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Abstract: Recently, to enhance the security of the Internet of Things (IoT), research on blockchain-
based encryption algorithms has been actively conducted. However, because blockchains have
complex structures and process large amounts of data, there are still many difficulties in using the
conventional blockchain-based encryption algorithms in an IoT system that must have low power
consumption and be ultra-lightweight. In this study, to address these problems (1) we simplified
the conventional Directed Acyclic Graph (DAG)-based blockchain structure, and (2) we proposed a
new Advanced Encryption Standard (AES)-Cipher Block Chaining (CBC) algorithm with enhanced
security by periodically changing the secret key and initialization vector (IV) in the conventional
AES-CBC encryption algorithm. Because the DAG, which is the conventional blockchain structure,
randomly transmits data to multiple blocks, there may be overlapping blocks, and the quantity of
transmitted data is not limited; thus, the time and power consumption for encryption and decryption
increase. In this study, a simplified DAG was designed to address these problems so that packets
can be transmitted only to three blocks, without overlapping. Finally, to verify the effectiveness
of the algorithm proposed in this paper, an IoT system consisting of 10 clients and one server was
implemented in hardware, and an experiment was conducted. Through the experiment, it was
confirmed that when the proposed AES-CBC algorithm was used, the time taken and the amount
of power consumed for encryption and decryption were reduced by about 20% compared to the
conventional AES-CBC algorithm.

Keywords: blockchain; encryption; internet of things (IoT); directed acyclic graph (DAG); advanced
encryption standard (AES); cipher block chaining (CBC)

1. Introduction

Recently, technologies such as artificial intelligence, big data, cloud computing, the
Internet of Things (IoT), and network performance have improved with the advent of the
hyper-connected era. Due to advances in these technologies, resources are increasingly
virtualized for sharing. Networks are virtualized to share network resources or build a
cloud environment. Although the number of applications using networks is increasing,
network security remains inadequate. The IoT is a technology used to connect and control
sensors through networks. This technology is used not only in industries but also in homes.
When the IoT is used at home to connect and control home devices, such as consumer
devices, security systems, and home appliances, it is known as a smart home system.
However, individual devices connected to home systems can create security problems.
The IoT is controlled through a network, and connected devices with weak security may
suffer various types of damage by hackers. Vulnerabilities such as simple patterns of
encryption, non-periodic password changes, old platforms, a lack of encryption algorithms,
and a lack of security in network connections can be revealed. Using these vulnerabilities,
personal information can be stolen to cause financial damage, and secondary damage
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such as the invasion of user privacy can also be caused through identifying life patterns.
Today, the seriousness of the privacy invasion problem is increasing due to the increased
number of single-person households. Furthermore, the vulnerability of the IoT is also
steadily growing [1,2]. To address this problem, symmetric key algorithms such as the
Advanced Encryption Standard (AES), Secure Hash Algorithm (SHA), and Lightweight
Encryption Algorithm (LEA) with a block encryption structure have been applied to
increase security [3,4]. However, these approaches make it easy to obtain cracked data [5].
In addition, security should be enhanced due to problems such as new malicious codes
and denial of service [6]. Recently, the security of blockchains has been emphasized [7,8].
Much research has been conducted to improve security, but most studies have focused on
improving security suitable for one-to-one communication. Blockchains have the advantage
of being capable of enhancing security through verification between nodes, which makes
forgery difficult. Consequently, research using blockchain techniques to develop robust
security algorithms is actively underway [9–15].

In this study, the security of the IoT environment was improved using a blockchain-
based algorithm. The algorithm was implemented by imitating the Directed Acyclic Graph
(DAG) algorithm.

When a client connected to a particular sensor sends data, the encrypted data are
randomly transmitted to other clients. The clients who receive the data decrypt and re-
encrypt it before retransmitting the encrypted data to other clients and, finally, to the
server. The server that receives the data decrypts and aggregates these data, and adopts
the data that were verified the most. Encryption was performed using the AES algorithm,
and the cipher key was set to be changed periodically. Consequently, using this method,
problematic clients can be identified, and the inference of the cipher key is impossible, even
when the data are exposed. The performances of the conventional AES-CBC algorithm and
the proposed new AES-CBC algorithm were compared, and the overhead of the proposed
algorithm was evaluated.

The remainder of this paper is organized as follows. In Section 2, related works are
discussed, and in Section 3, the background technology of the DAG-based blockchain
structure and AES-CBC algorithm is explained. In Section 4, the proposed Simplified
DAG-based Blockchain Structure is described, and in Section 5, the proposed new AES-
CBC encryption algorithm is described. In Section 6, system configuration and hardware
equipment are described, and in Section 7, experiments of encryption and decryptions,
verification of encryption, and analysis of the proposed AES-CBC algorithm are described.
Section 8 compares the conventional AES-CBC encryption algorithm with the proposed
new AES-CBC encryption algorithm, and Section 9 presents the conclusion of the paper.

2. Related Work

Various studies have been conducted to build a system suitable for the IoT. For the
current work, related studies were reviewed to address technical issues, such as security,
reliability, and scalability.

Biswas et al. proposed a PoBT algorithm that enables block security at the stage of
transaction verification and block generation. PoBT is a lightweight consensus algorithm
that integrates peers according to the number of nodes participating in the session. The
computational time required for peers is reduced, and the IoT transaction speed is enhanced
by limiting resources. In addition, the memory required for IoT nodes is reduced using a
distributed peer system [16].

