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Abstract: The 360° cameras have served as a convenient tool for people to record their special
moments or everyday lives. The supported panoramic view allowed for an immersive experience
with a virtual reality (VR) headset, thus adding viewer enjoyment. Nevertheless, they cannot deliver
the best angular resolution images that a perspective camera may support. We put forward a solution
by placing the perspective camera planar image onto the pertinent 360° camera equirectangular
image region of interest (ROI) through planar-equirectangular image stitching. The proposed method
includes (1) tangent image-based stitching pipeline to solve the equirectangular image spherical
distortion, (2) feature matching scheme to increase correct feature match count, (3) ROI detection
to find the relevant ROI on the equirectangular image, and (4) human visual system (HVS)-based
image alignment to tackle the parallax error. The qualitative and quantitative experiments showed
improvement of the proposed planar-equirectangular image stitching over existing approaches on a
collected dataset: (1) less distortion on the stitching result, (2) 29.0% increased on correct matches,
(3) 5.72° ROI position error from the ground truth and (4) lower aggregated alignment-distortion
error over existing alignment approaches. We discuss possible improvement points and future
research directions.

Keywords: 360° camera; equirectangular image; high-resolution image; image stitching; tangent
image

1. Introduction

The proliferation of inexpensive 360° cameras has instigated various use of the camera,
not only for research [1,2], but also for daily life [3–5]. Consumers have been using the 360°
cameras for recording and possibly sharing their social activities such as trips, holidays,
or parties with others [3]. Some of them will even use a virtual reality (VR) headset
to view the captured scene with great immersion, allowing them to re-experience the
moments [6]. While mindlessly looking around the captured scene, they can find new
things or unanticipated events, make them want to see the details of what was happening.
Nevertheless, the view from 360° camera is not suitable for the detailed view because
it cannot provide a high angular resolution view as much as perspective cameras could
offer [7]. It would be interesting to search online for the perspective camera planar images
that captured similar scenes then stitch them on top of the relevant region of interest (ROI).
We bring forward an image-stitching algorithm that supports the high-resolution view on
the ROI. The algorithm aims to stitch the high angular resolution planar image (HPI) onto
the 360° equirectangular image (EI).

The image stitching process is generally used to combine multiple overlapping input
images into a single wide field of view (FOV) output image [8], i.e., planar-planar image
stitching. When stitching the input images, it is crucial to establish a well-aligned overlap-
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ping region to create a smooth view in the stitched output image. Researchers proposed
several image transformation models to align the adjacent input images [9].

Nonetheless, the transformation models cannot be directly applied to our case where
we stitch an HPI on a 360° EI. First, their models are designed for stitching two planar
images rather than stitching a planar image on an equirectangular one. The equirectangular
type image possesses stronger spherical image distortion than the planar one [10]. Second,
their stitching algorithms were designed for stitching side-by-side images. The alignment
constraint only applies for one side (i.e., the overlapping one) of each input image, allowing
the other side free. In cases of multiple input images, the transformation model of every
input image can also be altered. On the contrary, our goal is to put the HPI on top of their
corresponding EI ROI. The EI acts as a template that the form should be fixed, leaving the
HPI as the only input to be modified. As the EI also covers the whole HPI region, these
situations can lead to alignment-distortion error trade-off (see Section 4.3) when parallax
error occurred.

We propose a tangent image (TI)-based approach to mitigate the strong spherical image
distortion. TIs are generated by projecting the EI onto the icosahedron faces. The projection
produces planar images with predetermined sizes. We perform image stitching steps, such
as feature extraction-matching and image alignment, on the TI before reprojecting the
stitching result back to the equirectangular coordinate.

We design an image alignment algorithm inspired by the human visual system (HVS)
to solve the alignment-distortion trade-off. HVS has a much greater resolution in the central
visual field compared to the boundary [11]. Humans used the center vision (i.e., foveal
vision) to resolve the focused object’s detail resolution. On the other hand, the boundary
vision (i.e., peripheral vision) exists mainly to provide low-resolution cues to guide the
fovea movements. Likewise, the proposed algorithm intends to keep the central region less
distorted while minimizing the boundary region’s misalignment.

One critical step to perform the planar-equirectangular image stitching is to locate
the suitable ROI locations on the EI. Supposing we have a collection of HPIs that depict
various spots in one EI, how could we best detect the ROI positions each HPI portrays?
ROI detection is a crucial step to determine the TI used for the follow-up alignment step.
We consequently put forward an ROI detection algorithm that uses base-level icosahedron:
generating the base-level TIs. The detection algorithm identifies an ROI tangent image
(ROI-TI): the TI that resembles the targeted HPI through a coarse-to-fine searching process.
The ROI-TI position is refined incrementally afterward.

Both image alignment and ROI detection step quality rely upon the excellence of
feature matching. We devise an enhanced version of existing grid motion statistics (GMS)
that uses brute-force (BF) matcher [12]. We use k-Nearest Neighbor (kNN) matcher to
increase the number of correct feature matches, indirectly increasing the matched features
distribution. The underlining idea is that, instead of rejecting the false matches after the
GMS process, we repeat the GMS process after changing the previously rejected TIs features
corresponding pairs: from the current closest to the next closest correspondence.

To summarize, our main contribution is introducing a new image stitching algorithm
for placing an HPI on the corresponding EI ROI, and it includes:

C1. TI-based planar-equirectangular stitching pipeline.
C2. HPI-EI ROI detection algorithm.
C3. kNN-based GMS feature matching algorithm.
C4. HVS-based image alignment algorithm.

We introduced the background case to perform the planar-equirectangular image
stitching in this section. We next explain the past and current works on the image stitching
in Section 2; emphasizing the problems found in existing approaches for the planar-
equirectangular case. We propose the TI-based image stitching solution to solve the
problems; explain the TI underlying theory in Section 3 and the proposed stitching in
Section 4. We performed the related experiments and discussed the results in Section 5. We
present the conclusion and point out the future research directions in Section 6.
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2. Related Works
2.1. Planar-Planar Image Stitching

Planar-planar image stitching algorithms aim to join multiple overlapping planar
images into a wider FOV or panoramic image [9]. The algorithm is principally designed to
tackle artifacts on the overlapping region while keeping the stitching result natural [13],
i.e., less distorted. One of the key factors influencing the artifacts’ level is the quality of
the image alignment step. Well-aligned input images are desirable to impose a lower
requirement on the subsequent deghosting and postprocessing [14].

Image alignment is an act to transform the input images, making the adjacent ones
aligned. The process focused on finding the geometric relationships (i.e., geometry models)
within each input. Researchers have recently strived to find the geometry models based on
sparse feature matching [9]. The goal is to attain the models that best minimize the feature
pairs alignment error.

Existing feature matching-based image alignment methods can be grouped into global
and local hybrid transformation [9]. The global methods transform the image by applying
the same geometry model on a group of pixels. The simplest version used a single model,
such as projective [15,16] or affine, for the entire image region. Due to its simplicity,
the model only performs well if the inputs differ purely rotational or contain only one
plane. The one plane characteristic mostly valid only for scenes captured far away from
the camera. To solve more complicated situations where the captured scene consisted of
different planes, Gao et al. [17] suggested the dual-homography method. They divided
the image into two dominant planes (i.e., ground and distant), with each plane have its
geometry model. Regardless, these methods demand the scene to have a certain number of
dominant planes.

The methods belong to the local hybrid transformation model treat image as a mesh.
The image mesh is divided into grids of vertices; each corresponds to a different transfor-
mation model. One well-known method that belongs to this category is the as-projective-
as-possible (APAP) approach [14]. They attributed each vertex to a separate homography
model. They estimated the model by assigning various weight values for each feature
pairs depending on their location relative to the vertex. This separated model designation
allows each vertex to align themselves independently to minimize the closest feature pair
alignment error. Although the model independence allowed them to receive excellent per-
formance on aligning the input images, it also prompted a distortion problem. For instance,
the stitching result will not be likely able to preserve rigid or straight objects [9]. Re-
searchers [18,19] have been adding additional constraints, such as similarity [20], to reduce
the distortion. However, the constraints inclusion costs higher computational time.

