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Abstract: The advancement in battery manufacturing has played a significant role in the use of
batteries as a cost-effective energy storage system. This paper proposes an optimal charging and
discharging strategy for the battery energy storage system deployed for economic dispatch and sup-
ply/demand balancing services in the presence of intermittent renewables such as solar photovoltaic
systems. A decision-making strategy for battery charge/discharge operations in a discrete-time
rolling horizon framework is developed as a finite-input set non-linear model predictive control
instances and a dynamic programming procedure is proposed for its real-time implementation.
The proposed scheme is tested on controllable loads and a photovoltaic generation scenario in the
premises of a sports centre, as a part of a pilot demonstration of the inteGRIDy EU-funded project.
The test results confirm that the implemented stacking of the battery and optimal decision-making
algorithm can enhance net saving in the electricity bill of the sports centre, and lead to corresponding
CO2 reductions.

Keywords: battery management systems; smart energy solution; PV generation; non-linear optimization;
optimal charging and discharging; dynamic programming

1. Introduction
1.1. Motivation

Decarbonisation, digitalisation and decentralisation are transforming energy systems
across all continents and supporting the sustainability drive in both industry and society.
Smart grids are a predominant feature in this respect and are essentially electrical grids
that include a variety of interoperable communication and control devices to optimally (or
near-optimally) facilitate the production and distribution of electricity. Smart grids allow
for better integration and management of volatile renewable energy sources, flexible trans-
mission resources, energy storage devices, electric vehicles, microgrids and controllable
loads; they are key enablers in the decarbonisation of both industry and society [1]. This
article is concerned with the use of localised digital control and optimization techniques
applied to distributed energy storage devices, within a wider smart grid context.

Battery energy storage systems (BESS) play a significant role in improving grid sta-
bility, and when employed locally can help increase the efficiency and effectiveness of
potentially volatile distributed generation units (DGs) such as solar panels and wind tur-
bines through provision of local buffering services [2]. BESS have gained continuous
research attention due to these features and given substantial advancement in battery
technologies and increasing decentralisation of grid operations, localised controls are re-
ceiving much attention [2,3]. This has resulted in the introduction of various battery control
and management algorithms, and led to the development of batteries with an increased
capacity-to-size ratio featuring faster charging and discharging rates, longer life spans
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and relatively lower prices [2,4,5]. The main parts of the BESS are the charge/discharge
decision-making algorithms which are required to ensure optimum use of the battery and
maximise the utilisation of the DGs over a given period, and the monitoring and state esti-
mation techniques which are deployed for battery situational awareness and degradation
analysis [1]. Although there have been many developments in research in these areas, to
date there has been, with some exceptions, a noticeable lack of technology transfer beyond
laboratory prototypes and into real-world implementations of more advanced sensing,
estimation, and charge controls for BESS [2].

As argued above, smart microgrid energy systems based on renewables are the key
players in meeting the rising demand for electricity while maintaining greenhouse gases
(GHG) emissions at acceptable levels. Due to technological advancement and declining
prices solar photovoltaic (PV) panels, in particular, have become increasingly popular
in climates with suitable insolation levels. This is evidenced in the total PV capacity
installed globally, which increased from 40 to 219 GW between 2010 and 2015 and about
7% of the total global energy generation in 2020 [6]. Power grids, on the other hand, face
challenges in integrating electrical power generated by renewable energy resources (RES)
such as solar panels and wind turbines. Among other complexities, the availability of
RES power depends on natural resources that are uncontrollable by humans, which brings
more complexity to the management of the power generation systems. Although BESS can
provide buffering solutions in these situations, to achieve maximum benefits then efficient
monitoring and degradation-aware charge dispatch algorithms are required for operation
in real-world environments with fluctuations in energy prices, local supply availability,
and local demands.

1.2. Related Work

The control of distributed energy storage devices in smart grid applications involves
the coordinated management of many smaller energy storages, typically embedded within
microgrids or sub-networks in a wider, grid-of-sub-microgrids situation [2]. There has been
much recent interest related to controlling aspects of supporting power-sharing balance and
sustainability, increasing system resilience and reliability, and balancing distributed state
of charge; please refer to Al-Saadi et al. for a recent comprehensive review of this area [2].
In general, control of energy storage mechanisms can be sub-divided into decentralized,
centralized, multiagent, and intelligent/optimal control strategies [2]. A potentially large
range of services can also be provided by these storages, each having differing control
complications and complexity of proposed solutions.

