pipelined to obtain high operating frequency. Therefore, it
is necessary that the encoding schedule does not use core parity bits for the calculation
of additional parity bits until the former are ready. Ideally, the first rows that are used
for additional parity bits calculation should not contain CPMs in the columns related to
the core parity bits. This is provided by giving the additional constraint to the processing
order optimization.

In the end, it should be mentioned that almost identical architecture could be applied
for encoding of IEEE 802.16e (WiMAX) [38] LPDC codes. There are two main differences.
First is that WiMAX lifting sizes are between 24 and 96. Therefore, the main CS would be
designed using four CS24 components, instead of CS96s. The second difference is based
on the fact that WiMAX has only core parity bits which can be calculated recursively in
a way similar to (15) and (16). The proposed 5G NR encoder calculates all core parity
bits in parallel, but for WiMAX, it may be more efficient to conduct that serially because
the number of parity bits is not the same for all codes. Additional CS needed for parity
bits calculation should support slightly more than only two shift values as it is in the 5G
NR encoder.

6. Results and Discussion
6.1. Encoding Schedule Optimization Results

Optimization of the processing order provided a strong decrease in the encoding
time. Examples of optimized encoding schedules are shown in Figure 12. Examples are
shown for a processing order when four CSs are available. It is obvious that rows are
grouped in a way that the same information bits are used for multiple CPMs at the same
time. This results in a significant increase in the encoding speed. Moreover, the core
parity bits processing is merged with the processing of some information bits when free
CSs are available. This repositioning is of great importance for the additional encoding
speed increase.

Electronics 2021, 10, 1106 19 of 24

Electronics 2021, 10, x FOR PEER REVIEW 2 of 27

hough it can be parallelized to some extent, high degrees of parallelism are hardly achiev-
able. Moreover, the throughput of turbo decoders is usually not dependent on the code
rate, whereas LDPC decoder throughput increases along with the code rate since PCM for
higher code rate is usually smaller than the PCM for low code rate. This property enables
achieving higher peak throughput at high spectral efficiencies and high values of signal-
to-noise ratio (SNR) [5].

The most common structured LDPC family is known as quasi-cyclic (QC) LDPC

codes [6–8]. Their PCM consists of circularly shifted identity submatrices or square zero
submatrices. Such submatrices are frequently called circulant permutation matrices
(CPM) [8,9]. The size of CPMs is referred to as lifting size or lifting factor (Z) [5]. QC–
LDPC codes are usually designed based on the so-called base graph (BG) matrix, which
defines a macroscopic structure of a code. The final PCM is constructed by placing CPMs

Figure 12. A scatter diagram of the optimized processing order for BG1 and BG2 codes when four
CSs are available. Circles represent CPMs that are used for information bits processing, whereas other
shapes represent CPMs that are used for core parity bits processing. All core parity bits processing is
merged with some information bits processing when free CSs are available.

Table 2 summarizes the results of GA optimization. The improvement metric de-
scribes how much faster the optimized schedule is, compared to the unoptimized. A
large reduction in the number of clock cycles necessary for one codeword encoding can be
observed. The BG2 optimization provides better improvements because a larger percentage
of total CPMs are located in the core parity columns and since all these CPMs are processed
together with other CPMs from information bit columns.

Table 2. Results of the GA optimization.

Encoding
Schedule

NCPC NCPC, Optimized
Improvement wrt
Unoptimized (%)

Improvement wrt
Serial (%)

BG1 BG2 BG1 BG2 BG1 BG2 BG1 BG2

Serial 265 150 - - - - 0 0
Serial (2 CSs) 223 136 165 86 35.15 58.14 60.61 74.42
Serial (4 CSs) 180 94 107 53 68.22 77.35 147.66 183.02

Moreover, the improvement is calculated with respect to the original serial processing.
The results show that the proposed architecture granted almost three times faster encoding
for codes with lifting sizes of 96 and smaller, and almost twice as faster for codes with
lifting sizes between 96 and 192. The hardware overhead is expected to be small and comes

Electronics 2021, 10, 1106 20 of 24

mainly because of the shifting network’s flexibility, which will be shown in Section 6.2.
Therefore, it is expected that the HUE will be significantly increased.