2.2. Non-Planar Image Stitching

Compared to planar-planar image stitching, there are only a few researchers who
attempted to stitch non-planar images. Dornaika et al. [21] tried to create a multi-resolution
image from a pair of wide-angle low-resolution and high-resolution image for surveil-
lance application. Instead of employing sparse feature matching, they used pixel-based
correspondences and homography models to perform image alignment. While they had a
similar purpose, we plan to perform the stitching on the EI whose higher image distortion
than their wide-angle image.

Dong et al. [22] stitched wide-angle images on a fisheye-lens video. As they imple-
mented a planar feature extractor, the matching accuracy was initially low. They devised
a multi-homography inlier selection method to improve the accuracy. They estimated
a global homography and multiple local homographies from the correct matches. They
finally constructed the stitching result by combining the weighted global and local homo-
graphies. The research showed that modifications of existing planar image processing were
essential to handle image distortion on non-planar image stitching.
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2.3. Icosahedron to Reduce Equirectangular Image (EI) Distortion

High spherical image distortion on the EI makes the existing image processing algo-
rithm designed for planar image perform poorly. Recent approaches attempted to solve the
issue by adopting icosahedral sphere representation, i.e., icosahedron. At the base level,
the icosahedron consists of 12 vertices and 20 faces. The subdivision along the vertices
and faces will cause the icosahedron to resemble a sphere closer. The higher subdivision,
smaller spherical distortion will be [23]. The distance between vertices and faces will be
similar to each other.

Zhao et al. [24] introduced a spherical-based feature extractor, spherical oriented
FAST and Rotated BRIEF (SPHORB): the spherical version of the planar ORB [25]. The
SPHORB detects and describes the features directly on the geodesic grid formed from the
icosahedron subdivision. They demonstrated planar-equirectangular feature matching,
showing higher accuracy of the SPHORB compared to the ORB. Unfortunately, the test was
conducted only on two image sets and on the less-distorted equirectangular ROI.

Eder et al. [10] formulized TIs creation through gnomonic projection [26] on the
icosahedron face. They introduced a visibility region on the TIs to assess the spherical image
distortion. The higher the icosahedron level, the smaller the distortion on the visibility
region will be, thus allowing existing planar image processing to work better. They used
the visibility region to mask acceptable features on each TI for simple equirectangular
feature extraction demonstration.

3. Tangent Images (TIs)

In this section, we would like to explain some theories underlying our TI-based planar-
equirectangular image stitching. We first explain how to generate the TI from the EI. We
also describe how to map from one TI back to the EI or the other TI. At last, we would like
to explain the procedure of TI-based feature extraction-matching.

3.1. Tangent Images (TIs) Creation

We intend to generate a TI T from an EI E. In other words, we seek to map the EI
pixels PE ∈ E onto the TI PT ∈ T. First, we map the pixel PE to a unit sphere PS ∈ S:

λS =
2πxE
WE

φS =
πxE
HE

(1)

where PE = (xE, yE) and PS = (λS, φS). The symbol WE and HE denotes the EI E width
and height respectively. We then project the PS to PT as shown in Figure 1.

Figure 1. Gnomonic projection illustration. To generate the tangent image (TI) T, we find the
correspondence of every TI pixel PT on the sphere: PS. The resulting PS is different for every possible
TI T. Each TI T coincide with sphere S on CT . We set CT to be in the center of TI T.
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Let the sphere-TI coincident point CT = (λ0, φ1), the gnomonic projection [26] will
project the PS = (λS, φS) to the PT = (xT , yT):

xT =
cos φS sin(λS − λ0)

cos c

yT =
cos φ1 sin φS − sin φ1 cos φS cos(λS − λ0)

cos c
cos c = sin φ1 sin φS + cos φ1 cos φS cos(λS − λ0)

(2)

On some cases, we want to find the corresponding PS = (λS, φS) for every TI pixel
PT = (xT , yT). We use inverse gnomonic projection [26] for such cases:

φS = sin−1
(

cos c sin φ1 +
yT sin c cos φ1

ρ

)
λS = λ0 + tan−1

(
xT sin c

ρ cos φ1 cos c− yT sin φ1 sin c

)
ρ =

√
x2

T + y2
T

c = tan−1 ρ

(3)

where xT ∈
(
−WH

2 , WH
2

]
and yT ∈

(
−HH

2 , HH
2

]
. The bound WH and HH is the HPI H

width and height, respectively.
As seen from Figure 1, both the PS to PT mapping and the PT to PS mapping will

depend on the CT position. As there are infinite choices of CT , we use icosahedron faces
position to determine the CT . Precisely, we use icosahedron I whose size covers the whole
unit sphere S at origin O. The icosahedron I has all his faces to tangent with the unit sphere
S. Figure 2c illustrates the configuration. The configuration treats the unit sphere S as
an inscribed sphere [27]. Such sphere has coincident points CT on the icosahedron faces
F centroid.

Figure 2. Icosahedron and its use for tangent images (TIs). (a,b) showed icosahedron with different
subdivision levels b. The increase of b will also increase the number of faces NF. (c) showed an
icosahedron I fully cover a unit sphere S. The sphere S coincides with the icosahedron face F at
centroid CT . We create the TI T by extending the face F . The higher b will offer more TI position
CT possibility and lower distortion in the visibility region ΩT = ∆PT0PT1PT2. The standard planar
image processing algorithm works better in the visibility region ΩT than outside.

3.2. Icosahedron Subdivision Level

Icosahedron can be characterized by using subdivision level b. The b level determines
the number of vertices, edges, and faces in the icosahedron. The higher b level is obtained
by performing the subdivision process on the icosahedron. The process splits current edges
in the middle. The split will create a new vertex, which is then connected to form new
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edges and faces. One-time subdivision process will increase the icosahedron b level by
one. The icosahedron whose b is one level higher has icosahedron faces four times more
than the lower one. For instance, one time subdivision process on the icosahedron with
b = 0 (i.e., base-level icosahedron) and NF = 20, will result in an icosahedron b = 1 whose
NF = 80. Figure 2a,b shows examples of icosahedron with subdivision level b = 0 and
1. The higher b offers more icosahedron faces, increasing the possible TIs generated. The
region ΩT is smaller (see Figure 2c) but providing less distortion than the lower b. We
could expect better performance but a slower computational time when using the higher b.

3.3. Tangent Images (TIs) Coordinate Mapping

By using icosahedron face position, we generate several TIs from a single EI. We
perform the image processing for each TI separately. Afterward, we map the result (i.e.,
the pixel coordinate) from one TI either back to the EI (i.e., TI-EI mapping) or the other
TI (i.e., TI-TI mapping). For example, let T0 and T1 be two separate TIs generated from
an EI E. We want to project a pixel coordinate from P0 ∈ T0 to get P1 ∈ T1 (for the TI-TI
mapping) and from P0 ∈ T0 to PE ∈ E (for the TI-EI mapping). We first map the P0 to the
unit sphere S at S0 ∈ S by using Equation (3) and inserting the T0 coincident point C0 to
the equation. Then, for TI-TI mapping case, we get the P1 ∈ T1 from the S0 by inserting the
T1 coincident point C1 into Equation (2). For the TI-EI mapping case, we use the inverse of
Equation (1) to get the PE ∈ E from the S0.

3.4. Tangent Image (TI)-Based Feature Extraction-Matching

Each TI T has a visible region ΩT whose distortion level is considered lower than the
outside [10] (see Figure 2c). The visibility region ΩT is a region in the TI T that covers the
icosahedron face F . We perform feature extraction-matching between TIs and the HPI
using the ΩT region. The ΩT forms a triangle mask on the TI. We use the triangle mask as
a feature extraction mask for the TI; we do not use the mask for the HPI feature extraction.
We perform feature matching between the TI and the HPI using the extracted features. We
get the resulting matched features inside the ΩT . We then reproject the matched features
from the neighboring TIs to obtain matched features outside region ΩT (see Figure 3).