The typical standard hierarchical control architecture of a decentralised, system-of-
systems (grid-of-microgrids) model network with storage can be classified into three typical
levels, which relate to hierarchical and specific regulatory roles in an AC-connected, DC-
bus based-microgrid [2]. These control levels provide specific services, and are broadly
explained as follows:

(1) Primary Control: The objective is to regulate the load sharing of distributed energy
resources and storage via the local control of output voltage and frequency to attain
balanced and autonomous operation of these distributed systems [7,8]. The prototypi-
cal strategy is droop control, which dispatches local storage based upon local active
and reactive power estimates and frequency voltage/measurements and requires no
time-critical communication to a centralised entity [9].

(2) Secondary Control: Secondary control has the responsibility of correcting system-wide
voltage and frequency offsets that are achieved by the primary control. Therefore,
and an entity to play the role of a system-wide or local system state observer to
provide trim commands for the primary control is required. Reactive power-sharing,
accurate frequency regulation and PQ compensation are prototypical services pro-
vided, using trim commands for frequency and voltage [10,11]. Typically, time-critical
communication to a centralised entity playing the role of system-wide observer is
required [9]. In a decentralised (or partially decentralised) solution, communications
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to a central entity are not required (or kept to a minimum) at the expense of added
local complexity.

(3) Tertiary Control: This is the highest control level of the control hierarchy. Tertiary
Control is typically liable for managing gross active and reactive power entering or
leaving the local microgrid, to solve system-wide optimal power flow problems and
constraints (OPF) [12]. Again, an entity to play the role of a system-wide state observer
is required to solve the OPF and provide local power flow commands. Again time-
critical communication to a centralised entity playing the role of system-wide observer
is required [9]. In a decentralised (or partially decentralised) solution, communications
to a central entity are not required (or kept to a minimum) at the expense of added
local complexity.

In the context of the current work, the focus is upon partially decentralised control
of BESS to support system resilience and integration of renewables and is principally
concerned with tertiary controls in which the BESS is dispatched locally to meet system-
wide balancing constraints. In this situation, the only communication requirement to a
central entity is intermittent, soft-real time and is related to market-based price signals for
importing/exporting energy. Loads and local renewable supply are forecasted locally, and
the storage is dispatched based upon the solution of a local real-time economic dispatch
algorithm which takes storage degradation into account.

With respect to similar previous works in the area, in [13,14] solar PV and battery
storage along with operation scheduling algorithms were implemented, wwhereas BESS
without RES generation was also presented by authors in [15]. The battery is charged from
the grid when the demand is low and discharged when the demand increases. By utilizing
BESS, power generation sources can be run at optimum, while the energy storage accounts
for variation in the demand. BESS should be of a suitable range of storage and power
capacity to function over the required duration and can react instantaneously to the grid
demand variations.

Technologies such as compressed air energy storage facilities [16], flywheels [17,18],
etc., have been developed for the purpose of storing large-scale energy generation. How-
ever, some of these technologies are limited in their site dependence and response capabili-
ties. Among the different types of energy storage, batteries have relatively higher energy
efficiency and offer flexible configurations for different application requirements without
geographical conditions [19]. The advancement in newer battery chemistries has enabled a
wide range of battery options for storage applications. Although at present, BESS accounts
for a small portion of energy storage within the grids, they are seen as an irreplaceable
option in distributed new energy integration and ancillary grid operations [20,21]. BESS is
required to store electricity; the stored electricity can then be used when needed with the
aim to reduce the electricity consumption cost and peak loads by increasing the penetration
rate of RES and maximizing the self-consumption of its production. The electrical power is
stored when it is available and/or price is low and used when it is unavailable and/or price
is high. To achieve the optimum operation of the BESS, an optimal schedule algorithm
is required to decide when to charge, discharge or hold (no charge and no discharge)
the battery. The algorithm should consider electricity consumption, RES generation and
electricity prices.

With the increasing development and widespread deployment of electrical vehicles
(EVs), the idea of using EV batteries as portable power storage systems have been proposed.
The EVs’ batteries are used to store electricity when the EV is parked and then the stored
electricity can be used to balance the grid. Storing electricity when there is a surplus and
selling electricity back into the grid when there is a wider demand. A considerable amount
of research has been done to investigate the applicability of this approach and a significant
number of BESS has been proposed with the aim is to maximize the benefits to grid
operators and EV owners. As such, BESS is considered the fastest growing type of energy
storage technology [22]. However, most of these studies have considered aspects and
limitations that are directly related to the use of the EVs such as the habits and preferences
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of the EVs’ owners as well as travel and waiting time [23,24]. To ensure the performance
and safe use of the EV batteries, they must be electrically and terminally monitored and
controlled and accurate models to predict working voltage, capacity, SoC and SoH are
needed [25]. These functionalities are commonly implemented within the BESS. However,
as discussed in [2] and other works above, although many highly sophisticated control and
monitoring mechanisms for BESS have been proposed, in terms of wide-scale deployment,
advanced techniques capable of real-time operation have progressed little beyond the
laboratory due to complexities involved in reliable implementation on potentially resource-
constrained field devices. There is clearly a pressing need to address this issue if progress
is to be made on realising the potential of distributed and (partially or fully) decentralised
BESS in real-world situations.