6.2. Throughput-, Latency-, and Hardware-Usage Efficiency Results

The proposed encoder was implemented on the Xilinx ZCU111 development board
with the Zynq UltraScale+ RF-SoC device (XCZU28DR). The obtained maximum clock
frequency was fmax = 580 MHz. Throughput results for both BG1 and BG2 codes (the
entire PCM) are summarized in Figure 13a. Results are shown for all available lifting size
values. The information throughput is calculated as in (32). The peak BG1 throughput
is 18.51 Gb/s, whereas the peak throughput for BG2 is 14.87 Gb/s. Figure 13a shows a
significant improvement of the throughput results for lifting sizes smaller than or equal
to 192 when the proposed flexible partially parallel encoder is compared to the serial
processing. High throughput values are achievable for much smaller lifting size values
since CS resources are better used for parallelism increase. The benefits of processing order
optimization are also easily noticeable.

Electronics 2021, 10, x FOR PEER REVIEW 21 of 26

are better used for parallelism increase. The benefits of processing order optimization are

also easily noticeable.

Encoder’s latency was calculated as the time between the last transfer of the input

information bits data and the last output codeword data transfer. The obtained latency is

smaller than 1 µs for all codes. Results for all available lifting size values are shown in

Figure 13b.

In order to compare obtained results with the state of the art, three additional 5G NR

LDPC encoder cores were implemented as follows: (1) encoder that incorporates serial

CPM processing whose architecture is presented in this paper but would be a conven-

tional way to encode the 5G NR codes, (2) encoder that incorporates column-based paral-

lel processing (a method described in [34]), and (3) encoder that incorporates row-based

parallel processing (described in [31,35]). A detailed explanation of all the processing

schedules used in the abovementioned architectures is given in Section 4.1.

The serial encoder has the same architecture as the proposed encoder. However, all

redundant hardware components were removed. The CS was implemented as in [11],

whereas blocks for merging and selection of λ values and core parity bits were removed.

Additional simplification was made in the storage of PCM matrix data since there was no

need for the storage of optimized schedules.

As described in Section 4.1, the column-based parallel architecture has been previ-

ously used for encoding Wi-Fi LDPC codes [34]. For the sake of comparison, the same

architecture was applied to 5G NR LDPC codes. All columns in the exponent matrix are

processed in parallel, which implies the usage of 46 CSs and GF(2) accumulation circuits.

CSs were the same as for the serial architecture. Due to the pipeline, it was necessary to

wait for two clock cycles for core parity bits to be ready, which increased the total number

of clock cycles estimated in Section 4.1 to 28 for BG1 and 16 for BG2. This LDPC encoder

core also calculates core parity bits using the same hardware as the proposed partially

parallel architecture. PCM matrix was stored in the block RAM memories (BRAMs) in the

form of eight exponent matrices for the highest lifting size, whereas the shift values for

smaller lifting sizes were calculated in logic. It is necessary to load up to 46 shift values in

parallel; hence multiple BRAMs were necessary to store these values.

BG 1 BG 2

(a)

Electronics 2021, 10, x FOR PEER REVIEW 22 of 26

BG 1 BG 2

(b)

Figure 13. Performance of the proposed 5G NR LDPC encoder for three different encoding sched-

ules and for various lifting sizes: (a) information throughput and (b) latency.

To the best of the authors’ knowledge, the only architecture applied to 5G NR LDPC

encoding so far was row parallel architecture [35]. As described in Section 4.1, all rows of

the exponent matrix are processed in parallel. Such an approach requires the usage of 26

CSs. In contrast to [35], all shifters in the present implementation were flexible (the same

as in serial and column parallel architecture), i.e., they supported all lifting sizes from the

standard. Shifters’ outputs are summed in parallel using a tree-structured XOR summa-

tion. The PCM matrix was also stored in the block RAM memories in the same form as for

column parallel architecture. However, since a smaller number of shift values is necessary

in parallel, the number of used BRAMs is also smaller. Core parity bits were also calcu-

lated from λ vectors as in former designs.

Implementation results and comparison are given in Table 3. Given resources are

without input and output buffers. Therefore, utilized BRAMs are only used for PCM stor-

age. The obtained maximum operating frequency differed depending on the chosen ar-

chitecture as shown in Table 3. Although they are heavily pipelined, larger designs have

smaller maximal operating frequencies due to routing congestion. However, in order to

make a better architectural comparison, the information throughput was normalized with

the operating frequency as follows:

 .
norm

CLK

Thr
Thr

f
 (35)

Normalized throughput values are calculated for both BG1 and BG2 and for all lifting

sizes. The average normalized throughput values and the average throughputs are shown

in Table 3. Finally, the HUE is calculated as throughput, both normalized and achieved,

divided by the number of utilized hardware resources. Results show that, on average, the

proposed architecture provides by far the highest HUE.

