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Abstract: With the popularization of 5G communications, the scale of social networks has grown
rapidly, and the types of messages have become increasingly complex. The rapid increases in the
number of access nodes and the amount of data have put a greater burden on the transmission of
information in the networks. However, when transferring data from a large number of users, the
performance of traditional opportunistic network routing algorithms is insufficient, which often leads
to problems such as high energy consumption, network congestion, and data packet loss. The way
in which to improve this transmission environment has become a difficult task. Therefore, in order
to ensure the effective transmission of data and reduce network congestion, this paper proposed a
link prediction model based on triangular relationships in opportunistic social networks (LPMBT). In
the topological structure of the social network, the algorithm scores links based on the frequency of
use and selects the optimal relay node based on the score. It can also efficiently track the target node
and reconstruct the sub-community. The simulation experimental results showed that the algorithm
had excellent performance, effectively reduced overhead, reduced the end-to-end delay, and greatly
improved the data transfer rate in the opportunistic network.

Keywords: opportunistic social networks; data transmission; link prediction; subgraph evolution

1. Introduction

With the rapid advancement of technology, the popularization of 5G communications
in recent years has greatly promoted the development of social media, and the scale of
online social networks and the number of users have grown rapidly. According to Internet
World Statistics (IWS) data, as of 31 December 2020, there have been more than 5 billion
Internet users worldwide, an increase of 1300% in the past 20 years [1]. Moreover, according
to the 47th “Statistical Report on China’s Internet Development Status” released by the
China Internet Network Information Center (CNNIC) on 3 February 2021, as of December
2020, the number of Chinese Internet users has reached 989 million [2]. The Global Mobile
Suppliers Association (GSA) also released the latest statistics on 5G networks. As of
April 2021, 162 commercial 5G networks have been launched worldwide [3]. As a social
network containing many nodes and intricate relationships between nodes, there is an
obvious community structure within it. This increase in scale has led to an increase in the
complexity of the community structure in social networks. Due to the rise in the Internet
of Things, various mobile devices that people carry with them, such as mobile phones,
notebooks, and smartwatches [4,5], can be regarded as social nodes in social networks [6],
increasing the complexity of the community. As a result, the cost of selecting the target
transmission node increases. Therefore, research on data transmission in complex social
networks has great theoretical significance and application value.

In recent years, an opportunistic network based on the Delay Tolerant network (DTN)
and Mobile Ad-Hoc network (MANET) has provided a better solution to the complex social
networks’ data transmission problem. As an intermittently connected network, the main
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difference between opportunistic networks and traditional multi-hop wireless networks,
such as DTN and Ad Hoc, is that they do not have an end-to-end path [7], instead realizing
the communication between nodes via the routing mode of “storage-carry-forward” [8]. In
previous opportunistic social networks, information transmission mainly relied on one or
two source nodes, but under the 5G communication standard, the data are large, and the
transmission speed is fast [9,10], resulting in an excessive overhead and insufficient cache
for these nodes. There are not enough resources to maintain the calculation, selection, and
tracking of the target transmission node [11–14].

Current research on opportunistic networks has mainly focused on the improvement
of routing algorithms. Traditional opportunistic network routing algorithms mostly only
consider the topological relationship of nodes (link prediction based on existing nodes and
their connection attributes) but do not consider the social relationship between people in
real social networks [7,15]. Therefore, it is challenging to effectively use the traditional
socialist network in real social networks. Even some of the current routing algorithms
only quantify part of the characteristic social attributes, which is one-sided. In addition,
because there is no stable connection link between the opportunistic network nodes, it is
easy to cause delays by relying on meeting to achieve data forwarding. In this case, the
information-carrying node will cause a high cost due to long-term data storage, making it
difficult for nodes with limited resources to update information on time, which ultimately
degrades the network’s overall performance [16–19].

Therefore, this paper proposed a link prediction model based on the triangle rela-
tionship (LPMBT) in opportunistic social networks to solve the above problems. This
algorithm scores links based on the frequency of nodes using links in the social networks’
topological structure. An optimal relay node is selected to efficiently track the target node
and reconstruct the sub-community based on the score. The optimal relay node selection
can reduce redundant data in social networks, reduce unnecessary resource overhead, and
effectively improve the data transmission efficiency.