Mohanty et al. developed an ELIB algorithm using a lightweight consensus algorithm,
Certificateless (CC), and distributed throughput management (DTM), so that it can be
applied to the IoT. To reduce the resources consumed, the number of blocks was limited,
and the throughput of the consensus algorithm of the blockchain was also limited. As a
result, the time and energy required to process the blocks were reduced [17].

Huang et al. proposed a credit-based proof of work (PoW). Power was limited through
PoW to fit IoT devices, and a blockchain infrastructure with a DAG structure was built.



Electronics 2021, 10, 1127 3 of 20

Functionally, the nodes were divided into two categories: light and full nodes. Light nodes
are IoT devices that are connected to the full nodes to interact, and the collected sensor
data are subject to data authority management with AES block encryption. The full nodes
have two roles, as an administrator and a gateway, and a secure blockchain system was
implemented using AES block ciphers [18].

3. DAG-Based Blockchain Structure and AES-CBC Algorithm
3.1. Struture of DAG

The structure of DAG is attracting attention as a core technology in the era of blockchain
3.0 [19–23]. Figure 1 shows a structure of the DAG. As a non-circulating directed graph, it
has multi-directionality without any fixed order and continues in only one direction, as
seen in the figure.
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3.2. AES-CBC Algorithm
3.2.1. AES Algorithm

The AES algorithm was established by the National Institute of Standards and Tech-
nology and was the first algorithm that was approved for Top Secret use by the US National
Security Agency [24]. The AES algorithm is a symmetric key algorithm that uses the
same key in encryption and decryption processes. A symmetric key algorithm refers to an
algorithm that uses the same cipher key for encryption and decryption. The encryption
structure is composed of a Substitution–Permutation Network (SPN) structure and a Feistel
structure. The AES algorithm uses the SPN structure, which is shown in Figure 2. In
Figure 2, S represents the substitution box (S-box), and P represents the permutation box
(P-box). Regarding the encryption process of the AES algorithm, ciphertexts are generated
through many rounds of processes in the S-box and P-box. The S-box is a basic packet used
for encryption, and its function realizes the non-linear substitution of data. The function
of the P-box is changing the location of data. The SPN structure has the disadvantage
that it must be designed to require an inverse function in the encryption and decryption
processes, but has the advantage that it can be designed more efficiently than the Feistel
structure because encryption and decryption are possible simultaneously without moving
bits during the encryption process.
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3.2.2. CBC Operating Mode

The block encryption technology has five operating modes: Electronic CodeBook
(ECB) mode, Cipher Block Chaining (CBC) mode, Cipher FeedBack (CFB) mode, Output
FeedBack (OFB) mode, and Counter (CTR) mode. The CBC mode is the most secure
encryption method among block encryption operating modes and is the most commonly
used. Figure 3 is a block diagram that shows the encryption and decryption processes in
CBC mode [25]. In the CBC operating mode encryption process, as shown in Figure 3a,
each block performs an XOR operation with the encryption result of the previous block
before being encrypted, and in the case of the first block, the initialization vector (IV) is
used. The decryption process in the CBC operating mode proceeds in the reverse order of
the encryption process, as shown in Figure 3b. However, because the first block does not
have the encryption result of the previous block, the ciphertext and the initialization vector
(IV) are XOR operated [26,27].
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4. Proposed Simplified DAG-Based Blockchain Structure

This paper proposes a structure suitable for the new IoT using simplified DAG-based
blockchain.

Figure 4 shows the structure of the simplified DAG-based blockchain. Unlike the
DAG structure, the proposed simplified DAG-based blockchain structure generates paths
randomly without any overlapping blocks. If memory usage increases, system resources
may become insufficient and process efficiency may be degraded. In the case of the IoT, as
the number of processes increases, the memory usage increases, leading to greater power
usage, so that the efficiency may be reduced, and phase alignment is not performed. In
this study, to address these problems, a new algorithm was constructed in which the same
paths do not overlap in any node. That is, the final target point is reached without going to
any node that has already been passed once. Regardless of which node it is, when an event
has occurred in a node, paths are created to three nodes. A path is thus created to reach the
destination through three paths between the nodes, and when an event has occurred, the
paths between nodes are changed in no particular order.



Electronics 2021, 10, 1127 6 of 20Electronics 2021, 10, x FOR PEER REVIEW 6 of 21 
 

 

 
Figure 4. Structure of the simplified DAG-based blockchain. 

The simplified DAG-based blockchain randomly transmits the ciphertext to three 
clients. Therefore, it is difficult to apply the algorithm to fewer clients. To solve this problem, 
clients are registered to the server to determine how to transmit the ciphertext to clients. In 
cases where the number of clients connected to the server is less than four, when an event 
occurs, the client determines the number of clients to which the ciphertext is to be 
transmitted as “zero”. Here, “zero” has no special meaning and was used to indicate that 
events that occurred in a random client are transmitted directly to the server without 
passing through other clients. Subsequently, the ciphertext is sent directly to the server 
without sending it to any client, and the decision is made without the procedure to check 
the number of clients from which data are received. When at least four clients are connected 
to the server, the client where the event has occurred transmits the ciphertext to other clients. 
The clients that receive the ciphertext decrypt the ciphertext, encrypt it again, include a 
message indicating that the current client has verified the data, and transmit it to the server. 
When clients are extended in this way, the transmission method is defined according to the 
number of clients. In this manner, the client where an event has occurred randomly 
transmits a message to three clients, and the transmission process can be carried out up to 
three times for each data packet. In our proposed simplified DAG-based blockchain 
structure, even if the number of clients increases, the number of clients for which the packets 
are verified is limited to nine at the maximum. This is because increasing the amount of data 
generated by the client can overload the system and cause network delays. The value of nine 
was verified as the optimal value through many experiments. 