Table 3. Implementation results for various architectures of 5G NR LDPC encoder and average throughput and hardware

usage efficiency comparison.

Architecture

Resources Utilization
Thrnorm,avg

(b/Cycle)

fmax

(MHz)

Thravg

(Gbps)

Avg. HUE (Thr(norm),avg/Resources)

Slices LUTs FFs
36k

BRAMs

b/Cy-

cle/kSlice

b/Cy-

cle/kLUT

b/Cy-

cle/kFF

Gbps/kSl

ice

Column based

parallel [34]
42257 248641 246960 6 61.9 330 20.43 1.46 0.25 0.25 0.48

Row based

parallel [31,35]
26180 126986 131185 3.5 30.1 470 14.15 1.15 0.24 0.23 0.54

Serial 1729 8712 9975 3 6.6 580 3.83 3.82 0.76 0.66 2.22

Figure 13. Performance of the proposed 5G NR LDPC encoder for three different encoding schedules
and for various lifting sizes: (a) information throughput and (b) latency.

Encoder’s latency was calculated as the time between the last transfer of the input
information bits data and the last output codeword data transfer. The obtained latency
is smaller than 1 µs for all codes. Results for all available lifting size values are shown in
Figure 13b.

In order to compare obtained results with the state of the art, three additional 5G NR
LDPC encoder cores were implemented as follows: (1) encoder that incorporates serial
CPM processing whose architecture is presented in this paper but would be a conventional
way to encode the 5G NR codes, (2) encoder that incorporates column-based parallel
processing (a method described in [34]), and (3) encoder that incorporates row-based
parallel processing (described in [31,35]). A detailed explanation of all the processing
schedules used in the abovementioned architectures is given in Section 4.1.

Electronics 2021, 10, 1106 21 of 24

The serial encoder has the same architecture as the proposed encoder. However, all
redundant hardware components were removed. The CS was implemented as in [11],
whereas blocks for merging and selection of λ values and core parity bits were removed.
Additional simplification was made in the storage of PCM matrix data since there was no
need for the storage of optimized schedules.

As described in Section 4.1, the column-based parallel architecture has been previously
used for encoding Wi-Fi LDPC codes [34]. For the sake of comparison, the same architecture
was applied to 5G NR LDPC codes. All columns in the exponent matrix are processed
in parallel, which implies the usage of 46 CSs and GF(2) accumulation circuits. CSs were
the same as for the serial architecture. Due to the pipeline, it was necessary to wait for
two clock cycles for core parity bits to be ready, which increased the total number of clock
cycles estimated in Section 4.1 to 28 for BG1 and 16 for BG2. This LDPC encoder core
also calculates core parity bits using the same hardware as the proposed partially parallel
architecture. PCM matrix was stored in the block RAM memories (BRAMs) in the form
of eight exponent matrices for the highest lifting size, whereas the shift values for smaller
lifting sizes were calculated in logic. It is necessary to load up to 46 shift values in parallel;
hence multiple BRAMs were necessary to store these values.

To the best of the authors’ knowledge, the only architecture applied to 5G NR LDPC
encoding so far was row parallel architecture [35]. As described in Section 4.1, all rows
of the exponent matrix are processed in parallel. Such an approach requires the usage of
26 CSs. In contrast to [35], all shifters in the present implementation were flexible (the
same as in serial and column parallel architecture), i.e., they supported all lifting sizes
from the standard. Shifters’ outputs are summed in parallel using a tree-structured XOR
summation. The PCM matrix was also stored in the block RAM memories in the same
form as for column parallel architecture. However, since a smaller number of shift values
is necessary in parallel, the number of used BRAMs is also smaller. Core parity bits were
also calculated from λ vectors as in former designs.

Implementation results and comparison are given in Table 3. Given resources are
without input and output buffers. Therefore, utilized BRAMs are only used for PCM
storage. The obtained maximum operating frequency differed depending on the chosen
architecture as shown in Table 3. Although they are heavily pipelined, larger designs have
smaller maximal operating frequencies due to routing congestion. However, in order to
make a better architectural comparison, the information throughput was normalized with
the operating frequency as follows:

Thrnorm =
Thr
fCLK

. (35)

Normalized throughput values are calculated for both BG1 and BG2 and for all lifting
sizes. The average normalized throughput values and the average throughputs are shown
in Table 3. Finally, the HUE is calculated as throughput, both normalized and achieved,
divided by the number of utilized hardware resources. Results show that, on average, the
proposed architecture provides by far the highest HUE.