The main contributions of this article are as follows:

1. An effective link prediction model was proposed for routing and forwarding. The
link is scored based on the frequency, and the optimal relay node is selected according
to the score. This algorithm avoids the unnecessary data transmission, reduces the
data transmission overhead in opportunistic networks, and improves the tracking
target nodes’ efficiency and accuracy.

2. In the link prediction algorithm, the graph structure is introduced, and the sub-
community is reconstructed according to the special sub-graph. According to the new
link obtained from the prediction of the subgraph’s evolution, the subcommunity is
selected for the data transmission.

3. According to the simulation experimental results, compared with the three routing
algorithms of the Spray and Wait algorithm, EIMCT, and ICMT, the model proposed
in this paper shows good performance in improving the data transmission efficiency
and reducing the overhead. It also has stable performance in different environments.

This paper discusses the problem of target node tracking and sub-community recon-
struction in opportunistic social networks. The second section presents the related work,
the third section presents the model design, the fourth section presents the simulation
experiments, and the fifth section presents the conclusions and prospects.

2. Related Work

At present, scholars around the world have conducted many studies on opportunistic
networks, mainly on the design of routing algorithms. After years of improvement and
expansion, various routing algorithms can be flexibly used in various fields. Some routing
algorithms and link prediction algorithms used in opportunistic networks are as follows.

Vahdat et al. [20] proposed an Epidemic routing algorithm that uses node encounters
to transmit information, guaranteeing a 100% data transfer between nodes when they
meet. However, this flood-based routing mechanism has too much overhead in terms of
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bandwidth and cache space. During actual use, limited network resources also bear a large
amount of redundant information, which is likely to cause congestion and reduce network
performance. After improvement, Rango et al. [21] proposed an n-Epidemic routing
algorithm, which provides a method to manage n parameters dynamically. Considering
the degree of energy dissipation of node movement can increase or decrease the amount of
the network’s data dissemination.

Lindgren et al. [22] proposed a routing algorithm called ProPHET. Compared with the
Epidemic routing algorithm, ProPHET proposed a new index: delivery probability. Nodes
deliver their own predictive capabilities when they meet, to a certain extent, to avoid the
extra overhead caused by blindly transmitting data in the Epidemic routing algorithm,
but it does not consider the duration of node encounters. Duan et al. [23] proposed an
improved PRoPHET algorithm based on connection time. The algorithm considers the
duration of the encounter and uses it as an influencing factor of the predicted value of
delivery to improve the prediction accuracy.

Wang et al. [24] innovatively proposed a dynamic Spray and Wait routing algorithm
based on the improved Epidemic routing algorithm. This algorithm has two stages: (1)
Spraying stage: the source node produces several copies and sprays them on the social
network. (2) Waiting stage: waiting for the copy to be transmitted to the target node.
This algorithm’s message transmission efficiency is high, which improves some of the
shortcomings of the Epidemic algorithm based on the flooding mechanism. However, the
large number of copies sprayed on the network will still cause redundancy. Huang et al. [25]
proposed a Spray and Wait algorithm based on social network location prediction. The
algorithm makes full use of node movement information to predict the possible future
locations of relay nodes and forwards the copy to a relay closer to the target node. This
algorithm speeds up the message transmission and effectively reduces the message delay
in the waiting phase.

Yu et al. [26] proposed a node social features relationship evaluation algorithm (NS-
FRE), which builds a fuzzy similarity matrix based on the characteristics of the node
characteristics and social attributes, and selects the forwarding node based on the weight.
It can effectively improve the transmission success rate and reduce the transmission delay.
Burgess et al. [27] proposed an effective MaxProp routing algorithm, which schedules
the data packets to be transmitted and the data packets to be discarded according to the
priority. This algorithm effectively reduces the overhead and improves the transmission
efficiency. Abdali and Sammou [28] proposed the combination of the MaxProp routing
protocol with the custody transfer (custody transfer) [29,30] model, using nodes as the
common carrier of information between networks. The algorithm combines control routing
technology and technical routing prediction, and it also performs better.