1.3. Contributions

In this paper, an efficient rolling-horizon decision-making algorithm for optimal charg-
ing and discharging for a BESS is proposed, implemented using dynamic programming
and studied in a real-world case study. The system is designed to operate under the
variabilities of electricity pricing, consumption loads and renewable generation output,
and to integrate with monitoring mechanisms and implement degradation-aware control
features in a partially or fully decentralised system-of-systems-based smart grid solution.
A generic decision-making strategy for battery charge/discharge operations in a discrete-
time rolling framework is developed as a finite-input set of non-linear model predictive
control (MPC) instances and a dynamic programming (DP) procedure is proposed for
its real-time implementation. To progress beyond a laboratory prototype, the technique
has been implemented, tested, and validated in the premises of a sports centre located
at Rambla del Celler, in Sant Cugat, Barcelona, as a part of a pilot demonstration of the
inteGRIDy EU-funded project. The aim of the proposed case-study system is to reduce
the electricity bills of the sports centre and increase self-consumptions, thus, making the
objective of the work carried out unique in its formulation. Our findings indicate that
(i) the proposed technique is simple enough to be implemented on resource-constrained
field devices and operate with required sample times for typical BESS requirements, and
that (ii) the algorithm implementation achieved non-trivial reductions (≈15%) in energy
costs and CO2 emissions. We conclude the proposed generic scheme is a promising can-
didate to support partially decentralised control of BESS for services related to system
resilience and integration of renewables.

1.4. Structure

The rest of the article is organized as follows: Section 2 states assumptions and
describes the generic battery model which is employed and describes the mathematical for-
mulation of the decision-making algorithm framework and its implementation. Section 3
presents the case studies, focusing on the description of the pilot site and use case specifi-
cation. In Section 4, the results and analysis are presented. Section 5 concludes the paper,
followed by references.

2. Methodology

As discussed in the introduction, in the context of the current work we assume a
situation in which partially decentralised tertiary charge/discharge controls of a BESS
to support system resilience and integration of renewables is required in real-time. It
is assumed that forecasts of local renewable supply availability and local demands are
available (see e.g., [26] and other works on forecasting), prices to import/export energy to
the wider grid are available, and that the charge dispatch controls are to be integrated with
a BESS SoC/SoH monitoring system. The solution we propose is a tertiary control service
in nature and can easily be vertically integrated into decentralised or partially decentralised
primary and secondary control schemes, as required.
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2.1. Model and Assumptions

Consider a discrete-time framework in which the battery SoC is represented at each
discrete time-step k = 0, 1, 2, 3, 4, 5, . . . by the non-negative real variable C(k) ≥ 0, with
units kWh. Consider that a source/sink node is connected locally to the battery, and the
corresponding source/sink power level is represented by the real variable L(k), with units
kW such that a positive L(k) indicates a local node demand, while a negative L(k) represents
a local node supply—such as may occur in the presence of local renewable supply exceeding
local demand. The battery and local node are also connected to a grid which may source
or sink energy at each time step k at corresponding cost P(k, x), where the function P(k, x)
returns the economic cost of delivering power demand x kW during time step k, with
€ units. Appropriate definition of the generic function P(k, x) for a constant sampling time
interval ∆ between any discrete steps k and k + 1 allows for the implementation of many
forms of electricity pricing structures, including time of use (ToU), real-time pricing (RTP)
and 2-tier pricing (2TP) [20]. The presence of feed-in-tariffs (FITs) can also be included,
and within a rolling horizon context, interactions with a wider balancing market and/or
ancillary services market and specific demand response (DR) events can be implemented
by an appropriate online, dynamic generation of the form and co-efficient of P(k, x), for
appropriate values of k across the future considered horizon [27,28].