Table 1 shows the packet structure generated when an event occurs in a client. The 
packet structure is as follows. In the packet, Number “n” is the cumulative sum of the 
values of octet 4, which is the 4th digit of the IP address of the clients where the events 
occurred; Event Client Address “a” is the value of the octet 4, which is the 4th digit of the 
IP address of the client where the event occurred; and Random Address 1 “b”, Random 
Address 2 “c”, and Random Address 3 “d” represent the values of the octet 4, which is 
the 4th digit of the IP addresses of three random clients where events occurred. In 
addition, Server Address “e” is the value of octet 4, which is the 4th digit of the server’s 
IP address, and Sensor data “f” is the output value of the client (e.g., sensor) where the 
event occurred. Here, the IP address of the client where the event occurs at random is 
generated by referring to the addresses in the lookup table already registered in each 
client. For example, if a = 5, b = 1, c = 4, d = 2, e = 6, f = 11, the initially generated packet 
structure becomes “5, E5, A (1, 4, 2), S6, D11”. Then, this packet is transmitted to the client 
whose IP address’ octet 4 value equals 1. The client that received this packet adds 1, which 
is the value of octet 4 of the client IP, to the “n” position of the packet to create a new 
packet “6, E5, A (1, 4, 2), S6, D11”, and transmits the new packet to the client of which the 
IP address’ octet 4 value equals 4. The client that received this packet adds 4, which is the 
value of octet 4 of the client IP, to the “n” position of the packet to create a new packet “10, 
E5, A (1, 4, 2), S6, D11”, and transmits the new packet to the client of which the IP address’ 
octet 4 value is 2. The client that received this packet adds 2, which is the value of octet 4 

Figure 4. Structure of the simplified DAG-based blockchain.

The simplified DAG-based blockchain randomly transmits the ciphertext to three
clients. Therefore, it is difficult to apply the algorithm to fewer clients. To solve this
problem, clients are registered to the server to determine how to transmit the ciphertext
to clients. In cases where the number of clients connected to the server is less than four,
when an event occurs, the client determines the number of clients to which the ciphertext
is to be transmitted as “zero”. Here, “zero” has no special meaning and was used to
indicate that events that occurred in a random client are transmitted directly to the server
without passing through other clients. Subsequently, the ciphertext is sent directly to the
server without sending it to any client, and the decision is made without the procedure to
check the number of clients from which data are received. When at least four clients are
connected to the server, the client where the event has occurred transmits the ciphertext
to other clients. The clients that receive the ciphertext decrypt the ciphertext, encrypt
it again, include a message indicating that the current client has verified the data, and
transmit it to the server. When clients are extended in this way, the transmission method is
defined according to the number of clients. In this manner, the client where an event has
occurred randomly transmits a message to three clients, and the transmission process can
be carried out up to three times for each data packet. In our proposed simplified DAG-
based blockchain structure, even if the number of clients increases, the number of clients for
which the packets are verified is limited to nine at the maximum. This is because increasing
the amount of data generated by the client can overload the system and cause network
delays. The value of nine was verified as the optimal value through many experiments.

Table 1 shows the packet structure generated when an event occurs in a client. The
packet structure is as follows. In the packet, Number “n” is the cumulative sum of the
values of octet 4, which is the 4th digit of the IP address of the clients where the events
occurred; Event Client Address “a” is the value of the octet 4, which is the 4th digit of the
IP address of the client where the event occurred; and Random Address 1 “b”, Random
Address 2 “c”, and Random Address 3 “d” represent the values of the octet 4, which is the
4th digit of the IP addresses of three random clients where events occurred. In addition,
Server Address “e” is the value of octet 4, which is the 4th digit of the server’s IP address,
and Sensor data “f” is the output value of the client (e.g., sensor) where the event occurred.
Here, the IP address of the client where the event occurs at random is generated by referring
to the addresses in the lookup table already registered in each client. For example, if a =
5, b = 1, c = 4, d = 2, e = 6, f = 11, the initially generated packet structure becomes “5, E5,
A (1, 4, 2), S6, D11”. Then, this packet is transmitted to the client whose IP address’ octet
4 value equals 1. The client that received this packet adds 1, which is the value of octet 4
of the client IP, to the “n” position of the packet to create a new packet “6, E5, A (1, 4, 2),
S6, D11”, and transmits the new packet to the client of which the IP address’ octet 4 value
equals 4. The client that received this packet adds 4, which is the value of octet 4 of the
client IP, to the “n” position of the packet to create a new packet “10, E5, A (1, 4, 2), S6,
D11”, and transmits the new packet to the client of which the IP address’ octet 4 value is
2. The client that received this packet adds 2, which is the value of octet 4 of the client IP,
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to the “n” position of the packet to create a new packet “12, E5, A (1, 4, 2), S6, D11” and
transmits the new packet to the server.

Table 1. Packet structure transmitted when an event has occurred.