Figure 3. Feature reprojection process. As we extracted features on the tangent images (TIs) visibility region (i.e., triangle
mask ΩT), we only find matched features inside the ΩT when doing feature matching with the high angular resolution
planar image (HPI)H. To find other matched features on the main tangent image (MTI) Tm outside the ΩT , we reproject
features from N neighboring tangent images (NTI) Tm1, Tm2, Tm3, Tm4, ...TmN to the MTI. We do not show the matching and
reprojection process of NTI Tm4, ...TmN for clarity.
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Figure 3 illustrates an example of feature extraction-matching between a main tangent
image (MTI) Tm and the HPI. We first perform feature extraction-matching between MTI
and HPI. The process will result in matched features shown as a yellow dashed line in
the figure. In addition, we also perform the feature extraction-matching between the HPI
and N number of the neighbor tangent images (NTI) Tmn, where n = 1, 2, ...N. The feature
extraction-matching result in matched features shown in red, blue, and green dashed lines
for Tm1, Tm2, and Tm3 respectively. We finally map the features from each NTI coordinate
onto MTI coordinate (shown in red, blue, and green straight line for Tm1, Tm2, and Tm3
respectively) using the procedure explained in Section 3.3. We define the total matched
features obtained (including the ones reprojected from NTI) in the MTI as the accumulative
matched features (AMF).

4. Planar-Equirectangular Image Stitching

Figure 4 shows the three-steps pipeline for our planar-equirectangular image stitching
process. First, we detect the ROI position on the EI. The step tries to find the ROI appearance
depicted by the HPI input on the EI input. The output from this step will result in an
ROI-TI whose appearance is similar to the ROI depicted by the HPI input. Second, we
implement the feature extraction-matching between the ROI-TI and the HPI. The step
results in ROI-TI and HPI feature matching pairs. Third, we carry out the image alignment
between the ROI-TI and the HPI. The step aligns, then blends the HPI. It then processes the
blended HPI into two separate ways: (1) directly stitch the blended HPI onto the ROI-TI,
and (2) remaps the blended HPI back to equirectangular coordinate through TI-EI mapping
procedure using ROI-TI coincident point CROI (see Section 3.3) then stitches it with EI. The
first way will result in a high angular resolution ROI tangent image (HROI-TI); the second
way will result in a high angular resolution ROI EI (HROI-EI).

Figure 4. Planar-equirectangular image stitching pipeline. The pipeline consists of three steps: (1) ROI detection, (2) ROI
feature extraction-matching, and (3) HVS-based image alignment. The pipeline process high angular resolution planar
image (HPI)-equirectangular image (EI) pair and result in high angular resolution ROI tangent image (HROI-TI) and high
angular resolution ROI EI (HROI-EI). Zoom-in the figure to see the resolution difference between the ROI tangent image
(ROI-TI) and the HROI-TI, and between the EI and the HROI-EI.

4.1. ROI Detection

We divide the ROI detection into two steps: (1) ROI-TI searching and (2) ROI-TI
refinement. The first step aims to pick the closest TI to the ROI: the ROI-TI. The second
step refines the ROI-TI position (i.e., coincident point CROI) closer to the true ROI.
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4.1.1. ROI Tangent Image (ROI-TI) Searching

As we do not have any prior information about the ROI position on the EI, we need
to perform the feature extraction-matching for the whole EI region. Therefore, we use
icosahedron with subdivision level b = 0 (i.e., base-level icosahedron). The lowest b value
will generate the smallest number of TIs to represent the whole EI. Thus, it allows for the
fastest feature extraction-matching between the HPI and all generated TIs.

We use ORB [25] to extract features from both images quickly. Despite its fast per-
formance, ORB has lower accuracy than other commonly used feature extractors [28] for
feature matching tasks. Therefore, we use the grid-based motion statistics (GMS) [12] to
improve the accuracy. The GMS is used after the Brute-Force (BF) feature matching process.
It identifies correct matches (i.e., true matches) among the feature matching results. We use
the identified true matches from the GMS as the final feature matching result.

Precisely, we first generate all possible TIs using the base-level icosahedron. As there
are 20 icosahedron faces on the base level, we will obtain a total of 20 TIs. We iterate all
20 TIs Tm and perform the feature reprojection described in Section 3.4 to gather the AMF
for each Tm and the HPI. We use the ORB feature extractor, BF feature matcher, and GMS
during the process. After we finish iterating the TIs, we will obtain AMF for all 20 TIs.

We employ a coarse-to-fine approach to pick the ROI-TI among the 20 TIs. We first
eliminate false TIs from the list of candidates. We define the false TIs as TIs whose false
matches value are high. Figure 5 illustrate the process of detecting the false TIs. We expect
that FTI has low AMF despite having a high feature number by itself. The tangent images
T1 in Figure 5 exhibit such characteristics. Although T1 has high self feature matches,
the corresponding NTIs (i.e., T11, T12, and T13) have low feature matches with the HPI.
The overall combination will result in low AMF |M1| for the T1 (shown by red lines).
On the contrary, T0 has high AMF |M0|. In addition to having high self feature matches,
the corresponding NTI (i.e., T01, T02, and T03) overall also has high feature matches. The
overall combination results in high AMF for T0 (shown by green lines).

Figure 5. False Tangent Image (False TI) Detection. We perform feature extraction-matching between all tangent images
(TIs) Tm and the high angular resolution planar image (HPI)H. We use the resulting accumulated matched features (AMF)
Mm to identify false TI. The AMFMm is the union of the main tangent image (MTI) Tm features and their neighborhoods
(NTI) Tmn (see Section 3.4). We expect that false TI has a low accumulated features number |Mm| despite having a high
feature number by itself. The TI T1 exhibits such characteristics: 4 self-matched features and 4 forM1. On the contrary, T0

has high |M0|: 4 self-matched features and 8 AMF. Thus, T1 is not a false TI. We only show T0 and T1 and three NTI for
both of them for clarity.

The false TI elimination will leave several TI candidates to pick as the ROI-TI. To select
the ROI-TI, we first categorize the AMF into two: central AMFMc and boundary AMF
Mb. The central AMF means that the corresponding feature is located in the HPI central
region. On the contrary, the boundary AMF has the corresponding feature outside the HPI
central region. We pick the TI whose central AMF is the highest among the remaining ones
and assign it as the ROI-TI. Figure 6 illustrates the process.



Electronics 2021, 10, 1126 9 of 25

Figure 6. ROI tangent image (ROI-TI) selection. We use the central accumulated matched features (central AMF)Mc to pick
the ROI-TI. The central AMF has the corresponding features located inside the high angular resolution planar image (HPI)
H central region (i.e., the light blue rectangle box). For example, the (TI) T2 has two features in total, but one is located
outside the light blue rectangle. Thus, T2 only has one central AMF in total. Meanwhile, T0 has four central AMF in total:
the highest among the others. We then select T0 as the ROI-TI TROI .

4.1.2. ROI Tangent Image (ROI-TI) Refinement

As illustrated in Figure 6, on the HPI side, the central AMF Mc is located in the
center (i.e., inside the light blue rectangle). On the contrary, the central AMF on the ROI-TI
TROI = T0 side is closer to the boundary than the center. We expect the centralizedMc

position to make the ROI-TI coincident point (on the unit sphere) CROI ∈ S closer to the
true ROI. We use the central AMF centroid PCAMF ∈ TROI as the CROI ∈ S projection point.
We readjust the PCAMF position iteratively.