We consider the evolution of the SoC of the battery between each discrete time step to
be given by the general non-linear model:

C(k) = f (C(k− 1)) + g(u(k− 1)) (1)

For appropriate functions f and g, and charge/discharge (control) signal u(k), with
units kW. In this work, we assume that the control signal u(k) is discrete in nature and
restricted to be drawn from a finite set of charge/discharge levels, such that:

∀k = 0, 1, 2, 3, 4, ..., u(k) ∈ U (2)

Typically, in many applications, the set U will have a cardinality of three, representing
charge input of ∆c kW, discharge input of ∆d kW, and hold input of zero. Capacity
constraints on the battery must also be present, which can be represented by the expressions
in (3):

∀k = 0, 1, 2, 3, 4, ..., CMin ≤ C(k) ≤ CMax (3)

In other words, the battery cannot hold more than its maximum capacity charge or
less than its minimum. We also consider that during lifetime operation, under repeated
cycling of charge/discharge operation, the battery will experience degradation. This
degradation has multiple root causes, mostly electro-chemical and mechanical in nature,
and previous work has indicated that these effects should be incorporated into any long-
term optimization formulation or modeling exercise [29]. Under the assumption that the
battery is operated in near-constant temperature conditions, the principal mechanism of
capacity loss is due to repeated charge/discharge cycles over a given time period [29]. In
order to provide a means to control such behavior, define the following binary indicator
variables I(k) to signal changes in input (charging) state:

I(k) =
{

1 : i f u(k) 6= u(k− 1)
0 : i f u(k) = u(k− 1)

(4)

Within this model, if a reduced cost λ for cycling the battery is available (with units €
to represent the average price of energy lost due to capacity fade), then this may be built
into optimization as a multiplier of I(k) to suppress excessive changes in battery input
state and provide a cost/degradation trade-off. Determination of a representative value
for λ can be determined with suitable knowledge of battery parameters, along with wider
environmental and market conditions (see, e.g., [29]).
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2.2. Charge/Discharge Optimization

The objective of this discrete-time battery optimization problem is to minimize the
lifetime economic cost associated with serving the load using grid-sourced energy, by
making intelligent decisions regarding charging and discharging of the battery, within its
operational limit. For practical purposes, a rolling-horizon non-linear Model Predictive
Control (MPC) with finite discrete input set has been developed (see, e.g., [30] for an
overview of MPC). The optimization problem to be solved at each discrete-time step k is
the minimization of the following multi-stage non-linear cost function:

Minimize:

J(k) =
H

∑
i=0

P(k + i, (L̂(k + i) + u(k + i))) + λ
H

∑
i=0

I(k) (5)

with respect to u(k + i), ∀i = 0, 1, 2, 3, 4, . . . H, subject to model Equations (1), input state set
decisions (2), capacity constraints (3), indicator variable constraints (4), and for suitably
defined electricity pricing functions P(k + i, x). The integer H represents the length of the
prediction horizon under consideration. Note that at each step k, the exact load balance
L(k + i) is not known exactly and must therefore be forecasted. Known techniques for
this can be applied, and this is not considered further in this section. The optimization
minimizes the economic costs of serving the predicted load at each time over the prediction
horizon, in conjunction with the economic cost of cycling the battery due to degradation
loss. Translation from economic costs to emissions costs (or a weighted combination of
both) is relatively straightforward: equivalent CO2 emissions costs at each time step k
can be incorporated into the cost functions P(k, x). Such data is now becoming available
digitally from regional and national electricity network operators (e.g., see Carbon intensity
API, https://carbonintensity.org.uk/ (accessed on 5 September 2020)).

Under certain restrictions, the optimization problem described above is easily for-
mulated as a mixed integer linear program (MILP) [31,32]. Alternatively, the dynamic
programming (DP) method could be applied (Bellman, [33]). DP is a computational method
for solving optimal control problems with separable, additive performance indices. It is
based on the recursive application of Bellman’s ‘Principle of Optimality’:

An optimal policy has the property that whatever the initial state and the initial
decision are, the remaining decisions must form an optimal policy with regard to the state
resulting from the first decision.

The mathematical form of this idea can be expressed as a backward sequence featuring
the solution of simpler optimization problems at each stage. Continuing backward from
the end stage N to the current stage k—and applying the principle of optimality at each
stage—will result in the following recurrence relations for discrete DP [34]:

JN(xN) = gN(xN);

k = N − 1, N − 2, ..., 1, 0 :

Jk(xk) = min
uk∈Uk(xk)

{gk(xk, uk) + Jk+1( fk(xk, uk))};
(6)

where Jk(xk) is the cost of entering stage k with state xk, gk(xk) is the cost for entering stage k
with state xk, Uk(xk) is the set of allowed controls for the input uk when the state xk is entered
at stage k, and fk(xk, uk) is a function which maps the state xk onto state xk+1 when control
and control uk is applied at step k. In discrete DP (DDP), the state vector is mapped onto a
grid of size S and the controls onto a grid of size U. By iterating through the recursion and
trying all admissible control values at each admissible set of state values, a vastly reduced
search space is explored when compared to a pure brute-force search; at the end of the
minimization, a solution grid is obtained and the optimal control is obtained from the
position in the grid corresponding to the current state.