Number Event Client
Address

Encryption Server
Address

Sensor
DataRandom

Address 1
Random

Address 2
Random

Address 3

n a b c d e f

Packet structure: “n, Ea, A (b, c, d), Se, Df”

Randomly generated client addresses are re-encrypted so that the order of the next
client’s address cannot be known. The randomly generated client addresses, including
the event client’s address, are encrypted as shown in Table 1. The address encryption is
defined as in (1).

Address = 2⊕ Address�2 (1)

The encryption was carried out by moving 2 bits of the current address and performing
an XOR operation with a randomly defined number “2”.

Data Verification Method

The server verifies the three packets received from the clients. There are two methods
to verify the data. The first one is to check n = a + b + c + d in Table 1, and the second one
is to compare the Sensor Data “f” in Table 1 in the packets generated by individual clients
(for example, sensor) where the event occurred, with each other.

Figure 5 shows an example of how a client where an event occurred transmits a packet
to the server. This figure shows a case in which an event occurred in Client 5. Let us assume
that the three packets, which this client will transmit to other clients, are as follows:

- packet 1: “5, E5, A (7, 2, 1), S15, D1”
- packet 2: “5, E5, A (9, 4, 8), S15, D1”
- packet 3: “5, E5, A (10, 6, 3), S15, D1”

These packets were generated because an event occurred in Client 5 (a = 5 in this case).
Client 5 transmits packet 1 to a client of which the IP address’ octet 4 value is 7, packet 2 to
a client of which the IP address’ octet 4 value is 9, and packet 3 to a client the IP address’
octet 4 value is 10.

Packet 1 passes through b = 7, c = 2, d = 1, which correspond to the value of octet 4
of the randomly generated client IP so that the Number of the packet transmitted to the
server becomes n = a + b + c + d = 5 + 7 + 2 + 1 = 15 and the packet received by the server
becomes “15, E5, A (7, 2, 1), S15, D1”. Packet 2 passes through b = 9, c = 4, d = 8, which
correspond to the value of octet 4 of the randomly generated client IP so that the Number
of the packet transmitted to the server becomes n = a + b + c + d = 5 + 9 + 4 + 8 = 26 and
the packet received by the server becomes “26, E5, A (9, 4, 8), S15, D1”. Packet 3 passes
through b = 10, c = 6, d = 3, which corresponds to the value of octet 4 of the randomly
generated client IP so that the Number of the packet transmitted to the server becomes “24,
E5, A (10, 6, 3), S15, D1”. Because each of the three packets mentioned above have the same
front part n = a + b + c + d and have the same sensor data, f = D1, it can be seen that they
were transmitted normally.

If n = a + b + c + d is not valid in a packet due to hacking or other reasons, or sensor
data “f” does not coincide, the packet is discarded. In addition, if the data in the packet
other than octet 4 of the client IP do not match the packet received by the server, it will
mean that the data have not been accurately transmitted. Therefore, this packet is also
discarded.
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Figure 6 shows the timeout for the client data to be received by the server. The server
waits up to 5000 ms (measured from the time the first data were received) for the data to
arrive. This is to prevent the system from going down due to overload on the server or the
client when the network is delayed or the amount of data to be transmitted is momentarily
increased. This value of 5000 ms was determined to be the most suitable response delay
time from the server through many experiments. Then, the data received are discarded,
and the data received before the timeout are adopted after verification.
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5. Proposed New AES-CBC Algorithm

This paper proposes a new AES-CBC algorithm suitable for the new IoT.
The conventional AES-CBC algorithm was set such that the cipher key was changed

at regular intervals. In the process through which clients transmit data, encryption and
decryption are sequentially performed while the data are transmitted to the server. That is,
the data can be transmitted only when the cipher keys of all clients are identical, and the
cipher keys are synchronized with the system time. When a new client has been registered,
the cipher key used when a client has been added is configured to synchronize the cipher
key. Figure 7 shows the overall structure of the encryption algorithm.
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Figure 7. Overall structure of the encryption algorithm.

Two cipher keys should be used for encryption and decryption of the proposed
algorithm: Ken (the current cipher key) and KTn (the cipher key in the immediately previous
block). These cipher keys were identically set to 192 bits (24 bytes), and the initialization
vector IV was set to 128 bits (16 bytes).

Figure 8 shows the process through which the cipher keys are changed. The cipher
keys are changed at different time intervals. If the defined time is the same as the current
time, the cipher key will not be changed and is used as it is; if the time is different, the
cipher key will be changed. If the defined time and the current time are different, the cipher
key is calculated by the time function and is output again.
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In Figure 8, the process of changing the ciphertext is as follows.
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[Step 1] Carry out shift operation of Ken (1) to output Ken (2), which is colored orange.
Step 1 can be expressed as Equation (2).

Ken(2) =
(
Ken+1(1)

)�1, Ke23(2) = Ke0(1) (2)

[Step 2] Carry out XOR operations of Ken (2) output in Step 1 with the value obtained
by shifting Ken (1) to the left bit by bit to output K′en (3) which is colored blue. Step 2 can be
expressed as Equation (3).

K′en = Ken(1)⊕ Ken(2) (3)

[Step 3] Change the new cipher key every minute using K′en (3) and Time Zone for
changing encryption.

“IV Refresh” in Figure 8 is a sort of initialization vector (IV) used in “CBC Operating
mode.” Using “IV Refresh” is in the sense that the value of IV is changed every minute to
enhance security further.