We first calculate the centroid of current CFM P0
CAMF ∈ T0

ROI . We then convert the
centroid pixel coordinate P0

CAMF to the unit sphere S0
CAMF ∈ S through Equation (3). We

set the S0
CAMF as the new coincident point C0

ROI . If the central AMF centroid P0
CAMF is not

close enough to the ROI-TI central coordinate, we reproject all matched features through
feature reprojection as described in Section 3.3 using C0

ROI . We then calculate the central
AMF centroid P1

CAMF, S1
CAMF and the central AMF centroid error from the center. The

process repeats until the central AMF centroid Pk
CAMF error is close enough to the center.

We use the last Ck
ROI to generate the refined ROI-TI. We use the refined ROI-TI as input for

the next feature extraction-matching step.

4.2. ROI Feature Extraction-Matching

It is crucial to have the matched features distributed across the overlapping region on
the image alignment step. In contrast to the standard planar-planar case, the overlapping
region of planar-equirectangular image alignment covers the whole HPI. Therefore, we
need to have the matched features to be distributed across the HPI. One way to improve
the distribution is to increase the number of the matched features. We propose a new
kNN-based GMS matcher to increase the numbers of matched features.

GMS has been capable of increasing the number of matched features [12]. It converts
the quantity of matched features to identify the quality matches (i.e., the true matches).
Precisely, GMS first divided the image into several grids. It then used the number of
similar neighbors inside the image grids to identify the correct features. The similar
neighbors were defined as features that: (1) located inside the same image grid, and (2) the
corresponding features also located inside the same image grid. The higher the number of
similar neighbors, the highest the possibility it contains the correct matches.

The original implementation of GMS used the results from the BF matcher as the input
(i.e., BF-based GMS matcher). In this paper, we propose to use the kNN feature matcher
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as the input (i.e., kNN-based GMS matcher). Different from the BF-based GMS matcher
that only used the closest feature correspondence (i.e., 1st correspondence) as the input,
the proposed approach uses up to k feature correspondences as the input (i.e., 1st, 2nd, ...,
kth correspondence). We assume there is a possibility that the correct correspondence is
on the 2nd, 3rd, ..., kth correspondence. We perform the GMS feature matching iteratively
according to the number of k. For every iteration, we switch the correspondence to the next
closest (e.g., from 1st to 2nd-closest, or from 2nd to 3rd-closest).

Figure 7 illustrates the first and second iteration of the proposed approach. After
performing feature matching between the TI and the HPI beforehand, we initially use the
1st correspondence to perform the GMS matcher. Figure 7a shows the situation before the
first iteration. Figure 7b shows the result of the first iteration, with a green line that denotes
the GMS output. The red, blue, and orange features are similar neighbors: they are located
in the same image grid either for the TI side or the HPI side. Thus, they are identified as
correct matches. On the contrary, the yellow feature has correspondence (on the HPI side)
on a different grid, thus not sharing similar neighbors. Therefore, we switch the yellow
to use the 2nd correspondence for the next iteration. As the 2nd correspondence is also
located on the same grid as the other correspondences, the yellow feature shared similar
neighbors. We repeat the similar pattern for next 3rd, 4th, ... kth correspondences.

Figure 7. Proposed kNN-based GMS feature matcher illustration. We performed kNN matcher between the tangent image
(TI) and the high angular resolution planar image (HPI) beforehand. We then (a) use the 1st correspondence to perform the
first iteration of the GMS matcher. (b) shows the result of the first iteration. The yellow feature has 1st correspondence far
from the neighbor correspondences; GMS did not identify it as correct matches (i.e., no green line for the yellow feature).
(c) showed the preparation for the second iteration of GMS matcher with the yellow feature is now switched to its 2nd
correspondence. (d) As the 2nd correspondence is close to the neighbor correspondences, GMS would identify it as correct
matches (i.e., green line for the yellow feature.

To improve the feature matching accuracy, we also need to have a less-distorted
visibility region ΩT on the TIs. Consequently, we use b value higher than the one used
for the ROI detection. We set the b = 1 for this step. Although higher b will increase
the number of TIs generated, we only need to gather the AMF on the ROI-TI. Therefore,
we only perform the feature extraction-matching between the HPI with the ROI-TI and
its corresponding NTIs (see Section 3.4). We use the matching result for the next image
alignment step.

4.3. HVS-Based Image Alignment

Although the TI representation has made it possible to carry out existing planar-planar
approaches, several differences are found when stitching the HPI onto the EI. In the planar-
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planar case, the stitching algorithms were designed for side-by-side images. The alignment
constraint only applies for one side (i.e., the overlapping one) of each input image, allowing
the other side free. In multiple input images, the transformation model of every input
image can also be altered [29]. On the contrary, the planar-equirectangular image stitching
attempts to put the HPI to their corresponding ROI on the EI. The EI acts as a template
that the form should be fixed, leaving the HPI as the only input to be modified. As the EI
also covers the whole HPI region, these situations can lead to alignment-distortion error
trade-off due to parallax error.

Figure 8 illustrate this situation. Figure 8a,b are the grid representation of the HPI
and the ROI-TI respectively. As the parallax error will cause both views to differ slightly,
the feature pairs (i.e., numbered circle on the figure) location on each image will also be
different. The differences can cause misalignment in the stitching result. A common way
to reduce the misalignment is by providing each vertex a separate model (i.e., local hybrid
transformation approach). As shown in Figure 8c, the approaches can reduce the alignment
error: the feature pairs (i.e., the same numbered circle) located close to each other on the
stitching result. However, the features are located in the whole HPI region, and we can only
alter the HPI vertices to minimize the alignment error. These situations make the stitching
result central region (i.e., the yellow grid) distorted. The central region distortion can be a
problem as our initial goal is to provide a high angular resolution version of the ROI-TI.
Naturally, the focused object is located in the central of the ROI-TI. Thus, the distortion
around the central region can be displeasing.

Figure 8. Alignment-Distortion Error Tradeoff Illustration. The figures depict image grid represen-
tation of (a) high-resolution planar image (HPI) and (b) ROI tangent image (ROI-TI). The features
are shown as numbered bullets inside each image. The same feature number on both HPI and
ROI-TI indicates a matching pair. (c,e) showed the possible scenario when we prioritize minimizing
alignment error of the feature pairs or keeping the central region object shape, respectively. We
propose figure (d), which is in an agreement between both targets.

Figure 8e illustrates the situation when we only want to focus on the central region.
A simple way to preserve the central region is by only focusing on the alignment error
minimization on the central and using the global transformation model for the whole
vertices. This way, the distortion on the central (thus also the focused object) can be mini-
mized. However, the misalignment on the boundary can be seen clearly (e.g., misalignment
between feature no. 8, 9, 10, 15, 16).

To handle this alignment-distortion error trade-off, we proposed an image stitching
inspired by the HVS. The HVS has a much greater resolution in the central visual field
compared to the boundary [11]. It used the center vision (i.e., foveal vision) to resolve the
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focused object’s detail resolution. On the other hand, the boundary vision (i.e., peripheral
vision) exists mainly to provide low-resolution cues to guide the fovea movements [11].
Therefore, we intend to keep the central region of the stitching result as accurate: well-
aligned and less distorted. Likewise, we intend to put the stitching result boundary region
as well-aligned, thus not distracting human fovea when inspecting the other EI region.

Mathematically, to align the HPIH with the ROI-TI TROI , we first divide the HPIH
into a vertices grid vi

k ∈ H. We then find the affine (i.e., global) model Ha f f that map the

vi
k ∈ H to the v f

k ∈ TROI . In addition, we also find the APAP (i.e., local) Hapap model that
map the vi

k ∈ H to the vp
k ∈ TROI . Finally, we linearly combine the two terms to obtain final

vo
k ∈ TROI :

vo
k = wHa f f vi

k + (1− w)Hapapvi
k, (4)

w = e−kR2
, (5)

where k > 0 is user-defined constant and R is distance of vertex v f
k ∈ TROI to the ROI-TI

grid central. The global-local weight w will vary depending on the vertex’s distance to the
image center. The w is higher for vertices close to the center.