Finally, Figure 14 shows the normalized HUE depending on the lifting size for all
the above architectures. It is obvious that highly parallel architectures are very inefficient,
when compared to the serial and proposed partially parallel architecture. Considering
the fact that the latency of the serial processing architecture and the proposed partially
parallel architecture is lower than 1 µs for all codeword lengths, and the fact that the air
interface requirement for 5G ultra-reliable low-latency communication (URLLC) use case
is 1 ms [47], which is 1000 times higher, there is no remaining reason to use highly parallel
architectures for 5G LDPC encoding. By placing multiple encoders to work in parallel, the
proposed architecture can be used for obtaining the throughput that is even higher than the
throughput of the highly parallel architectures but with much fewer hardware resources.

Electronics 2021, 10, 1106 22 of 24

Table 3. Implementation results for various architectures of 5G NR LDPC encoder and average throughput and hardware
usage efficiency comparison.

Architecture
Resources Utilization

Thrnorm,avg
(b/Cycle)

fmax
(MHz)

Thravg
(Gbps)

Avg. HUE (Thr(norm),avg/Resources)

Slices LUTs FFs 36k
BRAMs

b/Cycle/
kSlice

b/Cycle/
kLUT

b/Cycle/
kFF

Gbps/
kSlice

Column based
parallel [34] 42,257 248,641 246,960 6 61.9 330 20.43 1.46 0.25 0.25 0.48

Row based
parallel [31,35] 26,180 126,986 131,185 3.5 30.1 470 14.15 1.15 0.24 0.23 0.54

Serial 1729 8712 9975 3 6.6 580 3.83 3.82 0.76 0.66 2.22
Proposed
optimized 2215 11156 9635 5 10.3 580 5.97 4.65 0.92 1.07 2.70

Electronics 2021, 10, x FOR PEER REVIEW 23 of 26

Proposed

optimized
2215 11156 9635 5 10.3 580 5.97 4.65 0.92 1.07 2.70

Finally, Figure 14 shows the normalized HUE depending on the lifting size for all the

above architectures. It is obvious that highly parallel architectures are very inefficient,

when compared to the serial and proposed partially parallel architecture. Considering the

fact that the latency of the serial processing architecture and the proposed partially paral-

lel architecture is lower than 1 µs for all codeword lengths, and the fact that the air inter-

face requirement for 5G ultra-reliable low-latency communication (URLLC) use case is 1

ms [47], which is 1000 times higher, there is no remaining reason to use highly parallel

architectures for 5G LDPC encoding. By placing multiple encoders to work in parallel, the

proposed architecture can be used for obtaining the throughput that is even higher than

the throughput of the highly parallel architectures but with much fewer hardware re-

sources.

BG 1 BG 2

Figure 14. Normalized hardware usage efficiency for various 5G NR LDPC encoder architectures

depending on the lifting size.

7. Conclusions

In this paper, a novel architecture for 5G NR LDPC encoding is presented. The de-

signed encoder can be configured to encode all LDPC codes from the 5G NR standard in

runtime. The architecture is based on the serial encoding schedule that processes one CPM

of the PCM per clock cycle. However, it incorporates a novel approach of reusing available

hardware resources for processing multiple CPMs per clock cycle for codes with shorter

codewords. This is obtained by the innovative design of the circular shifting network

which can be configured to work as a single shifter for long input data vectors or as mul-

tiple independent CSs for shorter inputs. Proposed CS architecture is also applicable in

other hardware designs for both encoding and decoding of LDPC codes when flexibility

is a requirement.

In addition to the architectural contributions, the paper also presented the method

for offline encoding schedule optimization when multiple CPMs are processed per clock

cycle. The GA-based optimization provided a great improvement in the encoding

throughput (up to 183%) and latency (up to 92%). Implemented encoder provided multi-

gigabit throughput and showed significant improvement in hardware usage efficiency,

when compared with other architectures used for encoding of QC–LDPC codes. On aver-

age, the proposed encoder implementation has five times higher HUE, when compared

to highly parallel implementations and about 22% higher HUE, when compared to the

Figure 14. Normalized hardware usage efficiency for various 5G NR LDPC encoder architectures
depending on the lifting size.