Lichtenwalter et al. [31] proposed a link prediction algorithm based on the substructure
of social network graphs, also known as the vertex collocation profile (VCP), which retains
as much information about the source and target vertices as possible. The algorithm can
also encode various additional information, so it has a high practicability and versatility.
Gong et al. [32] proposed a link prediction method based on a restricted Boltzmann machine,
which improves the accuracy of link prediction through a feature conversion method that
simplified the original features. Fadaee et al. [33] proposed a supervised and structured
link prediction algorithm, which predicts the new link between two consecutive social
network snapshots by finding the triple evolution model within a specific time interval.

Based on the above research and problems, this paper proposed a link prediction
model based on the triangle relationship in the opportunity social network (LPMBT), which
can be used to solve problems such as low data transmission efficiency and high cost in
complex social networks. Theoretically, it can improve the delivery ratio in the opportunity
social network, and it also can reduce the delay and overhead.
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3. System Model
3.1. Link Prediction Model Design
3.1.1. Modeling Steps

In this paper, we designed a link prediction algorithm for routing and forwarding.
The algorithm predicts links based on the mobile nodes’ movement behavior (usually
people carrying mobile devices) in the community. In an opportunistic social network,
nodes will meet other nodes and forward information during their movement. In this
case, the weight of the path that the node moves from the source node to the information
interaction node increases. The increase in weight is proportional to the amount and quality
of the data obtained. The weight shows the coordination mechanism between nodes in
the social process, enabling other nodes to find the optimal path to obtain information
faster, and to track the transmission target node as quickly as possible to complete the
community structure reconfiguration. This article used this algorithm to model the research
problem and design a link prediction model based on triangulation (LPMBT), which mainly
contained the following three steps:

Step 1: Set the probability, Pk
ij, of a person/mobile device k from node i to node j in the

social network graph, as shown in Equation (1).

Pk
ij =

wα
ijc

β
ij

∑
n∈Nk

i

(
wα

incβ
in

) (1)

where wij is the weight of the corresponding path, cij is the cost of moving from node i to
node j, Ni is the set of critical points of node i, and the coefficients α and β are the basic
parameters of the model. This model assumes that all edges in the social network graph
have initial weights.

Step 2: The optimal solution to the problem is that the target node must obtain
information. The link where people obtain information will increase the weight, as shown
in Equations (2) and (3).

∆wk
ij =

{ 1
ck , (i, j)εLk

0, others
(2)

wij = wij +
t

∑
k=1

∆wk
ij (3)

where Lk is the path traversed by the person/mobile device k from the starting point
to the information source, the length is ck, and t is the total number of existing people,
which indicates the search for the shortest path from the starting point to the information
source. Assuming that each edge’s weight will gradually decrease, and the more the path
is traversed, the greater the weight.

Step 3: Analyze the reduction mechanism of path weights, as shown in Equation (4).

wij = (1− ρ)wij (4)

where p is the basic parameter.
This summarizes the main steps of LPMBT model modeling. Next, we introduce the

model’s overall design and three core algorithms.

3.1.2. Overall Design of LPMBT Model

The LPMBT model is based on the link prediction of the subgraph’s evolution. First,
we find the special subgraph (triangle relationship) in the opportunistic social network
graph. Then, in the subgraph, the new link is scored based on the frequency, and the link
with the highest score is the predicted one—the new link. When routing and forwarding,
the new link with the highest score is always selected.
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Nodes can represent each entity in the opportunistic social network, and links rep-
resent the connections between nodes. When we predict the link between the source
node and the target node in the community, we must also pay attention to the correlation
between the nodes due to their social attributes, such as the common interests, goals, and
interests between people. In an opportunistic network, the possible correlation between
a particular node and a specific community is shown in Figure 1. Among them, to better
predict the new links in the opportunity social network, more complex communities should
be considered, and there are at least two nodes in each community. With the increase in the
number of nodes within the community, the possibility that the source node establishes a
new link with it also increases.

Figure 1. The possible interactions between nodes and communities in an opportunistic social network.