Every vertex vo
k will have the same Ha f f , serving to keep the objects or straight-line

less distorted. We choose affine over homography to represent the global term as it has
fewer degrees of freedom (DOG). The HPI and the ROI-TI should have a similar scene;
thus, fewer DOG models would afford better regularization.

The w is high on the central region to emphasize the Ha f f term, making the central
region less distorted. On the contrary, w is small on the boundary region to emphasize
the Hapap term, making the boundary region better align with the ROI-TI boundary. We
expected to have an alignment result whose distortion error is small on the central region,
and alignment error is small on the boundary region as shown in Figure 8d).

To reduce the noticeable artifacts that occurred on the alignment result boundary
region, we perform an image alpha blending on the HPI region beforehand. We then
perform two separate processes: (1) directly stitch the aligned HPI onto the ROI-TI, and (2)
remaps the aligned HPI back to the equirectangular coordinate through the TI-EI mapping
procedure (see Section 3.3) then stitches it with EI. The first process will result in the
HROI-TI, and the second process will result in the HROI-EI (see Figure 4).

5. Experiment and Discussion

We performed experiments on the laptop with specifications as follows: Intel(R)
Core(TM) i7-9750H, 16 GB RAM, Ubuntu 20.04, six cores, and 12 threads. The laptop
also used GeForce RTX 2060 with NVIDIA driver 450.102. For the software side, we used
OpenFrameworks (https://github.com/openframeworks/openFrameworks/tree/0.11.0,
accessed on 9 April 2021) to provide simplified OpenGL interface; OpenCV (https://github.
com/opencv/opencv/tree/4.4.0, accessed on 9 April 2021) for image processing; Eigen
for optimization (https://gitlab.com/libeigen/eigen/-/tree/3.3.9, accessed on 9 April
2021); CGAL for creating the icosahedron (https://github.com/CGAL/cgal/releases/tag/
releases%2FCGAL-5.0.2, accessed on 9 April 2021).

We took the pictures by putting the We collected 14 equirectangular and 16 high-
resolution planar images. There are two EIs paired with two high-resolution planar images
for each (i.e., ID no. 4-5 and ID no. 14-15), As a result, we have 16 equirectangular-planar
image pairs in total, as shown in Figure 9. We used RICOH THETA V [30] to capture the
EIs. To capture the HPIs, we used PTZ Logitecth Pro camera [31] (1 image) and Samsung
Galaxy Note 5 [32] (15 images). For the THETA V-the Galaxy Note 5 case, we put the
THETA V on top of our head to capture the picture, the Galaxy Note 5 in front of our face.
For the THETA V-PTZ Logitech, we put the cameras on a camera rig.

https://github.com/openframeworks/openFrameworks/tree/0.11.0
https://github.com/opencv/opencv/tree/4.4.0
https://github.com/opencv/opencv/tree/4.4.0
https://gitlab.com/libeigen/eigen/-/tree/3.3.9
https://github.com/CGAL/cgal/releases/tag/releases%2FCGAL-5.0.2
https://github.com/CGAL/cgal/releases/tag/releases%2FCGAL-5.0.2
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Figure 9. Dataset used for experiments. The blue rectangle for both equirectangular and high-resolution planar image
shows the ROI. The equirectangular image (EI) and the high-resolution planar image (HPI) are obtained from 360° and
perspective camera, respectively.

The images captured both seven indoor and outdoor scenes with ROI located on
various EI regions. Each equirectangular and high-resolution planar image has 3840× 1920
and 1920× 1080 original image size respectively. We resize the EIs into 1280× 640 and
high-resolution planar image into 640× 360 for image processing purposes.

We performed experiments for each contribution. We analyzed the results then suggest
relevant solutions to address the problems found. We also present the computation times
took for each planar-equirectangular image stitching pipeline step. In addition, we briefly
explore the possibility of implementing the proposed pipeline in other 360° image formats.
We hence organize this section in the following orders:

1. KNN-Based GMS Feature Matcher.
2. ROI detection.
3. Tangent image (TI)-based planar-equirectangular image stitching pipeline.
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4. HVS-based image alignment.
5. Computation time.
6. Implementation in other 360° image format.

5.1. KNN-Based Gms Feature Matcher

We experimented with the ROI-TI and the HPI feature matching; we focused on
providing higher inliers for the image alignment step. We measured the correct matches
number (#inliers), accuracy, and entropy [28] to evaluate the performance. The #inliers
denoted how many correct feature matches were detected; accuracy tells how accurate
the feature matching was; entropy represents the correct feature match spread level on
the ROI-TI. We also showed the inliers relative increase (in percentage) of the proposed
KNN-based relative to the BF approach. We identified the correct and wrong feature pairs
by manual intervention after the matching.

Table 1 showed improved feature match count (#inliers) detected by using the pro-
posed kNN-based GMS matcher. We could see an increase of inliers up to 29.0% on the
# Inliers and Entropy (5.25 vs. 5.20) compared to the original BF-matcher implementa-
tion. Although the accuracy was higher for the BF-based GMS matcher (96.6% vs. 97.6%),
the proposed kNN-based GMS matcher had already been high (owing to the scene similar-
ity between the ROI-TI and the HPI). This result showed that our proposed kNN-based
GMS feature matcher could improve the number and distribution (i.e., entropy) of the
feature matches.

Table 1. Feature matching result between the ROI tangent image (ROI-TI) and the high-resolution
planar image (HPI). We compared the original BF-based GMS Matcher (Original) and the kNN-based
GMS Matcher (Proposed). The proposed approach can increase number of inliers (# Inliers) up to
29.0% compared to the original. It also increases the the matched features distribution (Entropy),
which is the main purpose of the proposed approach. There is a slight reduction in Accuracy but the
value is still high.

ID
# Inliers Entropy Accuracy (%)

Original Proposed Original Proposed Original Proposed

1 4127 5107 5.36 5.40 97.9 97.1
2 2755 3625 5.41 5.46 99.6 98.9
3 3112 3971 5.25 5.33 99.5 98.2
4 5249 6497 5.70 5.73 98.4 97.9
5 1228 1784 5.21 5.26 97.7 95.5
6 3009 3922 5.28 5.34 99.2 98.0
7 1698 2294 5.15 5.23 96.8 97.1
8 2432 3234 5.16 5.22 98.9 98.3
9 847 1165 4.10 4.08 97.6 97.7

10 2330 3170 5.09 5.11 96.3 95.2
11 2410 3097 4.88 4.92 99.8 99.5
12 2365 3155 5.49 5.53 99.7 99.2
13 2049 2845 5.25 5.32 90.3 86.3
14 3193 3959 5.41 5.47 92.3 89.5
15 2502 3160 5.18 5.23 98.7 98.5
16 4633 5717 5.35 5.39 98.9 98.7

Avg 2746 3544
(29.0%) 1 5.20 5.25 97.6 96.6

1 The % denotes the relative increase to the BF.

We analyzed deeper on the decrease of the accuracy. The decreased means there was
also an increase in the number of wrong matches (i.e., outliers) during the k = 2, 3, ..., K
iterations. The increase of the inliers and also the outliers made the accuracy pretty much
stayed the same.
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We believed the cause of the phenomenon was that similar neighbor feature members
correspond to the wrong matches. The situation is illustrated in Figure 10. In other words,
if the similar neighbors were already correct since the beginning, then the number of the
inliers would increase. On the contrary, if the similar neighbors were wrong since the
beginning, then the number of the outliers would increase. We concluded that the increase
of inliers came from the increase of “correct” similar neighbors feature members; it did not
come from the change of the “wrong” similar neighbors to the “correct” similar neighbors.
The analysis was in line because entropy could only slightly improve (from 5.20 to 5.25):
the new inliers come from the same image grid. The proposed approach was unable to
distribute the inliers to the other grids.