7. Conclusions

In this paper, a novel architecture for 5G NR LDPC encoding is presented. The
designed encoder can be configured to encode all LDPC codes from the 5G NR standard
in runtime. The architecture is based on the serial encoding schedule that processes one
CPM of the PCM per clock cycle. However, it incorporates a novel approach of reusing
available hardware resources for processing multiple CPMs per clock cycle for codes with
shorter codewords. This is obtained by the innovative design of the circular shifting
network which can be configured to work as a single shifter for long input data vectors or
as multiple independent CSs for shorter inputs. Proposed CS architecture is also applicable
in other hardware designs for both encoding and decoding of LDPC codes when flexibility
is a requirement.

In addition to the architectural contributions, the paper also presented the method for
offline encoding schedule optimization when multiple CPMs are processed per clock cycle.
The GA-based optimization provided a great improvement in the encoding throughput (up
to 183%) and latency (up to 92%). Implemented encoder provided multi-gigabit throughput
and showed significant improvement in hardware usage efficiency, when compared with
other architectures used for encoding of QC–LDPC codes. On average, the proposed
encoder implementation has five times higher HUE, when compared to highly parallel
implementations and about 22% higher HUE, when compared to the serial implementation.
The obtained throughput and latency match the required specifications for all currently
proposed 5G use cases. The flexibility of the proposed encoder makes it applicable in any
of those scenarios.

Some contributions described in the paper can be applied in encoders or decoders for
other QC–LDPC codes. The GA-based optimization can be performed for any architecture

Electronics 2021, 10, 1106 23 of 24

that requires multiple rows processing for possible throughput increase. In addition to
that, the proposed cyclic shifter design can be used in any encoder or decoder design that
needs multiple shifting modes. A good example would be the encoder for WiMAX LDPC
codes whose lifting sizes vary from 24 to 96.

Author Contributions: Conceptualization, V.L.P., D.M.E.M., and A.R.; methodology, V.L.P. and
D.M.E.M.; validation, V.L.P.; formal analysis, V.L.P. and D.M.E.M.; investigation, V.L.P.; resources,
A.R.; writing—original draft preparation, V.L.P., D.M.E.M., and A.R.; visualization, V.L.P.; software,
V.L.P. and D.M.E.M.; supervision, A.R.; project administration, A.R.; funding acquisition, A.R. and
V.L.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: Authors are thankful to Miloš Marković from the Tannera LLC and Lazar
Saranovac, Srd̄an Brkić, Ðord̄e Sarač, and Predrag Ivaniš from the University of Belgrade, School of
Electrical Engineering for valuable comments and discussions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. 3rd Generation Partnership Project. Technical Specification Group Radio Access Network; NR; Multiplexing and Channel Coding

(Release 16), 3GPP TS 38.212 V16.5.0 (2021-03); 3GPP: Valbonne, France, 2021.
2. Gallager, R. Low-density parity-check codes. IRE Trans. Inform. Theory 1962, 8, 21–28. [CrossRef]
3. Berrou, C.; Glavieux, A.; Thitimajshima, P. Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1. In

Proceedings of the IEEE International Conference on Communications (ICC ’93), Geneva, Switzerland, 23–26 May 1993. [CrossRef]
4. Barzegar, H.R.; Reggiani, L. Channel Coding for Multi-Carrier Wireless Partial Duplex. Wirel. Commun. Mob. Comput. 2019, 2019,

1–13. [CrossRef]
5. Richardson, T.J.; Kudekar, S. Design of low-density parity check codes for 5G new radio. IEEE Commun. Mag. 2018, 56, 28–34.

[CrossRef]
6. Gallager, R.G. Analysis of Number of Independent Decoding Iterations. In Low-Density Parity-Check Codes; MIT Press: Cambridge,

MA, USA, 1963; pp. 81–88.
7. Tanner, R.M.; Sridhara, D.; Sridharan, A.; Fuja, T.E.; Costello, D.J. LDPC block and convolutional codes based on circulant

matrices. IEEE Trans. Inform. Theory 2004, 50, 2966–2984. [CrossRef]
8. Fossorier, M.P.C. Quasi-Cyclic Low-Density Parity-Check Codes from Circulant Permutation Matrices. IEEE Trans. Inform. Theory

2004, 50, 1788–1793. [CrossRef]
9. Li, H.; Bai, B.; Mu, X.; Zhang, J.; Xu, H. Algebra-Assisted Construction of Quasi-Cyclic LDPC Codes for 5G New Radio. IEEE

Access 2018, 6, 50229–50244. [CrossRef]
10. Richardson, T.; Shokrollahi, M.; Urbanke, R. Design of capacity approaching irregular low-density parity-check codes. IEEE Trans.

