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Abstract: Solder joints in electronic packages are frequently exposed to thermal cycling in both
real-life applications and accelerated thermal cycling tests. Cyclic temperature leads the solder joints
to be subjected to cyclic mechanical loading and often accelerates the cracking failure of the solder
joints. The cause of stress generated in thermal cycling is usually attributed to the coefficients of
thermal expansion (CTE) mismatch of the assembly materials. In a die-attach structure consisting
of multiple layers of materials, the effect of their CTE mismatch on the thermal stress at a critical
location can be very complex. In this study, we investigated the influence of different materials in a
die-attach structure on the stress at the chip–solder interface with the finite element method. The
die-attach structure included a SiC chip, a SAC solder layer and a DBC substrate. Three models
covering different modeling scopes (i.e., model I, chip–solder layer; model II, chip–solder layer and
copper layer; and model III, chip–solder layer and DBC substrate) were developed. The 25–150 ◦C
cyclic temperature loading was applied to the die-attach structure, and the change of stress at the chip–
solder interface was calculated. The results of model I showed that the chip–solder CTE mismatch,
as the only stress source, led to a periodic and monotonic stress change in the temperature cycling.
Compared to the stress curve of model I, an extra stress recovery peak appeared in both model II
and model III during the ramp-up of temperature. It was demonstrated that the CTE mismatch
between the solder and copper layer (or DBC substrate) not only affected the maximum stress at the
chip–solder interface, but also caused the stress recovery peak. Thus, the combined effect of assembly
materials in the die-attach structure should be considered when exploring the joint thermal stresses.

Keywords: finite element method; lead-free solder; thermal stress; die-attach; thermal cycling

1. Introduction

With the development of semiconductor technologies, SiC, GaN and other third-
generation semiconductor materials with wide band-gap characteristics are widely used in
power modules [1]. The SiC chip is generally attached to the circuit board through a solder
layer (i.e., die-attach structure), which provides mechanical support and heat dissipation
protection for the chip [2,3]. As power modules often work under high-current, high-power
density and high-temperature conditions, higher demands are placed on the die-attach
technology to ensure the reliability of the power modules [4–6].

In order to meet the requirements of die-attach technologies and the Restriction
of Hazardous Substances (RoHS) directive, a series of die-attach materials, such as Sn–
Ag, Sn–Ag–Cu (i.e., SAC) solder alloys and sintering silver paste were developed [7–9].
Among them, the SAC solder has become a type of widely used lead-free solder in the
electronics industry by the virtue of its adequate thermal fatigue properties, strength, and
wettability [10]. A firm joint is usually formed by the good metallurgical bond between the
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solder and the components being joined. However, in the practical application of various
related devices, cracking failures of the die-attach structure can often be found [11]. Among
them, cracking failures caused by temperature fatigue account for about 55% of die-attach
structure failure [12]. Cracks are usually located at the chip–solder interface. For instance,
Song et al. performed an accelerated temperature cycling (ATC) test of printed circuit
board (PCB) test assemblies (which used five kinds of solders (SAC305, SAC387, SACC,
SACS and SCN), respectively) and found that all the PCBs cracked after 4000 cycles of ATC
tests. In addition, all the cracks were observed at the chip–solder interface [13]. Therefore,
clarifying the causes of cracking during temperature cycling is of great value to power
module reliability.

Through temperature cycling tests, it was found that due to the different coefficients of
thermal expansion (CTE) between the chip and solder, thermal stress is generated and con-
centrated at the chip–solder interface during the temperature cycling process [14]. Excessive
thermal stress can lead to cracking, which is the main cause of cracking failures [15,16]. By
making the solder CTE closer to that of the chip, the thermal stress during thermal cycling
can be reduced. However, literature reports show that even materials not directly bonded to
the chip or solder may indirectly affect the thermal stress at the chip–solder interface. For
instance, Chen et al. added a tungsten film (100 µm thick) to the solder layer in the die-attach
structure, and they found that the tungsten film can effectively improve the stress distribution
in the solder layer and reduce the shear stress at the chip–solder interface during thermal
cycling simulations [17]. Therefore, an accurate analysis of the thermal stress at the chip–solder
interface is important to understand its cracking failure behavior.