In Figure 1, the number of nodes in the target social network is used to divide the
hierarchy. The snapshot at time t indicates the network structure at a specific time t. The
link prediction algorithm predicts the new links generated in the following snapshot based
on this structure. Moreover, when predicting the possible new link between two nodes, at
least one link exists between them. In Figure 1, level 1 shows the simplest relationship. That
is, only one link is generated in the target community. It can be seen from the snapshots
at time t and t + 1 that no link is retained as a prediction for the following snapshot. In
Level 2, the target community contains two nodes. The snapshot at time t shows the
possible links between the left and right parts, and the snapshot at time t + 1 shows the
links between the left and right parts of the substructure predicted by the snapshot at
time t. The four situations in level 3 indicate that there are four possible links because
the ownership is equal, so the homogeneous network structure that may be generated is
not considered. According to the number of nodes in the network, the network motifs
are usually divided into low-order motifs and high-order motifs. Generally speaking,
network motifs composed of three or four nodes are usually called low-order motifs, and
a network phantom with five or more nodes is called high-order motifs. This model is
mainly based on the low-order sub-network motifs structure of level 4 to introduce link
prediction algorithms. On the one hand, because the calculation of the high-order motif
is more complicated, counting in large networks is often difficult and time-consuming to
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detect. On the other hand, due to the wide variety of high-level motifs structures, it is
difficult to distinguish which ones are of practical significance [34]. Therefore, in order
to achieve a balance between the time complexity and the practicality of the algorithm,
this article does not consider the more complex opportunistic network structure. Here,
we only show the complex interactions between two sub-community entities in a certain
opportunistic network as an example, as shown in Figure 2.

Figure 2. A more complex interaction hierarchy between two entities in an opportunistic social
network. (a) Two entities that both contain two nodes; (b) Two entities containing two nodes
and three nodes; (c) Two entities that each contain three nodes; (d) Two entities that each contain
three nodes.

For level 4 in Figure 1, it can be seen that it was initially a node and a triangular rela-
tionship community. At time t, two subgraphs (i) and (ii) are obtained, and the structural
attributes of (i) with one less possible link are less than those of (ii). Through Huang’s
experiment [35], it can be confirmed that the more structural attributes it has, the more
likely it is to predict the correct link, so (ii) has a bigger value.

Algorithm 1 obtains the sub-communities (i) and (ii) based on the snapshot of the
opportunity social network at time t; it then predicts the new links that may generate at
time t + 1; next, it finds the triangular relationship-like level 4 in the new opportunity social
network, thereby reconstructing sub-communities (i) and (ii).

3.1.3. Positioning of the Triangle Relationship

In the process of finding the triangle relationship, we have the following conventions
for each element in the modeling:

1. In the beginning, all people are scattered at the nodes in the opportunity social
network.

2. Unlike algorithms in traditional opportunistic networks, people here prefer to choose
paths with lower weights, that is, to explore more paths that have never been routed
before in opportunistic social networks. Here, the probability of a person moving
from node i to node j is shown in Equation (5).

Pk
ij =

(
1

wij

)α

∑
n∈Nk

i

(
1

wij

)α (5)

where wij is the weight of the corresponding path, and the coefficient α is the basic
parameter of the model, which is set to 1. Comparing formula (1), we can see that β =
0, and it is inversely proportional to the weight value.



Electronics 2021, 10, 1128 7 of 18

Algorithm 1. LPMBT, Link prediction model based on triangulation

Input: Triangles (G)
Output: Predict path: Result← Result + Link
Require: G = (V, E)
1: Load(G)
2: Triangles = Find Triangles (G) // See Algorithm 2
3: Result = null
4: n = size (Triangles)
5: i = 1
6: While i ≤ n do
7: NewLinks = Predict (Triangles) [i]
8: For All Links ∈ NewLinks do
9: If Results contains Link Then
10: Result [Link]++
11: Else
12: Result = Result + Link
13: End If
14: End For
15: i = i + 1
16: End While
17: Result = Sort Descending Result
18: Return result
19: End

3. Information is expressed as a triangular relationship, so people must find the trian-
gular relationship if they want to obtain information. As the triangle relationship is
composed of three nodes, in order to store node information, we define people as
having memory modules, as shown in Figure 3, to store the passed node information
(0, 1, and 2 represent the serial numbers of the three modules, and the arrow repre-
sents the order of coverage). If the current memory module is filled, it will be covered
one by one according to the order of the arrow’s direction on the way. In addition,
each time we obtain three new nodes, the correctness of each node is verified. If the
data to be written already exist in one of the memory modules, it is considered that a
triangular relationship has been found.