Inform. Theory 2001, 47, 619–637. [CrossRef]
11. Petrović, V.L.; Marković, M.M.; El Mezeni, D.M.; Saranovac, L.V.; Radošević, A. Flexible High Throughput QC-LDPC Decoder

with Perfect Pipeline Conflicts Resolution and Efficient Hardware Utilization. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67,
5454–5467. [CrossRef]

12. Andrews, K.; Dolinar, S.; Thorpe, J. Encoders for block-circulant LDPC codes. In Proceedings of the International Symposium on
Information Theory (ISIT), Adelaide, Australia, 4–9 September 2005; pp. 2300–2304. [CrossRef]

13. Li, Z.; Chen, L.; Zeng, L.; Lin, S.; Fong, W. Efficient Encoding of Quasi-cyclic Low-density Parity-check Codes. IEEE Trans.
Commun. 2006, 54, 71–81. [CrossRef]

14. Yasotharan, H.; Carusone, A.C. A Flexible Hardware Encoder for Systematic Low-density Parity-check Codes. In Proceedings
of the 52nd IEEE International Midwest Symposium on Circuits and Systems, Cancun, Mexico, 2–5 August 2009; pp. 54–57.
[CrossRef]

15. Theodoropoulos, D.; Kranitis, N.; Paschalis, A. An efficient LDPC encoder architecture for space applications. In Proceedings of
the 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS), Sant Feliu de Guixols, Spain, 4–6 July
2016; pp. 149–154. [CrossRef]

16. Chen, D.; Chen, P.; Fang, Y. Low-complexity high-performance low density parity-check encoder design for China digital radio
standard. IEEE Access 2017, 5, 20880–20886. [CrossRef]

17. Mahdi, A.; Paliouras, V. Simplified Multi-Level Quasi-Cyclic LDPC Codes for Low-Complexity Encoders. In Proceedings of the
IEEE Workshop on Signal Processing Systems, Quebec City, QC, Canada, 17–19 October 2012. [CrossRef]

18. Mahdi, A.; Paliouras, V. A Low Complexity-High Throughput QC-LDPC Encoder. IEEE Trans. Signal Process. 2014, 62, 2696–2708.
[CrossRef]

19. Mahdi, A.; Kanistras, N.; Paliouras, V. A Multirate Fully Parallel LDPC Encoder for the IEEE 802.11n/ac/ax QC-LDPC Codes
Based on Reduced Complexity XOR Trees. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2021, 29, 51–64. [CrossRef]

http://doi.org/10.1109/TIT.1962.1057683
http://doi.org/10.1109/ICC.1993.397441
http://doi.org/10.1155/2019/9891821
http://doi.org/10.1109/MCOM.2018.1700839
http://doi.org/10.1109/TIT.2004.838370
http://doi.org/10.1109/TIT.2004.831841
http://doi.org/10.1109/ACCESS.2018.2868963
http://doi.org/10.1109/18.910578
http://doi.org/10.1109/TCSI.2020.3018048
http://doi.org/10.1109/ISIT.2005.1523758
http://doi.org/10.1109/TCOMM.2005.858628
http://doi.org/10.1109/MWSCAS.2009.5236155
http://doi.org/10.1109/IOLTS.2016.7604689
http://doi.org/10.1109/ACCESS.2017.2723046
http://doi.org/10.1109/SiPS.2012.21
http://doi.org/10.1109/TSP.2014.2314435
http://doi.org/10.1109/TVLSI.2020.3034046

Electronics 2021, 10, 1106 24 of 24

20. Richardson, T.J.; Urbanke, R.L. Efficient Encoding of Low-density Parity-check Codes. IEEE Trans. Inf. Theory 2001, 47, 638–656.
[CrossRef]

21. Eleftheriou, E.; Olcer, S. Low-density parity-check codes for digital subscriber lines. In Proceedings of the IEEE International
Conference on Communications (ICC), New York, NY, USA, 28 April–2 May 2002; pp. 1752–1757. [CrossRef]

22. Zhang, T.; Parhi, K. Joint (3, k)-regular LDPC code and decoder/encoder design. IEEE Trans. Signal Process. 2004, 52, 1065–1079.
[CrossRef]