5.1. Time Zone

The cipher key changes when the defined time is not identical to the current time.
Figure 9 shows the process through which cipher keys are generated. The month of the
system’s current date and the minute of the current time are added. In this paper, months
and minutes are used to generate cipher keys. If we use months, days, hours, and minutes
simultaneously, cipher keys can become too complex and take a long time to decrypt. Using
minutes instead of hours changes the cipher key every minute to enhance security.
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The XOR operation is carried out for one byte of the 24 bytes of the input Ken per
time interval, in order, and the resultant values are fed to Ken . Equation (4) describes the
operation process:

K′en = (MM + mm)⊕ Ken (4)

In Equation (4), Ken is the current cipher key, which is 192 bits, and (MM+mm)
represents the month and minute, which is 8 bits. These two values are XOR operated to
generate a new cipher key, K′en .

The Ken used here is copied to KTn and stored there. KTn is used as a temporary cipher
key. It is used as the cipher key when decryption is not performed during network timeout
or normal encryption/decryption. This cipher key is discarded when the next cipher key
has been changed.

In Figure 9, Ki is the current cipher key and represents the input, and Ko is the new
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changed cipher key and represents the output.

5.2. Initialization Vector (IV) Change

Figure 10 shows a diagram showing the process of changing IV. Of the 192 bits (24
bytes) of the cipher key K′en the last eight bytes are discarded and only the first 16 bytes
are used to carry out the XOR operation of Ken and IV. The calculated IV is used again to
generate the cipher key.

Electronics 2021, 10, x FOR PEER REVIEW 11 of 21 
 

 

timeout or normal encryption/decryption. This cipher key is discarded when the next 
cipher key has been changed. 

In Figure 9, 𝐾௜ is the current cipher key and represents the input, and 𝐾௢ is the new 
changed cipher key and represents the output. 

5.2. Initialization Vector (IV) Change 
Figure 10 shows a diagram showing the process of changing IV. Of the 192 bits (24 

bytes) of the cipher key 𝐾′௘೙ the last eight bytes are discarded and only the first 16 bytes 
are used to carry out the XOR operation of 𝐾௘೙ and IV. The calculated IV is used again to 
generate the cipher key. 

 
Figure 10. Diagram showing the process of changing IV. 

6. System Configuration 
Figure 11 shows the hardware that makes up the system used for experimental testing 

of the algorithm. The left side of the picture shows the central server configured with one 
Raspberry Pi 3 B+ board, and the right side shows clients to which sensors were connected 
and configured using ten Raspberry Pi ZERO boards. The sensors consisted of speaker 
sensors and human-body-sensing sensors. The server and clients could communicate 
through a router. The clients encrypted the data generated by the sensors and transmitted 
the ciphertext to the central server through the other clients. The Raspberry Pi board used 
in the experiment was an experimental embedded board developed by the UK’s Raspberry 
Pi Foundation for basic computer science education. The specifications of the 3 B+ model 
used as a server are as follows: CPU ARM11 700 MHz, RAM 512 MB SDRAM, and GPU 250 
MHz VideoCore IV. The specifications of the ZERO model are as follows: ARM11 1 GHz, 
RAM 512 MB SDRAM, and GPU 250 MHz video core IV. 

Figure 10. Diagram showing the process of changing IV.

6. System Configuration

Figure 11 shows the hardware that makes up the system used for experimental testing
of the algorithm. The left side of the picture shows the central server configured with one
Raspberry Pi 3 B+ board, and the right side shows clients to which sensors were connected
and configured using ten Raspberry Pi ZERO boards. The sensors consisted of speaker
sensors and human-body-sensing sensors. The server and clients could communicate
through a router. The clients encrypted the data generated by the sensors and transmitted
the ciphertext to the central server through the other clients. The Raspberry Pi board used
in the experiment was an experimental embedded board developed by the UK’s Raspberry
Pi Foundation for basic computer science education. The specifications of the 3 B+ model
used as a server are as follows: CPU ARM11 700 MHz, RAM 512 MB SDRAM, and GPU
250 MHz VideoCore IV. The specifications of the ZERO model are as follows: ARM11 1
GHz, RAM 512 MB SDRAM, and GPU 250 MHz video core IV.

Figure 12 shows the overall structure of the system. The server stores suspicious
clients and new clients in the lookup table, and each client has a lookup table that stores
the addresses of newly entered clients. When a new client is registered through the server,
the server transmits the newly entered client’s address to the connected clients through
a broadcast. Each client stores the address received from the server in the lookup table.
When an event occurs in the connected sensor, it creates the addresses of the clients to
which it will transmit the data by referring to the lookup table.
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6.1. Client Extension

When each new node (client) is created, the algorithm is not modified, but the internet
protocol (IP) address of the new client is registered with the server, and the time is synchro-
nized. When the client is added, the IP address of the newly added client is registered in the
lookup table composed of text files subordinate to the server. When the client is registered,
the server transmits information regarding the new client’s addition to other clients via
broadcasting. Synchronized clients transmit data, including the client added, during the
data transmission process. In the algorithm, the method of transmission between the
server and the client is as shown below. The proposed algorithm is not optimized if there
are fewer than 10 clients. Therefore, the transmission process is defined according to the
number of clients, as shown in Algorithm 1.
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When there are three or fewer clients, the data are sent directly to the server; when
six or fewer clients are connected, the client where an event occurs transmits the data to
three other clients, and the three clients transmit the data to the server for verification. In
addition, when there are nine or fewer clients, the client transmits the data to two sets
of three clients so that the data are verified twice, and when more than nine clients are
connected, the data are sent to three sets of three clients so that the data are verified three
times.