In this current context, the state variable is the SoC C(k). The admissible controls are
the set U, which in most cases have three possibilities which are charge, hold, and discharge

https://carbonintensity.org.uk/
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(|U| = 3). For a first-order non-linear battery model, the SoC can be mapped into a discrete
grid over a suitable working range, e.g., 10–90% of battery capacity, having Cardinality
|C|; the control is already discrete in nature. During the recursion, the minimal cost
function is stored for each admissible state along with the final component of the objective
function. Thus, the run-time complexity of the DDP algorithm is given by O(H.|U|.|C|),
and the algorithm runs efficiently even for a relatively large prediction horizon H = 96 (e.g.,
24 h with ∆ = 15 min) and |C| = 1000 (e.g., charge state represented to 0.1% accuracy),
which in general gives very accurate results. For many applications involving grid energy
storage, a sampling time requirement of approximately fifteen minutes is sufficient for
battery dispatch. The algorithm has been coded in embedded C using good practice
guidelines [35]. Testing has shown that execution times of order one second are achievable
on a modern 32-bit ARM microcontroller platform, making the approach suitable for
deployment without undue problems in small, modern embedded systems. A flowchart
shows a diagrammatic representation of the algorithm is presented in Figure 1. The diagram
describes the data required by the algorithm and also provides a breakdown of the essential
steps to solving the optimisation problem.
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3. Case Study
3.1. Description of the Pilot Site

The pilot demonstration is aimed at analyzing the increase of on-site self-sufficiency
(the available storage solutions and on-site PV generation) and the interaction between the
grid. The pilot site, shown in Figure 2, is a swimming pool with a sports centre located at
Rambla del Celler, in Sant Cugat, Barcelona, Spain. To test the BESS in a real operation
scenario, a PV system with electrical storage and monitoring devices for building energy
management were added to the energy system of the swimming pool. In this section, the
technical specifications of these components will be described.
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Figure 2. The location and actual picture of the demonstration pilot site, the sports Centre in Rambla
del Celler, Barcelona.

The swimming pool energy system is monitored with a SCADA system and comprises
a boiler, heat pump, and air handling unit (AHU). Besides the physical equipment installed
in the sports centre, i.e., the PV system components and energy metering, temperature
and humidity sensors, the pilot incorporates a comprehensive set of virtual tools and
software modules developed for its realization. The general physical view of the pilot site
is presented in Figure 3, and the main components of the BESS are in Figure 4.

The BESS under test consists of a PV with a total capacity of 5.025 kWp, an inverter
with 96.6% efficiency and a lithium-ion battery with a total nominal capacity of 1080 Ah. The
PV modules are manufactured by JA Solar (Beijing, China) and consist of high-performance
monocrystalline silicon panels. The corresponding technical parameters are presented
in Table 1. The electrical characteristics correspond to standard test conditions (STC)
(irradiation of 1000 W/m2, air mass (AM) spectrum 1.5 and a cell temperature of 25 ◦C). A
total of 15 panels arranged in two arrays of seven and eight modules were installed on the
rooftop of the sports centre at 41.47008◦ latitude and 2.08408◦ longitude. The total panels’
area was 25.5 sqm and the slop and azimuth were 10◦ and 31◦ respectively.

A Sunny Boy solar inverter from SMA (Niestetal, Germany) is used to connect the
two arrays of PV panels to the swimming pool energy system. The inverter is the PV
system component responsible for transforming the direct current (DC) generated by the
PVs into alternating current (AC) that can be fed into the grid. The technical parameters
of the inverter are presented in Table 2 below. The inverter is occupied with built-in
overvoltage protection, insulation and automatic disconnection in case of out-of-range
voltage or frequency.
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Table 1. Technical Parameters of PV Module.

PV Module Characteristics

Brand and Model JA Solar—JAM72S10-335/SC
Rated Power 335 Wp
Maximum Power Current 8.95 A
Maximum Power Voltage 37.45 V
Short Circuit Current 9.42 V
Open Circuit Voltage 46.10 V
Module Efficiency 17%
Dimesnsions 1979 × 996 × 35 mm
Weight 22.3 kg

Table 2. Technical Parameters of the inverter.