23. Zhong, H.; Zhang, T. Block-LDPC: A practical LDPC coding system design approach. IEEE Trans. Circuits Syst. I Reg. Pap. 2005,
52, 766–775. [CrossRef]

24. Zhang, H.; Zhu, J.; Shi, H.; Wang, D. Layered approx-regular LDPC: Code construction and encoder/decoder design. IEEE Trans.
Circuits Syst. I Reg. Pap. 2008, 55, 572–585. [CrossRef]

25. Kim, J.K.; Yoo, H.; Lee, M.H. Efficient encoding architecture for IEEE 802.16e LDPC codes. IEICE Trans. Fundam. Electron. Commun.
Comput. Sci. 2008, E91-A, 3607–3611. [CrossRef]

26. Zhang, P.; Jiang, Q.; Du, S.; Liu, C. Fast encoding of quasi-cyclic low-density parity-check codes in IEEE 802.15.3c. Electron. Lett.
2015, 51, 1713–1715. [CrossRef]

27. Wang, X.; Ge, T.; Li, J.; Su, C.; Hong, F. Efficient multi-rate encoder of QC-LDPC codes based on FPGA for WIMAX standard.
Chin. J. Electron. 2017, 26, 250–255. [CrossRef]

28. Cohen, A.E.; Parhi, K.K. A Low-Complexity Hybrid LDPC Code Encoder for IEEE 802.3an (10GBase-T) Ethernet. IEEE Trans.
Signal Process. 2009, 57, 4085–4094. [CrossRef]

29. Theodoropoulos, D.; Kranitis, N.; Tsigkanos, A.; Paschalis, A. Efficient architectures for multigigabit CCSDS LDPC encoders.
IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2020, 28, 1118–1127. [CrossRef]

30. Sun, Y.; Karkooti, M.; Cavallaro, J.R. High Throughput, Parallel, Scalable LDPC Encoder/Decoder Architecture for OFDM
Systems. In Proceedings of the IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software, Richardson, TX,
USA, 29–30 October 2006; pp. 39–42. [CrossRef]

31. Cai, Z.; Hao, J.; Tan, P.; Sun, S.; Chin, P. Efficient encoding of IEEE 802.11n LDPC codes. Electron. Lett. 2006, 42, 1471–1472.
[CrossRef]

32. Perez, J.; Fernandez, V. Low-cost encoding of IEEE 802.11n. Electron. Lett. 2008, 44, 307–308. [CrossRef]
33. Chen, Y.H.; Hsiao, J.H.; Siao, Z.Y. Wi-Fi LDPC encoder with approximate lower triangular diverse implementation and verification.

In Proceedings of the IEEE 11th International Multi-Conference on Systems, Signals & Devices (SSD14), Barcelona, Spain, 1–14
February 2014. [CrossRef]

34. Jung, Y.; Chung, C.; Jung, Y.; Kim, J. 7.7 Gbps Encoder Design for IEEE 802.11ac QC-LDPC Codes. J. Semicond. Technol. Sci. 2014,
14, 419–425. [CrossRef]

35. Nguyen, T.T.B.; Nguyen Tan, T.; Lee, H. Efficient QC-LDPC Encoder for 5G New Radio. Electronics 2019, 8, 668. [CrossRef]
36. Marković, D.; Brodersen, R. Energy and Delay Models. In DSP Architecture Design Essentials; Springer: New York, NY, USA, 2012;

pp. 11–27.
37. IEEE. Standard for Information Technology—Local and Metropolitan Area Networks—Specific Requirements—Part 11: Wireless LAN

Medium Access Control (MAC) and Physical Layer (PHY) Specifications; IEEE Standard 802.11-2016; IEEE: New York, NY, USA, 2016.
38. IEEE. Standard for Local and Metropolitan Area Networks—Part 16: Air Interface for Fixed Broadband Wireless Access Systems; IEEE

Standard 802.16-2004; IEEE: New York, NY, USA, 2004.
39. Digital Video Broadcasting (DVB). Second Generation Framing Structure, Channel Coding and Modulation Systems for Broadcasting,

Interactive Services, News Gathering and other Broadband Satellite Applications; Part 2: DVB-S2 Extensions (DVB-S2X), ETSI EN 302
307-2 V.1.1.1 (2014-10); ETSI: Sophia Antipolis, France, 2014.