Figure 10. Failure case of the Proposed kNN-based GMS feature matcher. (a) We use the 1st correspondence to perform the
first iteration of the GMS matcher. Note that the similar neighbors (i.e., blue, red, and orange points) correspond to the
wrong correspondences. (b) shows the result of the first iteration. The yellow feature has 1st correspondence far from the
neighbor correspondences; GMS did not identify it as the similar neighbors as the others (i.e., no red line for the yellow
feature). (c) showed the preparation for the second iteration of GMS matcher with the yellow feature is now switched to its
2nd correspondence. (d) As the 2nd correspondence is close to the neighbor correspondences, GMS would identify it as
similar neighbors (i.e., the red line for the yellow feature. However, as the matches in the neighbors are wrong, the yellow
feature is also a wrong match.

Regardless, the experiment showed that switching the correspondence to the next one
could increase feature matches. We seek a better way to switch the correspondence (i.e., not
merely switch it to the next one). For example, we could incorporate the scale information
around similar neighbors to pick the subsequent correspondence.

5.2. ROI Detection

We determine the ground truth ROI position (i.e., coincident point CGT) for each image
set beforehand. We then measured the angle between the ROI-TI coincident point CROI
and the CGT . We used the angle as the error indicator as the coincident points are located
on the unit sphere surface (see Section 3.1).

Table 2 summarized the ROI detection experiment results. The “Initial” columns
denoted CROI error to the CGT after the ROI-TI searching step;the “Refined” columns
denoted CROI error to the CGT after the refinement step. On average, the ROI-TI searching
step had the CROI deviated around 17.3° from the CGT . The refinement could reduce the
error closer up to 5.72° on average. It can be seen that the orientation error was below 15° on
15 of 16 image sets, with 14 of them below 10°. The result showed that the detection picked
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the correct closest face. Therefore, the follow-up refinement could reduce the orientation
error further.

Table 2. ROI detection experiment result. The Angular Error (°) denotes angle difference between
the ROI tangent image (ROI-TI) coincident point CT and the ground truth coincident point CGT .
The “Initial” represents the angular error between the CROI and the CGT before the refinement process;
the “Refined” represents the angular error between the CROI and the CGT before the refinement
process after the refinement process. The “Refined” error is the final ROI-TI CT error to CGT .

ID
Angular Error (°)

ID
Angular Error (°)

Initial Refined Initial Refined

1 32.8 8.37 9 10.7 3.24
2 32.8 5.51 10 2.48 1.34
3 6.74 1.18 11 33.1 15.5
4 18.6 0.942 12 17.3 12.6
5 9.94 1.54 13 19.1 9.16
6 18.2 5.45 14 10.0 6.22
7 14.9 3.29 15 20.6 6.54
8 16.8 5.01 16 13.4 5.58

Avg 17.3 5.72

5.3. Tangent Image (TI)-Based Planar-Equirectangular Stitching Pipeline

We evaluated the proposed TI-based planar-equirectangular image stitching pipeline
performance. We compared the proposed method to the existing planar-planar image
stitching pipeline. In other words, we checked whether the intermediate transition from
EI to the ROI-TI could reduce the undesired distortion on the stitching result compared
to stitch the HPI onto the EI directly. It is important to note that we mainly focused on
evaluating the image alignment step, leaving other stitching pipeline steps untouched.
Both methods would use the same feature pairs and only differ on which coordinate was
used to represent the EI features. The TI-based approach used the ROI-TI coordinate, while
the planar-planar image alignment approach used the EI coordinate. We used the existing
affine transformation model for both and performed the alpha blending afterward.

Figure 11 showed the results. On image no. 1, we see that both approaches resulted
in similar results either for the HROI-EI or for the HROI-TI. The results were as expected
because the ROI was located about the center region of the EI. This area had low spherical
image distortion; thus, the planar-planar image stitching algorithm could work well.

Images no. 2 and no. 3 in Figure 11 show that the planar-planar image alignment
caused significant distortion. The ROI of image no. 3 located further from the central
compared to the no. 2. The stitching results were more distorted as the spherical distortion
was higher further from the EI central region. The worst result was shown in image no. 4,
where most of the ROI was located on the EI polar region. This region had the strongest
distortion compared to the others. We could see how the output image of planar-planar
image alignment could not even be recognized. On the contrary, images no. 2, 3, and 4
could still be recognized fine on the proposed TI-based one. The result showed that,
as opposed to the less-distorted wide FOV image where the typical planar-planar image
stitching can still work [21], the distortion on the EI was too strong to give a good image
stitching result.
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Figure 11. Visual comparison between high angular resolution planar image (HPI)-equirectangular image (EI) stitching
(PROPOSED) with planar-planar image stitching (ORIGINAL). The dashed red line depicts distorted region. Both methods
resulted in a pair of high-resolution ROI equirectangular (HROI-EI) and tangent images (HROI-TI). When the ROI is located
around the EI central region (image no. 1), both methods result in similar results. As the ROI goes further from the center
(image no. 2, 3, and 4), the proposed method results in a much less distorted image than the original one. Zoom in the
image to see the resolution difference between the ROI tangent image (ROI-TI) with stitching result.
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5.4. HVS-Based Image Alignment

As a preprocessing step, we divided the HPI into grids of 33× 19 vertices. We used
an ellipse mask to perform alpha blending on the HPI. We then stitched the blended alpha
to the ROI-TI, which resulted in HROI-TI. We focused on evaluating the HROI-TI during
this experiment.

As the proposed approach is naturally a combination of affine and APAP, we also
used the affine and APAP model as the comparator. Moreover, as the proposed HVS-
based alignment approach attempted to address the alignment and distortion error on
the stitching result, we used both alignment and distortion error as our evaluation metric.
We showed both errors qualitatively through image inspection; quantitatively through
alignment and distortion error calculation.

5.4.1. Qualitative Measurement

Figure 12 showed the results of this experiment. We outlined our qualitative inspection
as red, yellow, and green for “bad”, “medium”, and “good” results. The qualitative
inspections are based on the distortion and misalignment that occurred on the outlined
parts. The ground truths are obtained from the ROI-TI: we want to have a stitching result
that provides the high-resolution version of the ROI-TI without having misalignment along
the boundary and without distorting them (especially around the central region).

In image no. 1, we can see that affine transformation suffered misalignment along
the boundary. On the contrary, APAP and the proposed (i.e., HVS-based) approach can
align pretty well around the region. Image no. 2 showed more complicated situations. The
ROI region roughly consisted of multiple planes. For example, object no. 4 (i.e., focused
object) was located on a separate plane compared to objects no. 1 and no. 2. The affine
transformation could align with an object no. 4 pretty well but suffer from misalignment
on other objects. On the other hand, APAP could align objects no. 1, no. 2, no. 3, and no. 5,
whose located around the boundary. However, object no. 4 was distorted. Our proposed
method could align all the objects as they adopt affine factor on the central region and
APAP factor on the boundary region.

Image no. 3 had a similar result. The affine method could keep the object no. 4 (i.e.,
focused object) boundary shape straight. However, it misaligned the other objects. The
APAP method could align the boundary better even though the scattered and uneven
objects make it harder to align them perfectly. The proposed method gets a similar result as
the APAP but can preserve the object no. 4 shapes better. Image no. 4 also behaves similarly
as the no. 3. However, as the APAP and affine cannot align object no. 3, the proposed
method cannot align object no. 3. The case shows the fail-case of our method.

One way to improve the alignment during the boundary is to provide a distributed
alignment on the boundary. The lack of matched features around the ROI-TI can be seen
on object no. 3 on Image no. 4. We plan to improve our kNN-based feature matching
approach to add new the similar neighbors around the boundary. Furthermore, the failure
to perfectly align the boundary objects can be essential or not. The use of widescreen or
HMD to observe the stitching result can affect the importance of perfect boundary region
alignment, as long as the crucial focused object can be viewed accurately in high-resolution.
The premise is in line with our HVS-based assumption to generate the stitching result. In
the future, we would like to perform a user study to test whether our image alignment
algorithm could provide adequate stitching results.