Usually, it is quite difficult to directly observe the stress changes during temperature
cycling by experimental methods. With the development of computer simulation technol-
ogy, the finite element method (FEM) is widely used as an effective tool in the simulation
analysis of stress, strain, and plastic work [18,19]. However, due to differences in model
boundary condition and modeling scope, different phenomena can often be observed from
thermal stress simulation results. For example, when Otiaba et al. performed a thermal
mechanical coupling analysis on a three-layer structure consisting of a chip, solder, and
copper substrate (with constraints placed on the top of the chip), they found that the
stresses in the solder joints varied monotonically with temperature loading in a periodic
manner [3]. While Xie et al. performed a similar simulation (with constraints placed on
the bottom of the copper layer), a small stress recovery peak was observed during the
heating up stage [20]. Similar stress recovery phenomena can often be seen in temperature
cycling simulations, but there is no clear explanation for their formation mechanism and
the reasonability [21,22].

In this study, three models which include different assembly materials were built
based on a die-attach structure consisting of a SiC chip, a solder layer, and a direct bonded
copper (DBC) substrate. Thermal cycling simulations were performed for the three models
with the FEM. By analyzing the deformation and stress distribution in the solder layer and
the stress change at the chip–solder interface, the effects of the boundary conditions and
the modeling scope on the chip–solder interfacial thermal stress were studied. The aim of
this work is to investigate the effect of non-directly bonded materials on specific interfacial
stress, and the causes of stress recovery peak in temperature cycling simulations.

2. Finite Element Modeling
2.1. Finite Element Model Structure

A simplified die-attach structure in typical power modules was employed (Figure 1).
It consisted of a SiC chip, a solder layer, and a DBC substrate. To investigate the effect
of different modeling scopes on the simulation results, three different two-dimensional
models were established with the ANSYS software: model I, a model containing only the
chip and the solder layer; model II, a model containing the chip, the solder layer, and the
copper layer; and model III, a model containing the chip, the solder layer, and the DBC
substrate. Among them, the SiC chip size was 4.00 mm × 0.18 mm, the solder layer size
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was 4.00 mm × 0.12 mm, the copper layer size was 10.00 mm × 0.30 mm, and the AlN
ceramic layer size was 10.00 mm × 0.60 mm. Since the focus was on exploring the effect of
CTE mismatch on thermal stress, these materials were ideally interconnected assuming no
defects and without considering interfacial reactions. The joint strength was also ignored.
The model was meshed using Plane183 elements with 8 nodes, and the mesh elements were
triangular elements. The chip–solder interface was locally refined to ensure the accuracy
of stress calculation result at the target location (the points M, N and Q in Figure 1, at the
corner of the chip–solder interface near the solder side). The mesh for model I consists of
5359 nodes and 2536 elements, model II consists of 11,155 nodes and 5334 elements, model
III consists of 15,014 nodes and 7265 elements.

Fig. 1 

 

 
 
  

Figure 1. The finite element model of (a) chip–solder layer structure, (b) chip–solder layer and copper
layer structure and (c) chip–solder layer and DBC substrate structure.

2.2. Material Properties

The lead-free SAC405 solder alloy contains 95.5% tin (Sn), 4.0% silver (Ag) and 0.5%
copper (Cu) and is usually described as Sn95.5Ag4.0Cu0.5. It is considered one of the
commonly used lead-free solder alloys because of its environmental compatibility and
service reliability [23]. AlN ceramic has comprehensive advantages, such as high thermal
conductivity, close CTE to Si, good mechanical properties, etc. [24]. As a typical product
of AlN ceramic, the AlN-DBC substrate has a high current carrying capacity and plays an
important role in power modules. The material parameters used in this study were derived
from experimentally measured values reported in the literature (Table 1) [25,26].
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Table 1. Material properties for the FEM models.

Material Density
(kg/m3)

Special Heat Capacity
(J/kg·K)

Thermal Conductivity
(W/m·K)

Elastic Modulus
(GPa)

Poisson
Ratio

CTE
(ppm/K)

SiC 3200 690 370 501 0.45 3.4

SAC405 7410 236 62

25 ◦C: 8.21
50 ◦C: 6.33
75 ◦C: 5.65

100 ◦C: 4.62
155 ◦C: 2.58

0.38 26.0

Cu 8900 390 383 110 0.34 17.5

AlN 3300 750 170 310 0.20 4.5

Both the SiC chip and AlN ceramic substrate were considered isotropic linear elastic
materials. Usually, the solder is described by a unified viscoplastic model or creep model [27,28].
However, the results calculated using these constitutive models are after creep and do not
reflect the state of the material before and during creep. In this study, the multilinear kinematic
hardening model was used to describe the stress–strain condition in the initial state without
creep. The stress–strain curves of SAC405 solder in the elastic deformation stage and uniform
plastic deformation stage at different temperatures were obtained from the literature [29].