On-Grid Inverter Technical Parameters

Brand and Model SMA Sunny Boy 5.0 TL
Rated Output Power (AC) 5000 W
Nominal Output (AC) Voltage 230 V
Maximum Power PV field 7500 Wp
Maximum Input Voltage 600 V
MPP voltage range 175 V to 500 V
Efficiency 96.6%
Number of independent MPP inputs 2
Strings per MPP input 2 + 2
Dimensions 435 × 470 × 176 mm
Weight 16 kg

The battery storage system is composed of 96 lithium-ion battery cells connected in
a 16s6p scheme and a battery manager. The battery bank is connected in a way that each
six battery cells is connected in parallel to form 6p, and then connected in series to make
16s. This grants a total nominal capacity of 1080 Ah and a nominal voltage of 51.2v. The
technical parameters of the battery bank and of the individual battery units are presented
in Table 3. A Sunny Island 6.0H (bidirectional energy storage inverter) battery manager
is used for battery charging and discharging management. Internal control and status
variables of the unit, including SoC measurements and charge/discharge command state,
are accessible via Modbus. The unit is capable of precisely determining the SoC of the
battery attached to it. Different three methods are combined and used by the unit for
estimation of the SoC, the unit reaches a measuring accuracy of more than 95%.

Table 3. Technical specification of the battery.

Battery Bank’s Characteristics

Brand and Model CALB CA180 201412
Storage capacity (Wh) 63,072 Wh
Storage capacity (Ah) 1080 Ah
Rated Voltage 58.4 V
Nominal Voltage 51.2 V
Number of Elements in series 16
Number of series in parallel 6
Configuration 16s6p scheme

Battery Unit’s Characteristics

Technology LiFeO4
Storage Capacity (WhC100) 657 Wh
Storage capacity (AhC100) 180 Ah
Rated Voltage 3.65 V
Nominal Voltage 3.2 V
Number of cycles 60% DOD (Depth of Discharge) 2000
SoC Usage Window 10–90%
Weight 5.70 kg
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3.2. Use Case Specification

The aim of the use case is to maximize self-consumption of the PV generation, mini-
mize the electricity bill for the swimming pool and improve grid stability. A neighborhood
energy management and optimization tool (NEMO) has been developed to implement the
use case. It consists of software components to optimize the use of the PV and battery,
as well as modules to support communications with other tools that are used in energy
management such as SCADA, Web services, IEC-104, and OpenADR. The general structure
of the NEMO tool is shown in Figure 5. The PV generation forecasts and decision-making
and optimization algorithm described in Section 2 are the main components of the NEMO
tool and are utilized to optimize the scheduling of charging and discharging decisions of the
battery. For the NEMO functionality, the tool reads the weather forecast and consumptions
forecast of the swimming pool as well as the electricity prices and status of the battery from
the reference knowledge warehouse (RKW). RKW is a time series database module used
to store the real time data associated with pilot site operation, configuration, settings and
environment. The RKW retrieves the weather forecast and electricity price from external
providers, the battery status, PV generation and swimming pool consumptions from the
SCADA system. The RKW also receives the PV generation forecast from NEMO and the
swimming pool consumptions forecast from the distributed energy management system
(DEMS) tool. DEMS is one single system developed by Siemens (Munich, Germany) to
manage demand and supply of distributed energy resources for a wide variety of use cases.
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Figure 5. The NEMO Architecture and interfaces. The decision-making and optimisation algorithm
requires the energy prices, power consumption, PV generation and battery SoC from the RKW. The
RKW collects the operational data of the swimming pool using SCADA, the consumption forecast
from DEMS and the electricity prices from the web.

With the PV and battery information, the battery model of NEMO computes the
battery charging and discharging time and the PV model computes the PV generation
forecast. Subsequently, the decision-making and optimization algorithm decide whether to
charge, discharge or hold the battery considering the electricity price and swimming pool
consumption. The decision is then sent to the RKW in a form of a status order. The RKW
converts the status order to a control signal which is sent via SCADA to instruct the battery
to act accordingly. Since the configuration and settings of the battery and PV are almost
fixed for the pilot site, they are stored locally in plain text format files. The data relating
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to the pilot operation is time-series data that consists of potentially very large arrays of
numbers that are indexed by a time variable. This data is stored remotely on the RKW.

4. Results and Analysis

The data and results of the optimization and decision-making algorithm from 12 April
2021 to 21 July 2021 are reported and analyzed in this section. To describe the functionality
of the BESS, snapshots of the main parameters of the swimming pool energy system are also
presented. The total electricity consumption of the swimming pool during the reporting
period was 13,853.67397 kWh. The daily electricity consumption in most days ranges from
50 and 225 kWh/day, it usually starts to increase at 8 a.m. and decrease at 8 p.m. with an
almost a flat peak of 3.5 kWh between 10 a.m. and 6 p.m. A snapshot of the daily electricity
consumption of the pool during the period between 13 April 2021 and 30 June 2021 is
shown in Figure 6.
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Figure 6. Daily energy consumption of the swimming pool complex. The consumption is measured
every 15 min, every single point in the figure represents the sum of 96 measurements. In the zoomed
area, hourly consumption for two days is shown, every four measurements are added to form the
consumption of each hour in the day.