4. The initial weight a of all paths is 1. Each time a new triangle relationship is found,
the weight of each path is increased by 1. If the current path belongs to an existing
triangle relationship, the edge’s weight is increased by 1.

5. The weight of each path will not fade away over time.
6. People have the attribute of death, so they will not detect the visited nodes in the

opportunistic social network. People will die in the following situations: they have
visited all paths; they are always are in between two nodes or edge nodes.

It can be seen from Algorithm 2 that in an opportunistic social network with n nodes,
the time complexity of finding the triangle relationship is O(n3), and the space complexity
is O(n2). According to the research of Gong et al. [32], the lowest time complexity for
finding the triangle relationship is O(n 2.376), and the space complexity is O(n2). For sparse
graphs and low-weight graphs, the time and space complexities of current commonly
used algorithms are not high, but for large nonsparse graphs, the required overhead is
relatively large.
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Algorithm 2. Find Triangles

Input: Unit Weignt (E)
Output: Triange (G)
Require: G = (V, E)
1: Unit Weignt (E)
2: People = Init People (V)
3: (Triangles) = null
4: PeopleNum = Numberof (People)
5: iteration = 1
6: While 0 < iteration ≤Max do
7: For All People ∈ People do
8: Next = ChooseNextNode() // Base on formula (5)
9: If Privious Node in Memory() == next Then
10: Triangles = Save Triangle()
11: Increase Weignt of (Triangles)
12: Triangles = Triangles + Triangle
13: Else
14: Put into Memory (Next)
15: End If
16: If Health (People) == False Then
17: Delete (People)
18: End If
19: End For
20: PeopleNum = Numberof (People)
21: Iteration ++
22: End While
23: Return Triangles
24: End

Figure 3. The structure of human memory.

3.1.4. Link Prediction Based on Triangle Relationship

Algorithm 3 involves performing link prediction based on the triangle relationship
obtained in Algorithm 2. The first step is to divide each neighbor of the triangle relationship
into subgraph (i) or subgraph (ii). It can be seen previously that the value of subgraph
(ii) is greater than that of subgraph (i), so for nonsparse opportunistic social networks, we
only need to study subgraph (ii). When performing link prediction of potential links in
subgraphs (i) or (ii), the subgraphs are scored, and the scores are based on two aspects: (1)
weight; (2) subgraph type. The greater the weight or the subgraph type is, the higher the
score. As the sub-pictures may overlap, points may also be added for repeated predictions.
For example, in the situation shown in Figure 4, the blue link where the two subgraphs
overlap is predicted twice, so its score is high.
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Algorithm 3. Predict

1: Neighbors = Neighbors(Triangle)
2: NewLinks = Null
3: For All Neighbor ∈ Neighbors do
4: If Neighbor ∈ SubGraph (b) Then
5: Link = Get Non-Existed Link(b)
6: Calculate Score(Link)
7: NewLinks = NewLinks + Link
8: Else if Neighbor ∈ SubGraph(a) Then
9: Links = Get Non-Existed Link(a)
10: Calculate Score (Link)
11: NewLinks = NewLinks + Link
12: End If
13: End For
14: Return NewLinks
15: End

Figure 4. Overlapping links between two subgraphs (ii).

3.2. Community Model

The nodes in the opportunistic social network communicate with each other in a
“storage-carry-forward” manner. Therefore, an opportunistic social network has random-
ness and variability due to the movement of nodes. To analyze the relationship between
nodes, we must first understand the essential criteria that a community and its nodes must
meet. We explain the community’s randomness and variability through modularization,
thereby reconstructing the sub-community and tracking the target node. All the nodes
comply with the following assertions:

The degree of modularity of the community at a certain moment is:

Qt =
fx

F
−
(

λs

2F

)2
=

fx

F
− λ2

s
4F2 (6)

where Qt represents the community’s modularization degree at time t,
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x shows the total
weights of all edges in the community x, F represents the total weight with edges, and λs
represents the total degree of node S in the community.