The Chaboche nonlinear kinematic hardening model was utilized to describe the
plastic deformation of copper layer (Table 2) [30]. The corresponding yield criterion was
calculated as

F =

√
3
2
({s} − {α})T [M]({s} − {α})−Y = 0 (1)

where {s} represents the deviatoric stress tensor, {α} is the back stress variable and Y denotes
the yield stress. The back stress for the Chaboche constitutive model is shown below:

{α} =
n

∑
i
{α}i (2)

{∆α}i =
2
3

Ci

{
∆εpl

}
− γi{α}i{∆p}+ 1

Ci

dCi
dT

∆θ{α}i (3)

where {∆εpl} is the plastic strain tensor, {∆p} is the accumulated plastic strain tensor, θ is
the temperature, Ci and γi respectively represent the material constants of the Chaboche
model, and n is the number of superimposed kinematic models in the back stress tensor.

Table 2. Chaboche constitutive model parameters of copper.

Temperature (◦C) Yield Strength (MPa) C1 (MPa) γ1 C2 (MPa) γ2

20 211 54,041 962 721 1.1
50 208 52,880 1000 700 1.1
150 201 45,760 1100 600 1.1

2.3. Load and Boundary Conditions

This study selected 150 ◦C as the temperature reference point (the structure was stress
free) and applied the same homologous temperature load to the three models. As shown
in Figure 2, the temperature loading was divided into 11 load steps: the first load step
represented the model lowering from the preparation temperature to room temperature
(25 ◦C), and the next 10 load steps represented 5 complete temperature cycles. The range of
temperature cycles was 25–150 ◦C. Considering IEC test standard 60749-25, the temperature
change rate was 10 ◦C/min [31].
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Fig. 2 

 

 

  
Figure 2. Temperature cycle profiles used in the simulation.

To compare the effects of different boundary conditions on the die-attach structure, two
boundary conditions were applied to each of the three models. Under the fixed constraint
condition, the deformation of the constrained layer was limited (Equation (4)). Under the
non-fixed constraint condition, the warpage was neglected and only the deformation of the
constrained layer in the y-direction was restricted, while it remained free to deform in the
x-direction (Equation (5)). The constraints were set at the bottom edge of the three models
(Figure 1).

u(y) = u(x) = 0 (4)

u(y) = 0, u(x) = free (5)

where u(x) and u(y) represent the displacement in the x and y directions, respectively.

3. Results and Discussion
3.1. Effects of Boundary Conditions

For model I (Figure 1a) under the fixed constraint, the stress at point M (σM) varied
periodically and monotonically with temperature loading (Figure 3A). The σM decreased
when the temperature increased and increased when the temperature decreased. The
maximum value of σM was about 21.3 MPa, which corresponded to the lowest temperature.
The minimum value of σM was about 0.2 MPa, which corresponded to the maximum
temperature. Under the non-fixed constraint condition, the σM also varied periodically and
monotonically with the temperature loading (Figure 3B). The maximum and minimum
values of σM also corresponded to the minimum and maximum temperatures. However,
the maximum value of σM was obviously different, increasing from 21.3 MPa under fixed
constraint to 40.2 MPa. It was clear that the only source of σM was the CTE mismatch
between the chip and the solder layer. Since the CTE of SAC405 was significantly higher
than SiC, the fixed constraint was equivalent to limiting the deformation of the solder
layer. This equivalently reduced the degree of chip–solder CTE mismatch. Thus, the
maximum value of σM obtained under fixed constraint was significantly smaller than
under a non-fixed constraint.



Electronics 2022, 11, 62 6 of 12

Fig. 3 

 

 

  
Figure 3. Stress evolution at M-point of model I under the (A) fixed constraint and (B) non-
fixed constraint.

When the thermal cycling simulation was finished, the deformation and stress contour
plots of model I were intercepted. In the deformation contour plots, the edge of the solder
layer obtained under the fixed constraint had a positive trapezoid shape, while the edge
of the solder layer obtained under the non-fixed constraint had an inverted trapezoid
shape (Figure 4a,c). Under the fixed or non-fixed constrain conditions, both the chip and
solder layer should be in a shrinkage state from the initial stress-free state (150 ◦C) to the
simulation end (25 ◦C) [32]. The solder layer apparently shrank more under the non-fixed
constraint. However, the whole shrinkage of the solder layer was restrained under the fixed
constraint. That is, the equivalent CTE of the solder was smaller than that of the solder
under non-fixed constraint. The stress contour plots revealed that the maximum stress
in the solder layer under fixed constraints located at the bottom side, while it transferred
to the chip–solder interface corner under non-fixed constraints (Figure 4b,d). The above
results confirmed that the constraints had a significant effect on the deformation and stress
distribution of the solder layer, which must be the main factor for the difference in the
maximum σM values under different constraints.