Algorithm 1. Transmission method according to the number of clients

Number of times passed the client Cnt
if Cnt <= 3 then

Direct transfer to server Encrypt_Message
else if Cnt <= 6 then

while i < 3 do
Encrypt_Message(.. A(n) ..)

end while
else if Cnt <= 9 then

while i < 3 do
Encrypt_Message(.. A(n, n) ..)

end while
else

while i < 3 do
Encrypt_Message(.. A(n, n, n) ..)

end while
end if

6.2. Registration of Cases of Suspicious Clients

To enhance security, a method for disregarding suspicious clients was established.
A lookup table was constructed on the server to determine whether the clients were
problematic. The server determines the number of clients from which the data arrive at
the server according to the total number of clients. The number of messages received by
the server from a client when the number of clients is greater than six is determined, and
when insufficient or incorrect data have been received, the relevant client is recorded in
the lookup table. In this way, clients that could be problematic are determined using the
accumulated data.

7. Experiment and Results

The tests were conducted to investigate the following cases.

1. Handling of data by the data processing server when the client’s secret key is different.
2. Handling of data transmitted from a wrong client.
3. Dealing with several kinds of processing, such as the substitution of incorrect values

into the data.

Figure 13 shows the experimental setup implemented for encryption and decryption.
Two out of ten Raspberry Pi zero boards were used to configure the sensors. The sensors
were a passive infrared sensor (PIR) sensor and a sound sensor. The PIR sensor was used
to transmit signals when a human body was detected, and the sound sensor was used to
send signals when a certain sound level (decibels) was reached.
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7.1. Encryption and Decryption Analysis

Several experiments were conducted to observe whether encryption and decryption
were carried out.

To proceed with the experiments, the equipment was configured as shown in Figure 13.
Here, because there were 10 clients, the client where the event occurred sent encrypted data
to three clients for data verification, which was repeated three times when the data were
transmitted to the server. The IP addresses of the 10 clients became “192.168.0.N,” where N
was the value of octet 4 for client, “5–14.” In the server address, the digit corresponding to
the value of octet 4 for client was set as “15.” A client with “192.168.0.5” was connected to
a PIR sensor, and a client with “192.168.0.6” was connected to a speaker sensor.

In the system, the cipher key was changed once per minute. When changed, the old
cipher key was valid for 1 min. That is, the created cipher key could be used for 2 min,
after which the cipher key was changed, and the old cipher key was discarded. The first
experiment checked whether encryption/decryption was carried out properly.

The experiment was conducted by generating an event in the client connected to the
PIR sensor. The client where the event occurred randomly generated IP addresses. The
generated packet including the random data A (4, 2, 8) is “5, E5, A (4, 2, 8), S15, D1”. To
enhance security, first, the random data of “A (4, 2, 8)” was encrypted by performing a left
shift operation. Then, the entire packet “5, E5, A (4, 2, 8), S15, D1” was encrypted once
more. The packet was encrypted because the data contained in the packet may be hacked
due to a hacker, and the packet should be encrypted once more to enhance security. In this
case, the keys used for the two encryptions are different. Using the same cipher key has
the disadvantages that the structure of encryption and decryption is complex, encryption
and decryption takes a long time, and energy consumption increases.

In this way, the client also generated two more packets such that the encrypted data
were “5, E5, A (9, 7, 1), S15, D1” and “5, E5, A (3, 6, 10), S15, D1”. The three encrypted data
packets were transmitted to the individual clients. The clients, corresponding to hosts 4, 9,
and 3, decrypted the packet. In the decrypted packets, the part corresponding to the client
address was decrypted again and added to the digit of “N,” which was the first digit of



Electronics 2021, 10, 1127 15 of 20

the packet, to accumulate the value of octet 4 for client. Host packets were added in the
same way such that the digits became “9, E5, A (4, 2, 8), S15, D1”, “14, E5, A (9, 7, 1), S15,
D1”, and “8, E5, A (3, 6, 10), S15, D1”, respectively, in the three clients. Finally, the received
packets were decrypted in the server, and the data were adopted.

Table 2 shows the results of encryption and decryption through experiment. From the
upper left of the table, the host addresses “192.168.0.5–14” were defined. It can be seen that
the ciphertexts were transmitted to the relevant clients and sequentially transmitted to the
server. Table 3 shows the ciphertext received at the server. The client addresses and the
received ciphertexts were checked. If there was no problem, the data received from the
clients were gathered to determine the data. Consequently, it can be seen that the data “1”
was transmitted.

Table 2. Results of encryption and decryption through experiment (value of octet 4 for client 5–14).