Theorem 1. Increasing the weight of an edge in the opportunity social network can increase the
correlation between the community to which the edge belongs and the opportunity social network.
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Proof of Theorem 1. From time t to time t + 1, the degree of modularity of the community
changes from Qt to:

Qt+1 =
fx + ∆ f
F + ∆ f

− (λs + 2∆ f )2

4(F + ∆ f )2 (7)

Then,

Qt+1 −Qt =
fx + ∆ f
F + ∆ f −

(λs + 2∆ f )2

4(F + ∆ f )2 −
(

fx
F −

λs
2

4F2

)
= 4F3∆ f − 4F2λs∆ f − 4F2 fx∆ f + 2F2λs∆ f

4F2(F + ∆ f )2 − 4Fλs∆ f 2−(λs∆ f )2

2F2(F + ∆ f )2

> 4F3∆ f − 6F2λs∆ f + 2F2λs∆ f − 2F2λs∆ f + (λs∆ f )2

4F2(F + ∆ f )2

= ∆ f 4F3∆ f − 6F2λs + 2F2λs − 2Fλs∆ f + λ2
s ∆ f

4F2(F + ∆ f )2

= ∆ f (
2F2 − 2Fλs − λs∆ f )×(2F − λs)

4F2(F + ∆ f )2

(8)

As ∆
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× (2F − λs) > 0.
In other words, to prove: {
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(9)

2F is the sum degree of nodes in the network; thus, there will be no community in
the network with a degree greater than 2F. Therefore, in summary, it can be proved that
adding the weight of an edge in the opportunistic social network can increase the degree of
relevance between the community to which the edge belongs and the opportunistic social
network. �

Theorem 2. When the weight of the edge connecting the two sub-communities satisfies
λiλj
2F <

fij < ∆ f +
λiλj+λs∆ f+∆ f 2

2(F+∆ f ) , the community is divided.

Proof of Theorem 2. Assuming that community X is split into two sub-communities xi
and xj, the total weight in the community is reduced, and there is

Fi + Fj < F
hi
F −

λ2
i

4F2 +
hj
F −

λ2
j

4F2 <
λi+λj+ fij

F − (λi+λj)
2

4F2

fij >
λiλj
2F

(10)

When the total weight decreases, the formula can be expressed as:

F∗i + F∗j > F∗ (11)

fij < ∆ f +
λiλj + λs∆ f + ∆ f 2

2(F + ∆ f )
(12)
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Thus, the sub-communities xi and xj in the community satisfy
λiλj
2F < fij < ∆ f +

λiλj+λs∆ f+∆ f 2

2(F+∆ f ) , and the community is separated. �

Theorem 3. Two nodes ni and nj in the opportunistic network are connected by edge eij, and edge
eij is the only edge of node ni. Then, if the weight of edge eij changes, ni will not be separated from
the community.

Proof of Theorem 3. When the community meets the following three conditions, it will
be divided: 

Fi + Fj < F
hi
F −

λ2
i

4F2 +
hj
F −

λ2
j

4F2 <
λi+λj+ fij

F − (λi+λj)
2

4F2

fij >
λiλj
2F

(13)

When the weight changes, the weight in the community is: F∗i + F∗j > F∗

fij < ∆ f +
λiλj+λs∆ f+∆ f 2

2(F+∆ f )

(14)

By formulas (5) and (6), we can obtain:

λiλj

2F
< fij <

λi
(
λj + ∆ f

)
2(F + ∆ f )

=
λiλj + λi∆ f
2(F + ∆ f )

(15)

As
λiλj + λi∆ f
2(F + ∆ f )

−
λiλj

F
=

λi∆ f
(

F− λj
)

F(F + ∆ f )
< 0(∆ f < 0) (16)

therefore,
λiλj + λi∆ f
2(F + ∆ f )

<
λiλj

F
(17)

Therefore,
λiλj
2F < fij <

λi(λj+∆ f )
2(F+∆ f ) is false. �

It can be proved that, in the opportunistic social network, if a node is connected
with another node by a unique edge, when this edge’s weight decreases, the node is not
separated from the community.

In summary, all nodes in the opportunistic network satisfy the above assertions.