Nevertheless, distortion found on the focused objects can be displeasing. The situation
occurred due to the various size of the focused objects. For instance, object no. 4 on image
no. 3 (i.e., the keyboard) is horizontally elongated, while object no. 4 on image no. 4
(i.e., the street sign) is vertically elongated. The problems can potentially be solved if
we can adjust the global-local weight w accordingly. Currently, the global-local weight
w (see Equation (4) is still decided manually by the user. Object recognition [33] or line
detection [34] to find the focused object region can automatically adjust global-local weight
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w. We can group the vertices according to objects detected in the region. We then use the
same local model term for vertices that belong to the same objects.

Figure 12. Visual comparison of the resulting HROI-TI between proposed image alignment with affine and APAP. Red,
yellow, and green outline respectively represent subjective “bad”, “medium”, and “good” evaluation of the alignment and
the object shape quality. Overall, the AFFINE method could preserve the object shape in the central region but suffered
from misalignment on the boundary. The APAP method could align the boundary better but suffered from distortion in the
central region. The PROPOSED method could agree between the alignment error found in AFFINE and the distortion error
found in APAP. We used the ROI-TI as the GROUND TRUTH. Zoom in the image to see the resolution difference between
the ROI tangent image (ROI-TI) with the affine, the APAP, and the Proposed.
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5.4.2. Quantitative Measurement

To calculate the alignment error ealign, we first calculated the root-mean-squared error
(RMSE) between AMF pairs. We used the inspected approaches (i.e., the HVS-based,
the APAP, or the Affine) to transform the matched features from the HPI coordinate to the
ROI-TI coordinate. We then found the RMSE between the transformed features with their
correspondences in the ROI-TI. We set the RMSE as the alignment error ealign [14].

To determine the distortion error edistort, we first calculated the 2D rigid-body similarity
constraint error [20] of the stitching result vertices. As we only focused on central distortion
error, we only calculated the vertices located nearby the image center. To decide it, we
assigned an image grid whose size is 3 × 3 distributed evenly inside the image. We
described the central vertices as the vertices whose closest grid is the center grid. We
averaged these central vertices similarity errors and used them as the distortion error Derr.

In addition, we also defined aggregated alignment-distortion eaggregate for APAP P, Affine
F, and the proposed HVS-based V comparison:{

α ∈ A

∣∣∣∣∣ eaggregate(α) = 0.5
ealign(α)

∑γ∈A ealign(γ)
+ 0.5

edistort(α)

∑γ∈A edistort(γ)

}
, (6)

where A = {P, F, V}. The equation is a simple approach to aggregate the relative error
of both ealign and edistort. As our proposed image alignment method is trying to find the
trade-off between ealign and edistort, we expected that our proposed method would not often
be shown the best on both criteria. Therefore, we intended to use this metric to show the
overall performance of our proposed method in compensating both ealign and edistort. We
made following hypothesis:

• ealign on proposed method (V) is lower than affine (F) but higher than APAP (P):
ealign(F) > ealign(V) > ealign(P)

• edistort on proposed method (V) is lower than APAP (P) but higher than affine (F):
edistort(P) > edistort(V) > edistort(F)

• eaggregate on proposed method (V) is lower than both APAP (P) and affine (F): eaggregate(P)
> eaggregate(V) and eaggregate(F) > eaggregate(V)

Table 3 summarized the result for this experiment. Overall, the results of the experi-
ment followed our three hypotheses with some exceptions. Most of the time, the eaggregate
could show that our proposed method is best (12 of 16 cases). However, this metric alone
can give a different interpretation when compared with the other two hypotheses. For
instance, ID no. 5 showed that the proposed approach followed both alignment and
distortion error hypotheses yet gave FALSE results overall. On the contrary, this metric
gave TRUE results on image ID no. 7 despite violating both alignment and distortion
error hypotheses.

The ID no. 5, 7, 8, 10, and 15 showed that our method has the lowest ealign compared to
others. These are examples of ideal cases where our proposed method could get the lowest
alignment error as it took the best factor on both central and boundary regions. On the
central, the affine factor contributed more to our proposed method, while on the boundary,
the APAP factor contributed more. These cases showed that the affine factor could align
the central region well even though it has a high ealign on the boundary. Alignment during
the central-boundary transition also works well on our proposed method resulted in the
lowest ealign.

A similar reason can also hold on edistort case. As we measured only the central distor-
tion, we got a similar distortion error between the proposed method and the affine model.
The transition between central to boundary region could only cause slight differences,
which could be positive (lower edistort) or negative (higher edistort) effect. The ID no. 6 and 7
showed that our method has the lowest edistort. On the contrary, image ID no. 14 showed
our method has the highest edistort.

On the proposed image alignment, we relied on the affine model characteristics
property to keep the shape in the ROI region (i.e., to preserve the ROI region similarity).
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We did not explicitly add a similarity constraint to the equation [18]. Therefore, there are
possibilities that the affine model had a higher distortion error compared to the APAP
model, such as shown on image ID no. 5.

Table 3. Results for the image alignment step between the ROI tangent image (ROI-TI) with the high-resolution planar
image (HPI). We compared the image alignment step output of the Proposed (V) approach with existing Affine (F) and
APAP (P) approaches. Most of results follow the alignment error hypotheses ealign(F) > ealign(V) > ealign(P) (11 of
16); distortion error hypotheses edistort(P) > edistort(V) > edistort(F) (12 of 16); alignment-distortion error hypotheses
eaggregate(P) > eaggregate(V), eaggregate(F) > eaggregate(V) (12 of 16). Overall, the proposed approach shows the lowest
aggregated alignment-distortion error eaggregate (i.e., 0.61) compared to Affine (0.72) and APAP (0.67).

ID APAP
(P)

Affine
(F)

Proposed
(V)

Hypotheses ID APAP
(P)

Affine
(F)

Proposed
(V)

Hypotheses

Alignment Error ealign (pixel)

1 3.54 4.95 3.59 TRUE 9 5.68 6.91 6.15 TRUE
2 5.96 11.2 7.65 TRUE 10 6.85 9.78 6.70 FALSE
3 6.26 8.63 6.93 TRUE 11 8.73 15.4 9.80 TRUE
4 5.76 6.13 5.47 FALSE 12 6.06 14.3 7.66 TRUE
5 6.95 10.3 7.25 TRUE 13 7.83 24.6 8.83 TRUE
6 6.73 11.7 6.96 TRUE 14 7.05 18.7 9.52 TRUE
7 6.16 7.70 6.04 FALSE 15 3.76 4.20 3.76 FALSE
8 3.33 3.77 3.28 FALSE 16 4.99 5.98 5.02 TRUE

Avg 1 5.98 10.3 6.54 11 of 16

Distortion Error edistort (pixel)

1 0.98 0.78 0.82 TRUE 9 2.80 2.49 2.65 TRUE
2 0.79 0.73 0.75 TRUE 10 1.23 0.99 1.01 TRUE
3 1.52 1.12 1.23 TRUE 11 1.32 0.47 0.91 TRUE
4 0.46 0.67 0.56 FALSE 12 0.92 0.60 0.73 TRUE
5 0.63 0.43 0.42 FALSE 13 1.52 0.91 1.00 TRUE
6 1.11 0.52 0.72 TRUE 14 1.59 1.58 1.70 FALSE
7 0.78 0.77 0.70 FALSE 15 0.36 0.31 0.32 TRUE
8 0.67 0.37 0.43 TRUE 16 1.08 0.56 0.66 TRUE

Avg 1 1.11 0.83 0.91 12 of 16

Alignment-Distortion Error eaggregate

1 0.67 0.71 0.62 TRUE 9 0.66 0.68 0.66 FALSE
2 0.59 0.78 0.64 FALSE 10 0.68 0.72 0.60 TRUE
3 0.68 0.68 0.64 TRUE 11 0.75 0.63 0.62 TRUE
4 0.61 0.75 0.64 FALSE 12 0.62 0.78 0.60 TRUE
5 0.71 0.71 0.58 TRUE 13 0.63 0.86 0.50 TRUE
6 0.74 0.68 0.58 TRUE 14 0.53 0.85 0.62 FALSE
7 0.66 0.73 0.62 TRUE 15 0.68 0.67 0.65 TRUE
8 0.78 0.61 0.61 TRUE 16 0.78 0.62 0.60 TRUE

Avg 1 0.67 0.72 0.61 12 of 16
1 Average of hypotheses means a count of TRUE value.