The price of electricity was changed several times during the reporting period and
different tariff systems were used. Between 12 April and 30 April 2021, a two-tier pricing
system was implemented, with energy priced at 0.06177 €/kWh from 00:00 to 08:00 a.m.
and 0.06559 €/kWh for the rest of the day; weekends had a fixed price of 0.06559 €/kWh.
In May 2021, the prices were changed to 0.058388 and 0.06344 for weekdays and 0.058388
for weekends respectively. From 1 June, the pricing system was altered to a three-tier
tariff, with 0.058043 €/kWh from 00:00 to 08:00 a.m., 0.06189 from 08:01 a.m. to 09:00 a.m.,
and 0.6869 from 09:01 a.m. to 15:00 a.m., then 0.061987 from 15:01 a.m. to the end of
the day for weekdays, but remained at 0.058388 for weekends. On 15 June these prices
were again changed to 0.05804, 0.08, 0.0891 and 0.08 for the periods 00:00 to 07:00 a.m.,
07:01 to 10:00 a.m., 10:01 a.m. to 18:00, and 18:01 to end of the day respectively. The prices
of electricity for the full testing period are shown in Figure 7.
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Figure 7. Electricity prices of the swimming pool. The prices were changed several times during the
testing period. A two-tier tariff system was used for April and May with 0.058388 lowest and 0.06559
highest. For June and July, a three-tier tariff system was used with 0.058043 lowest and 0.0891 highest.

Figures 8 and 9 show snapshots of the operation of the BESS system. To visually
illustrate the operation of the battery charging/discharging algorithm, different scales for
the SoC, price, electricity consumption and PV output were used. No axis labels were used
in the figures as they are just presented to clarify how the SoC of the battery follows the
changes in the price, consumption and PV generation. As shown in Figure 8, the state of
charge of the battery follows the price signal. When the price goes up, NEMO discharges
the battery and the SoC goes down, and when the price goes down, NEMO charges the
battery and the SoC goes up. Figure 9 shows another scenario of the operation when the
SoC signal follows the difference between the values of the PV output and the consumption
of the pool. In this case, when the PV output was higher than the consumption of the pool
NEMO charges the battery even if the price of the electricity was in higher tariff.
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Figure 9. The operation of the BESS (PV output is dominant). When the consumption of the
swimming pool is lower than the PV generation, the decision-making and optimisation algorithm
will charge the battery even if the price is high.

A snapshot of the cost of the electricity imported from the grid before and after the use
of BESS is shown in Figures 10 and 11. In Figure 10, the cost of imported electricity with a
15-min granularity for the period between 12 April 2021 and 14 April 2021 is presented. In
the figure, it can be seen that the cost of electricity consumption after applying the BESS
solution is sometimes higher or lower than the cost before applying the solution. This
is to be expected as the electricity imported from the grid increases when the battery is
charged and decreases when the battery is discharged. The cost saving is achieved as
NEMO increases the imported electricity when the rates are low and/or the electricity
generated by the PV system is also low and decreases imported electricity when the
electricity rates are high and/or the electricity generated by the PV system is also high.
The amount of the remuneration depends on the differences in electricity rates, the amount
of electricity produced by the PV system and battery specifications. In future work, a
simulation study will be performed to quantify the impact of various parameters such as
maximum battery capacity, charge/discharge rate and PV system output power profile on
the energy cost savings achieved by the proposed algorithm. The aim is to optimise these
parameters in order to obtain the best specification of PV and battery that maximize the
energy cost savings.

To measure the impact of the BESS on the electricity cost of the swimming pool, the
15 min measured data are aggregated and the equations below are used:

costwithBESS =
n

∑
i=1

EI(i) ∗ P(i) (7)

costwithoutBESS =
n

∑
i=1

(EI(i) + PV(i) + ∆SoC(i)) ∗ P(i) (8)

cost saving = costwithoutBESS − costwithBESS (9)

where EI is the electricity imported from the grid, PV is the electricity generated by the PV
system and ∆SoC is the change in the state of charge of the battery and given by:

∆SoC(i− 1)− ∆SoC(i) (10)
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where P is the price of the electricity imported from the grid and n is the number of
measured data points, 96 measured points for each day.
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where P is the price of the electricity imported from the grid and n is the number of meas-
ured data points, 96 measured points for each day.  