4. Simulation

This article used the ONE (opportunistic network environment) tool for simulation
testing to analyze and evaluate the performance of LPMBT. To meet the needs of data, we
chose an open street map to edit the city map. There are different parks, streets, and shops
on the map, which can show the real environment. As shown in Figure 5, the simulation
used a real map of Helsinki.
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Figure 5. Simulation map in Helsinki.

We set the following simulation environment parameters. The signal transmission
power was set to 1200 W, the node’s movement model was SPMBM (Shortest Path Map-
Based Movement) model, and each data packet transmission consumed 1 J of energy. Other
specific experimental parameters are shown in Table 1:

Table 1. Simulation parameters.

Parameter Value

Simulation area
Simulation time

4500 × 3400 m2

1~6 h
Size of data packet 200 KB~1 M
Transmission speed 256 Kbps

Maximum transmission distance 10 m
Transmission interval 25–35 s

Node movement speed 0.5~2 m/s
Transmission mode Broadcast
Node initial energy 100 J

At the same time, in order to gain a clearer understanding of the results, we chose the
Spray and Wait algorithm [24], EIMCT (Effective Information Multi-Controlling node Trans-
mission algorithm) [8], and ICMT (information cache management and data transmission
algorithm) [36]. Comparison and analysis of various algorithms and LPMBT:

1. Spray and Wait algorithm [24]: This algorithm first sprays a certain amount of copies
into the network and then waits for a node that obtains a copy to achieve its goal.
It overcomes the shortcomings of the traditional Epidemic algorithm based on the
flooding mechanism.

2. EIMCT [8]: The algorithm selects the time to forward the message based on the defined
stop time h. When t < h, the node forwards the message with the most significant
probability, and when t > h, the node stops sending the message. It effectively
reduces the time complexity and overhead and improves network communication
performance to a certain extent.
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3. ICMT [36]: This algorithm evaluates the transmission probability by identifying
neighbor nodes, thereby adjusting the cache. Besides, the cooperation between nodes
shares the node’s cache task for effective data transmission, which can avoid accidental
deletion of the cache.

In the simulation experiment, we used four parameters: data transfer rate, energy
consumption, average end-to-end delay, and average overhead, to measure the algorithm’s
performance. First, we used the cache as a variable to explore four evaluation indicators,
respectively. According to the simulation test results, the relationship between the cache
and the four evaluation indicators is shown in Figures 6–9.

Figure 6. Delivery ratio.

Figure 7. Energy consumption.

Figure 6 shows the relationship between delivery ratio and cache. The data in the
table show that the LPMBT delivery ratio was highest, up to 0.91. As the LPMBT selects
the optimal relay node according to the scoring result of link prediction and accurately
transmits it to the target node, the utilization rate of cache resources is high, so the delivery
ratio is highest. The second highest was EIMCT because EIMCT considers the cooperative
relationship between nodes during the information transmission process, and the delivery
rate was relatively good. However, when the cache space was ample, the EIMCT cache
utilization rate decreased and the delivery ratio decreased slightly. ICMT achieved a better
delivery ratio by improving the information transmission conditions, with an average
value exceeding 0.55. The Spray and Wait algorithm’s delivery ratio was lowest because
the flooding mechanism causes a large number of copies in the network. This redundant
information occupies most of the cache space. As a result, there is increasingly more
information in the waiting queue, which leads to network congestion and the delivery
ratio. It should be kept at a low level.
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Figure 8. End-to-end delay on average.

Figure 9. Overhead on average.

The correlation between transmission energy consumption and buffering is shown
in Figure 7. From the data in the figure, it can be seen that Spray and Wait algorithm
consumed the most energy because the Spray and Wait algorithm copies a large number of
copies and sprays them to all neighbors. Most of the energy consumption is used to copy
files instead of transmission, so its energy consumption is largest. In contrast, selective
information transmission helps ICMT reduce energy consumption. EIMCT screens the
relay nodes for data transmission by calculating the probability of nodes meeting in
the opportunistic social network, which improves the delivery ratio and reduces energy
consumption. LPMBT avoids most of the low-scoring relay nodes, so it reduces a lot of
additional energy consumption. When the buffer space was greater than 35 MB, the energy
consumption was only 36 J. In terms of energy consumption, LPMBT was the best choice.