Client IP Ciphertext after Encryption Packet after Decryption

192.168.0.5 st1: 51 42 1a 8a 4f ed 18 c8 91 ae 42 92 81 92 c8 c9 fa d2 st1: “5, E5, A(6, 9, 8), S15, D1”
st2: 10 ef 4f 16 45 9a d7 8f ff fe 1a 71 8e 79 fb e4 e2 6a st2: “5, E5, A(13, 14, 7), S15, D1”
st3: 8c 67 ea af b1 2f 3d 78 f 1f 44 7e 75 87 32 5e 9c 29 st3: “5, E5, A(10, 12, 11), S15, D1”

192.168.0.6 51 42 1a 8a 4f ed 18 c8 91 ae 42 92 81 92 c8 c9 fa d2 “11, E5, A(6, 9, 8), S15, D1”
192.168.0.7 93 1b 7e 14 c3 84 c7 ec 25 cb f3 c6 23 c4 bd e9 83 4d “39, E5, A(13, 14 7), S15, D1”
192.168.0.8 43 ab 9a 73 dl 64 6b c8 a 87 1a 53 6e 22 b2 a8 db e1 “28, E5, A(6, 9, 8), S15, D1”
192.168.0.9 9c 69 15 3e f fa 24 5e f7 e2 3d d5 a0 e a 66 93 b3 “20, E5, A(6, 9, 8), S15, D1”
192.168.0.10 8c 67 ea af b1 2f 3d 78 f 1f 44 7e 75 87 32 5c 9c 29 “15, E5, A(10, 12, 11), S15, D1”
192.168.0.11 75 79 c6 5a 24 96 32 36 7b 3b 61 48 d3 53 16 24 41 6e “38, E5, A(10, 12, 11), S15, D1”
192.168.0.12 da 1a b0 15 d1 81 ae db 85 94 70 8c 2 27 d8 87 43 57 “27, E5, A(10, 12, 11), S15, D1”
192.168.0.13 10 ef 4f 16 45 9a d7 8f ff fe 1a 71 8e 79 fb e4 e2 6a “18, E5, A(13, 14, 7), S15, D1”
192.168.0.14 21 68 1a 79 7d 22 b6 bb 71 7c 14 d4 26 bf 3c f2 8d 4 “32, E5, A(13, 14, 7), S15, D1”

Table 3. Ciphertext received from the client.

Client IP Ciphertext after Encryption Data

192.168.0.8 ff 30 6d f 9f 8a c0 33 d2 68 67 18 e7 93 b6 12 c5 54 1
192.168.0.7 85 62 a2 d9 b1 82 f5 1e 42 f4 a9 d2 9c 99 e9 7c 95 11 1

192.168.0.12 17 b1 34 c3 43 7d 16 ab 3c 96 85 c2 cf c1 1a 29 ea 21 1

The second experiment checked whether encryption/decryption was carried out
properly when an incorrect secret key or other value was entered during the transmission
process. The system was constructed identically to the first experiment. Three tests were
conducted as part of the second experiment: changing the secret key, changing the data,
and receiving data from an irrelevant client.

7.2. Changing the Secret Key

The secret key value of the client corresponding to “192.168.0.6” was changed, and the
encryption/decryption and transmission of data were checked. During data transmission,
the client corresponding to “192.168.0.6” could not decrypt the received data and could not
transmit the data to the next client. The server waited for a packet from the client for 5 s
and processed only the previously received data if it did not receive the packet.

7.3. Changing the Data

This experiment was conducted by randomly changing the data in the packets and
transmitting them. The client corresponding to “192.168.0.5” decrypted the data received
from the client where the event occurred, or another client changed “D1” in the packet data
“5, E5, A (4, 2, 8), S15, D1” to a different value and transmitted the data to other clients
or the server. While the data were transmitted, encryption and decryption were carried
out without any problems. The server decrypted the data received from each client, and
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compared and analyzed the data. The server determined that the packet corresponding to
the randomly generated client “192.168.0.6” was wrong, discarded this data, and recorded
the client in the lookup table as a suspicious client.

7.4. Receiving Data from an Irrelevant Client

This experiment was conducted using the same method as described above. The
difference was that, although the server should have received packets such as “5, E5, A (3,
6, 10), S15, D1” from the client “192.168.0.10”, the packet was transmitted from an address
in which the host address was not 10. In this way, the event of the client connected to the
speaker sensor was generated approximately 100 times, and the condition of the server
was checked.

Table 4 shows the number of data received from clients. In Table 4, c5 is the client
to which the sensor was connected, and c14 is the client for experimentation. The client
address was changed and transmission was performed. Three packets were generated by
the client where the event occurred, and these were transmitted to other clients. One packet
contained three client addresses. In the normal condition, if an event occurs 100 times,
each client transmits and receives 100 times, resulting in a total of 900 transmissions and
receptions for all clients. However, because the original address of the client corresponding
to c14 was not used in this experiment, the total number of transmissions and receptions
for each client was 600.

Table 4. Number of data received from clients.

Number of Data Received

Client c5 c6 c7 c8 c9 c10 c11 c12 c13 c14

Number Event 79 72 90 69 63 77 66 84 0

Accordingly, it can be confirmed that the server did not process the packets corre-
sponding to client c14.

7.5. Communication Speed

Figure 14 shows a graph of three measurements of the transmission speeds from the
clients to the server. The first communications are marked with squares, the second with
triangles, and the third with circles. The delays were generally 50 ms, and a cumulative
average delay of approximately 200 ms was measured. The round-trip time (RTT) of the
wirelessly connected router network had a minimum delay of 43 ms, a maximum delay of
632 ms, and an average of 75 ms. When the averages of the encryption/decryption times
were added, the average delay was found to be approximately 80 ms.
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7.6. Analysis of the Proposed Aes-Cbc Algorithm for Time and Power Consumption

Overhead refers to the additional memory required to process an instruction. The
causes of overhead include high-priority processing first, the use of a stack frame of an
external function, and increases in signal data to ensure network communication.

To calculate the overhead, in this study, 100 events were generated in the client and the
quantity of resources (time, power, and packet) of each node were measured. This enabled
the identification of the quantities of resources generated by encryption and decryption
excluding network delays.