5.5. Computation Time

Table 4 showed that most of the processing occurred during the ROI detection step.
The ROI detection step also took much longer than the ROI-TI feature extraction matching
step. We look deeper at both steps and found that most computation time was used to
extract the features from generated TIs. The ROI detection used b = 0 to generate 20 TIs. It
extracted the features from all available TIs. On the contrary, the ROI feeature extraction-
matching step used b = 1. Although generated 80 TIs in total, the step did not extract
the features from all TIs. It only extracted features at ROI-TI and its neighbors, which is
around 13 TIs in total. Furthermore, the visibility region ΩT was higher for b = 0, making
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the triangle mask for feature extraction wider. We believe that differentiating and adjusting
some of the ORB feature extractor hyperparameters could solve the problem.

Table 4. Computation time for each planar-equirectangular image stitching pipeline steps (in seconds).
The majority of the computation times were occurred on the ROI detection step ( 43.6%), followed by
alignment ( 39.4%) and ROI feature extraction-matching ( 17.0%), respectively.

ID ROI Detection (s) ROI Extraction-Matching (s) Alignment (s)

1 3.47 0.84 2.60
2 3.71 1.12 2.99
3 2.06 1.26 2.94
4 4.81 1.03 4.16
5 3.25 0.78 2.56
6 2.84 0.59 2.82
7 2.95 1.61 2.42
8 2.12 1.69 2.19
9 1.98 2.30 1.64
10 3.06 1.54 2.55
11 1.39 1.09 2.03
12 2.05 1.50 3.57
13 3.08 1.01 2.75
14 4.90 1.01 3.52
15 4.92 0.69 2.76
16 2.57 1.09 2.87

Avg 1 3.07 (43.6%) 1.20 (17.0%) 2.77 (39.4%)
1 The % denotes the percentage of the computation time relative to the overall steps.

The image alignment step also took a similar computation time as the ROI detection.
We look deeper into the image alignment and found that The computation time was mainly
used to count the local Hapap term. We think of two ways to solve the computation time
problem. First, we would like to use a faster optimization solver library than Eigen to
compute the models. Second, we would like to vary the HPI grid vertices number. On the
preliminary test, we used 17× 10 vertices and applied the similarity constraint explicitly.
This setting is quite similar to applied on [18]. However, as the planar-equirectangular
image stitching overlapping region is bigger than the typical planar-planar image stitching,
we found that the vertices size was inadequate. We are still figuring out the best setting for
the vertices.

5.6. Implementation in Other 360° Image Format

Although we specifically designed our system to handle the 360° image in equirectan-
gular format, the TI can be extended to handle the other formats. A straightforward way is
by changing the equirectangular to unit sphere mapping (see Equation (1)) according to
each format model. For example, we can use the unified spherical model (USM) [35] to
map the fisheye or catadioptric image onto the unit sphere [36,37].

Besides, the use of other image formats than EI can be beneficial for some cases.
Precisely, the EI captured by the RICOH THETA V initially captures the image in the
dual-fisheye format. The camera internally stitches the two fisheye images to produce
the EI. The EI then suffered from the stitching artifacts found on the two fisheye images
overlapping region. As the planar-equirectangular image stitching relies on the reliability
of the EI image, the artifacts on the boundary region can reduce the performance (e.g.,
the feature extraction-matching or the image alignment performance) when stitching the
images around the boundary.

6. Conclusions

We introduce a planar-equirectangular image stitching algorithm that places the HPI
onto their corresponding ROI region on the EI. The proposed method includes: (1) TI-
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based planar-equirectangular stitching pipeline, (2) kNN-based GMS feature matching,
(3) planar-equirectangular image ROI detection, and (4) HVS-based image alignment.

The TI generation in the stitching pipeline could mitigate the strong spherical image
distortion on the EI. It is possible to employ existing planar-based feature extraction-
matching and image alignment on the TIs. The proposed kNN-based GMS feature matching
is implemented to increase the feature match inliers and entropy. The increase of inliers
would make the matched features covered a wider overlapping region than typical planar-
planar image stitching. The feature extraction-matching result is then used to conduct
ROI detection and HVS-based image alignment. The ROI detection algorithm performs a
coarse-to-fine searching process on the base-level TI: (1) find the ROI-TI then (2) refine the
ROI-TI position vector incrementally. The image alignment is next conducted between the
ROI-TI and the HPI. As the parallax error can instigate alignment-distortion error trade-off
when stitching the planar image onto the equirectangular one, the proposed HVS-based
alignment yields a less distorted central region while minimizing the boundary mismatch.
The approach keeps the focused object on the central region (e.g., rigid structure or line)
less distorted while placing the HPI on the EI ROI with slight misalignment.

We conducted a qualitative and quantitative experiment on the collected dataset
and got the following results: (1) compared to original BF-based GMS feature matching,
the kNN-based approach showed an increase of feature matches up to 29.0% and higher
entropy value (5.25 vs. 5.20), (2) the ROI detection algorithm could find the ROI direction
vector up to 5.72° error on average, (3) less distorted stitching result when using TI-based
compared to existing planar-planar image stitching, and (4) the HVS-based image align-
ment gave lowest aggregated alignment-distortion error over affine and APAP method
(0.61 vs. 0.72 vs. 0.67).

The experiments also showed several shortcomings of our methods. First, the kNN-
based feature matching could not provide a noticeable improvement on the correct matches
spreads level (i.e., entropy value). Second, the ROI detection algorithm could not im-
prove the AMF entropy significantly as they only increase the amount of existing similar
neighbor grid members: not adding new similar neighbor grids. A better way to switch
correspondences could potentially increase entropy and accuracy. Third, the calculation of
ROI orientation still consumed significant computational time compared to other steps. An
adjustment on the ORB feature extractor hyperparameters could potentially solve the issue.
Fourth, the best combination of global affine and local homography model still required
user intervention as the focused object sizes can be varied. Additional object recognition
or line detection step to automatically adjust the weight can be explored in the future.
Another way is to add the similarity constraints to improve the focus object shape through
a faster optimization library or a parallel processing algorithm.

We also would like to adopt more advanced seam-driven image stitching for future
works [38,39]. We believe such a method will make a smoother stitching result boundary
though we have to consider the increased computation time and reduced high-resolution
region possibility. Furthermore, we would like to deploy our algorithm on the VR headset.
We want to perform a user study to test whether our image alignment algorithm could
provide adequate stitching results.
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Abbreviations
The following abbreviations are used in this manuscript:

VR Virtual reality
ROI Region of interest
HPI High angular resolution planar image
EI Equirectangular image
FOV Field of view
TI Tangent image
HVS Human visual system
ROI-TI ROI tangent image
GMS Grid motion statistics
BF Brute-force
KNN K-Nearest Neighbor
APAP As-projective-as-possible
ORB Oriented FAST and Rotated BRIEF
SPHORB Spherical ORB
MTI Main tangent image
NTI Neighbor tangent image
AMF Accumulated matched features
HROI-TI High angular resolution ROI tangent image
HROI-EI High angular resolution ROI equirectangular image
USM Unified spherical model
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