The daily cost of imported electricity with and without the BESS for the period from 
13.04.2021 to 30.05.2021 is shown in Figure 11. As the figure reveals, there is a visible dif-
ference between the daily baseline cost of energy consumption and the daily cost after 
implementing BESS in the swimming pool. 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

C
os

t (
€)

12.092021                             13.042021                                        14.04.2021                     

Cost of Electricity (updated each 15 minutes)  With BESS Witout BESS

Figure 10. Cost of imported electricity at 15 min granularity. The cost of imported electricity with
and without BESS is shown. The cost with BESS is higher than the cost without BESS when the BESS
charges the battery and lower when discharges the battery.
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Figure 11. The daily cost of imported electricity before and after the use of BESS. The consumption is
measured every 15 min, every single point in the figure represents the total consumption of one day
(sum of 96 measurements).

The daily cost of imported electricity with and without the BESS for the period from
13 April 2021 to 30 May 2021 is shown in Figure 11. As the figure reveals, there is a visible
difference between the daily baseline cost of energy consumption and the daily cost after
implementing BESS in the swimming pool.

A summary of the results obtained from the swimming pool after the implementation
of the BESS is reported in Table 4. A percentage difference in the electricity cost saving
of 19.65% was obtained after optimal scheduling of the use of the battery and use of the
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PV system. The reduction in the imported electricity from the grid during this period was
2335.33 kWh resulting in a reduction of 16.88% of the imported electricity consumption of
the swimming pool and an increase in self-consumption. Subsequently, the achieved total
reduction in the CO2 emission amounted to 772.99 KgCO2 (emission factor is 0.331).

Table 4. Summary of the results.

KPIs Values Units

Total energy consumption 13,853.67397 kWh
Energy imported from the grid 11,518.3434 kWh
Self-consumption 2335.330568 kWh
Self-consumption rate 16.88011839 %
CO2 emission reduction 772.9944181 kgCO2
Retailer cost of energy 903.7044321 €
Average cost of energy consumption 0.045446171 €/kWh
Cost of energy reward 177.596953 €
Cost of reduction rate 19.65210597 %

5. Summary and Conclusions

In this article, it has been proposed that there is a pressing need to innovate and
implement efficient BESS monitoring and control algorithms for real-time field deployment
if progress is to be made on realising the potential of BESS in practice. An efficient
rolling-horizon decision-making algorithm for optimal charging and discharging for a
BESS has been proposed, implemented using dynamic programming and studied in a
real-world case study. The technique has been implemented, tested, and validated in
the premises of a sports centre located at Rambla del Celler, in Sant Cugat (Barcelona,
Spain) as a part of a pilot demonstration of the inteGRIDy EU-funded project. The aim of
the proposed case-study system is to reduce the electricity bills of the sports centre and
increase self-consumptions, thus, making the objective of the work carried out unique in its
formulation. Our findings indicate that: (i) the proposed technique is simple enough to be
implemented on resource-constrained field devices and operate with required sample times
for typical BESS requirements, and that (ii) the algorithm implementation achieved non-
trivial reductions (≈15%) in energy costs and CO2 emissions. We conclude the proposed
generic scheme is a promising candidate to support partially decentralised control of BESS
for services related to system resilience and integration of renewables. We also caution that
further work is needed to further validate the system and to fully quantify the benefits
obtained in larger case studies, and this is an area of ongoing work.
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Abbreviation

Terms Description
AC Alternating Current
AHU Air Handling Unit
AM Air Mass
API Application Programming Interface
ARM Advanced RISC Machines
BESS Battery Energy Storage System
DC Direct Current
DDP Discrete Dynamic Programming
DEMS Distributed Energy Management System
DC Direct Current
DDP Discrete Dynamic Programming
DEMS Distributed Energy Management System
DG Distributed Generations
DP Dynamic Programming
DR Demand Response
EV Electric Vehicle
FIT Feed in Tariff
GHG Greenhouse Gas
MILP Mixed Integer Linear Programming
MPC Model Predictive Control
NEMO Neighborhood Energy Management and Optimization
OpenADR Open Automated Demand Response
PV Photovoltaic
RES Renewable Energy Storage
RKW Reference Knowledge Warehouse
RTP Real Time Pricing
SCADA Supervisory Control and Data Acquisition
SoC State of Charge
SoH State of Health
STC Standard Test Conditions
TOU Time of Use

Nomenclature

Terms Description
K Discrete time-step
∆ Sampling time interval between any discrete steps k and k + 1
C(K) Battery SoC
L(k) Battery source/sink power level
P(k, x) Economic cost of delivering x kW power demand
u(k) Battery charge/discharge (control) signal
CMin Battery maximum SoC
CMax Battery minimum SoC
λ Battery cycling cost
I(k) Binary indicator variables to signal changes in the battery charging status
EI(t) Electricity imported from the grid
PV(t) Electricity generated by the PV system
∆SoC Change in the battery state of charge
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