In Figure 8, we can see the relationship between the average end-to-end delay and the
cache. The lowest average delay was LPMBT and EIMCT. LPMBT was stable between 50
and 60, which was because LPMBT had a higher delivery ratio and could effectively use
the cache space. Therefore, the additional cache was not necessary for LPMBT and EIMCT.
Their delay was not significantly affected by the cache space. EIMCT was stable between 50
and 100 because its replication mechanism caused data packets to be lost during transmis-
sion, so the average delay was slightly lower. The ICMT algorithm effectively reduced the
average delay because it controlled the time interval of information transmission. Because
of the flooding mechanism, a large amount of information was congested in the waiting
queue, resulting in a greatly increased average delay, so Spray and Wait was the algorithm
with the highest average end-to-end delay.



Electronics 2021, 10, 1128 15 of 18

In Figure 9, we can see the relationship between average overhead and cache. The
data in the figure show that the average overhead of the four algorithms decreased with
the cache. A large amount of redundant data in the Spray and Wait algorithm dramatically
increased the cost of information transmission, so in contrast, the cost of Spray and Wait
algorithm was largest. ICMT’s average overhead dropped from 175 to 51, slightly better
than that of Spray and Wait. The average overhead of LPMBT and EIMSP was smallest
and not much different. As LPMBT selects the relay node with the best score every time, it
managed the node cache more effectively, dramatically reducing redundant information
and the average overhead.

In addition to the simulation test through the above four parameters, we considered
that there might be a variety of information transmission methods in the real environment,
so we chose three mobile models to determine the performance of LPMBT in different
environments: SPMBM (Shortest Path Map-Based Movement), random way point (RWP),
and random walk (RM) models [37].

Figure 10 shows the delivery ratio of the LPMBT algorithm in the three mobile models.
From the data in the figure, it can be seen that the SPMBM model had the highest delivery
ratio, which reached 0.66 in three hours. Under the RWP model, the delivery ratio reached
a peak of 0.632 in four hours. The delivery ratio of the RM model reached a peak of 0.582
in three hours. Overall, the performance and delivery ratios of the LPMBT algorithm in the
SPMBM model were better than those of the RWP model and the RM model.

Figure 10. Delivery ratio in three mobile models.

In Figure 11, we can see the energy consumption of the LPMBT algorithm in the three
mobile models. The energy consumption under the three mobile models was not much
different, and all increased over time. It can be seen that the LPMBT algorithm consumed
less energy and had a stable information transmission performance.

Figure 12 shows the average delay of the LPMBT algorithm in the three mobile models.
According to the data in the figure, the average delay of the three models was mainly
concentrated between 185 and 215. The highest delay was mainly the RWP model. The
results show that the LPMBT algorithm could effectively transmit information in different
environments. In Figure 13, we can see the average overhead of the LPMBT algorithm in
the three mobile models. The figure shows that the costs of the three models were not much
different and were concentrated in the 108–118 range. Therefore, different environments
had little effect on the overhead of the LPMBT algorithm.
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Figure 11. Energy consumption in three mobile models.

Figure 12. End-to-end delay on average in three mobile models.

Figure 13. Overhead on average in three mobile models.

5. Conclusions

This paper proposed a link prediction model based on triangular relations (LPMBT)
in opportunistic social networks. The algorithm analyzes the topological structure in social
networks, scores links based on the frequency, and obtains the optimal relay node based on
the score. When a node is forwarding information, it always selects the optimal relay node
for data transmission. Compared with the EIMCT, ICMT, and Spray and Wait algorithms,
the simulation results showed that the LPMBT algorithm had an excellent performance,



Electronics 2021, 10, 1128 17 of 18

effectively reduced the end-to-end delay and overhead, and dramatically improved the
data transfer rate of opportunistic networks. It also maintained a stable performance in
different environments.

However, the current model only considered the network structure in Figure 1, which
only contained two sub-graph structures, which resulted in the model’s low versatility.
In future work, we will consider using more complex subgraph structures for algorithm
improvements and conducting experimental tests in complex real-world environments to
explore the impact of large-scale and complex environments on information transmission
and how to optimize complex network structures. In addition, in order to improve the
experience of 5G network users, we will also consider the impact of 5G energy consumption
on information transmission and study how to route and forward with lower energy
consumption efficiently.
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