40. Petrović, V.L.; El Mezeni, D.M. Reduced-Complexity Offset Min-Sum Based Layered Decoding for 5G LDPC Codes. In Proceedings
of the 28th Telecommunications Forum (TELFOR), Belgrade, Serbia, 24–25 November 2020; pp. 109–112. [CrossRef]

41. Hocevar, D.E. A reduced complexity decoder architecture via layered decoding of LDPC codes. In Proceedings of the IEEE
Workshop on Signal Processing Systems (SIPS), Austin, TX, USA, 13–15 October 2004; pp. 107–112. [CrossRef]

42. Larranaga, P.; Kuijpers, C.M.H.; Murga, R.H.; Inza, I.; Dizdarevic, S. Genetic algorithms for the travelling salesman problem: A
review of representations and operators. Artif. Intell. Rev. 1999, 13, 129–170. [CrossRef]

43. Marchand, C.; Dore, J.; Conde-Canencia, L.; Boutillon, E. Conflict resolution for pipelined layered LDPC decoders. In Proceedings
of the IEEE Workshop on Signal Processing Systems, Tampere, Finland, 7–9 October 2009; pp. 220–225. [CrossRef]

44. Kang, H.-J.; Yang, B.-D. Low-complexity, high-speed multi-size cyclic-shifter for quasi-cyclic LDPC decoder. Electron. Lett. 2018,
54, 452–454. [CrossRef]

45. Chen, X.; Lin, S.; Akella, V. QSN-A simple circular shift network for reconfigurable quasi-cyclic LDPC decoders. IEEE Trans.
Circuits Syst. II Express Briefs 2010, 57, 1549–7747. [CrossRef]

46. Jung, Y.; Jung, Y.; Lee, S.; Kim, J. Low-complexity multi-way and reconfigurable cyclic shift network of QC-LDPC decoder for
WiFi/WIMAX applications. IEEE Trans. Consum. Electron. 2013, 59, 467–475. [CrossRef]

47. Siddiqi, M.A.; Yu, H.; Joung, J. 5G Ultra-Reliable Low-Latency Communication Implementation Challenges and Operational
Issues with IoT Devices. Electronics 2019, 8, 981. [CrossRef]

http://doi.org/10.1109/18.910579
http://doi.org/10.1109/ICC.2002.997149
http://doi.org/10.1109/TSP.2004.823508
http://doi.org/10.1109/TCSI.2005.844113
http://doi.org/10.1109/TCSI.2008.916433
http://doi.org/10.1093/ietfec/e91-a.12.3607
http://doi.org/10.1049/el.2015.1770
http://doi.org/10.1049/cje.2017.01.006
http://doi.org/10.1109/TSP.2009.2022919
http://doi.org/10.1109/TVLSI.2020.2975050
http://doi.org/10.1109/DCAS.2006.321028
http://doi.org/10.1049/el:20063126
http://doi.org/10.1049/el:20083140
http://doi.org/10.1109/SSD.2014.6808840
http://doi.org/10.5573/JSTS.2014.14.4.419
http://doi.org/10.3390/electronics8060668
http://doi.org/10.1109/TELFOR51502.2020.9306590
http://doi.org/10.1109/SIPS.2004.1363033
http://doi.org/10.1023/A:1006529012972
http://doi.org/10.1109/SIPS.2009.5336255
http://doi.org/10.1049/el.2017.4456
http://doi.org/10.1109/TCSII.2010.2067811
http://doi.org/10.1109/TCE.2013.6626226
http://doi.org/10.3390/electronics8090981

	Introduction
	Encoding of LDPC Codes
	Straightforward Encoding With Generator Matrix Multiplication
	Partitioned PCM Two-Step Encoding
	Richardson–Urbanke LDPC Encoding Method
	Straightforward and RU Hybrid Encoding
	Forward Substitution-Based Encoding

	Encoding of 5G NR LDPC Codes
	Description of LDPC Codes in 5G NR
	Efficient Algorithm for Flexible Encoding

	Optimal Encoding Schedules in Partially Parallel Encoding
	Partially Parallel Processing in 5G NR LDPC Encoding
	Multirow Serial Encoding Schedule Optimization

	Proposed Hardware Realization of Flexible 5G NR LDPC Encoder
	Circular Shifting Network for High Flexibility
	LDPC Encoder Architecture

	Results and Discussion
	Encoding Schedule Optimization Results
	Throughput-, Latency-, and Hardware-Usage Efficiency Results

	Conclusions
	References