Table 5 shows the minimum, average, and maximum values (overhead) of the time
taken and power consumed by each node during encryption and decryption when an
event occurred in the client.

Table 5. Time and power consumption during encryption and decryption.

Time (ms) Power Consumption (mW)

Minimum Average Maximum
(Overhead) Minimum Average Maximum

(Overhead)

Encryption 1.42 1.56 2.35 0.196 0.22 0.262

Decryption 1.33 1.38 2.89 0.243 0.282 0.375

To calculate the power, an oscilloscope and ammeter were used. We measured the
voltage using the oscilloscope’s trigger function because the voltage rises instantaneously
when sending data. The current was measured with an ammeter, and power was calculated
by multiplying the measured voltage by the current flowing through the client. At this
time, the measured voltage and current were effective values. In our experimental system,
one Raspberry Pi board was implemented as a client.

When the AES-CBC algorithm proposed in this paper was used, the packet size
increased from 27 bytes on average (maximum 31 bytes) before encryption to 49 bytes on
average (maximum 57 bytes) after encryption. If a TCP/IP protocol packet was included
here, the size of the packet increased to 89 bytes (maximum 97 bytes). However, given
the maximum transmission unit (MTU) of IPv4, the increase in size of a packet due to
encryption and the TCP/IP protocol does not affect network reliability. In general, protocol
packets are referred to as network packet overhead.

8. Comparison with Conventional AES-CBC Algorithm

The time taken and the amount of power consumed for encryption and decryption
by the conventional AES-CBC algorithm [20] and those by the proposed AES-CBC were
compared. In the experiment, 100 events were generated in the client, and the average
values of packet size, time taken, and amount of power consumed for encryption and
decryption were compared.

The average size of packets encrypted in the conventional AES-CBC algorithm was
51 bytes, and 91 bytes including the protocol packet. By comparison, the average size
of packets encrypted in the proposed AES-CBC algorithm was 49 bytes, and 89 bytes
including the protocol packet.

Figure 15 shows the comparison of the times taken for encryption and decryption by
the conventional AES-CBC algorithm and by the proposed AES-CBC algorithm. Table 6
shows the mean value, minimum value, maximum value, and standard deviation of
the time spent for encryption and decryption as numerical values. In the case of the
conventional AES-CBC algorithm, the average time taken for encryption was 1.56 ms, and
the average time taken for decryption was 3.02 ms. By comparison, in the case of the
proposed AES-CBC algorithm, the average time taken for encryption time 1.2 ms and the
average time taken for decryption time 2.41 ms, a decrease of about 20–23%.
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proposed AES-CBC algorithms.

Table 6. Average time taken and its standard deviation during encryption and decryption.

Time (ms)

Encryption Decryption

Average Min Max Standard
Deviation Average Min Max Standard

Deviation

Conventional
AES-CBC 1.56 1.43 1.69 0.058 3.02 2.91 3.14 0.049

Proposed new
AES-CBC 1.2 1.08 1.35 0.057 2.41 2.3 2.52 0.047

Figure 16 shows the amount of power consumed for encryption and decryption by
the conventional AES-CBC algorithm and the proposed AES-CBC algorithm. Table 7
shows the mean value, minimum value, maximum value, and standard deviation of the
power consumed for encryption and decryption as numerical values. In the case of the
conventional AES-CBC algorithm, the average amount of power consumed for encryption
was 0.231 mW, and that for decryption was 0.311 mW. By comparison, in the case of the
proposed AES-CBC algorithm, the average amount of power consumed for encryption was
0.193 mW and that for decryption was 0.247 mW, representing a decrease of approximately
17–21%.

Table 7. Average power consumption and standard deviation during encryption and decryption.

Watt (mW)

Encryption Decryption

Average Min Max Standard
Deviation Average Min Max Standard

Deviation

Conventional
AES-CBC 0.231 0.213 0.246 0.0111 0.311 0.299 0.324 0.0106

Proposed new
AES-CBC 0.193 0.179 0.209 0.0107 0.247 0.234 0.263 0.0104
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9. Conclusions

In this paper, we simplified the conventional DAG-based blockchain structure and
proposed a new AES-CBC algorithm with enhanced security by periodically changing the
secret key and initialization vector (IV) in the conventional AES-CBC encryption algorithm.
In the proposed new algorithm, the key is renewed every minute, and when a client event
has occurred, the host addresses of the clients connected to the network are randomly set to
create three ciphertexts, and the ciphertexts are transmitted to the clients. The transmission
process depends on the number of clients, and the transmitted ciphertexts are transmitted
to the server through other clients. Regarding server and client information, new client host
addresses were created by referring to individual lookup tables, and a database for storing
problematic clients was configured in the server’s lookup table. Clients were identified
as suspicious in cases when the server did not receive messages from the clients, and in
cases in which the client address corresponding to the encrypted packet was not identical
to the address of the client that transmitted the packet. When a new client was registered,
the server provided information about the new client through a broadcast. In this way, the
proposed new algorithm was improved to apply to the IoT because its security is better
than that of conventional algorithms.

Through experiments, it was found that the new AES-CBC algorithm proposed in
this paper reduces the time taken and the amount of power consumed for encryption and
decryption by approximately 20% compared to the conventional AES-CBC algorithm.

In the future, we plan to build a database with an algorithm that can be practically
used and build a system to improve communication and security.
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