 Fig. 4 

 

 

  Figure 4. The (a) deformation contour plot and (b) stress contour plot of the chip–solder layer
structure under the fixed constraint, and the corresponding (c) deformation contour plot and (d) stress
contour plot under the non-fixed constraint.
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3.2. Effects of Modeling Scope

When model II (Figure 1b) was under a fixed constraint, the N-point stress (σN) still
varied monotonically and cyclically with temperature loading (Figure 5A). In that condition,
the equivalent CTE of the copper layer was quite small because of its limited deformation.
Therefore, the main source of σN was still the CTE mismatch between the chip and the
solder layer. Since the fixed copper layer would hinder the shrinkage of the solder layer,
the equivalent CTE of the solder layer should be less than 26.0 ppm/K and larger than
the value in model I under the fixed constraint. Thus, the actual ∆CTE value of the chip
and solder layer in model II (under fixed constraint) was between the ∆CTE values of
the fixed and non-fixed constraints in model I. As a result, the maximum σN was about
27.7 MPa (Figure 5A), which was between 20.3 MPa and 40.2 MPa, obtained for the fixed
and non-fixed constraints in model I.

Fig. 5 

 

 

  
Figure 5. Stress evolution at N-point of model II under the (A) fixed constraint and (B) non-
fixed constraint.

Under the non-fixed constraint condition, a distinct stress fluctuation (i.e., the stress
recovery peak, about 11.7 MPa) can be observed at the location where σN should be at
a minimum (Figure 5B). The stress fluctuation phenomenon was often observed in the
thermal stress of joints in temperature cycling simulations. For instance, Zhang et al.
evaluated the von Mises stress of different lead-free solder joints in a chip scale package
device (consisting of the chip, solder joints and copper pad) under thermal cyclic loading.
Distinct stress recovery peaks during the ramp-up of temperature could be observed in all
the solder joints [21]. However, Amalu et al. performed a similar simulation, and no distinct
stress fluctuations were found in the solder joint, while intermetallic compound layers
were added at the up and bottom sides of the solder joints, respectively [31]. Although
the stress fluctuation must be caused by the CTE mismatch of the assembly materials in
the die-attach structure, the corresponding mechanism and possible impact on module
reliability were not clarified.

For the deformation contour plots (Figure 6a–c) corresponding to the stress recovery
peak (i.e., points A, B and C in Figure 5B), the internal deformation of solder layer was
relatively uniform and slight under fixed constraint. But at the stress recovery peak location
under the non-fixed constraint (Figure 6e), the shrinkages of the copper layer and the solder
layer should have an interaction and it disturbed the normal deformation of solder layer.
Therefore, the stress recovery peak should be attributed to the superposition of two stresses
generated by the chip–solder layer CTE mismatch and the solder layer and copper layer
CTE mismatch. In addition, probably due to this stress superposition effect, the maximum
σN reached 41.1 MPa under the non-fixed constraint [33].



Electronics 2022, 11, 62 8 of 12

Fig. 6 

 

 

  
Figure 6. The deformation contour plot corresponding to the points (a) A, (b) B and (c) C in the stress
recovery peak under the fixed constraint, and the (d–f) corresponding deformation contour plots
under the non-fixed constraint.

3.3. Effects of Substrates

The Q-point stress (σQ) under temperature cycling was simulated and analyzed using
model III (Figure 1c). The DBC substrate consisted of an AlN ceramic layer and double-side
copper layers, which were considered as an entirety. Its equivalent thermal expansion
coefficient was calculated by the following equation [34]:

αDBC = αceramic + (αCu − αceramic)·
ECu·dCu

ECu·dCu + Eceramic·dceramic
(6)

where α represents the CTE value, E represents the modulus of elasticity, and d is the thickness
of each layer. The equivalent CTE of the overall DBC substrate was about 6.5 ppm/K.

As shown in Figure 7, a stress recovery peak of σQ was observed under the non-fixed
constraint condition, with no stress recovery peaks under the fixed constraint. Since the
DBC substrate was considered as an entirety (which played a similar role and function as
the copper layer in model II), the σQ varied in the same manner as σN under the temperature
cycling. However, the stress recovery peak of σQ (1.7 ppm/K, Figure 7B) was significantly
smaller than the corresponding stress recovery peak of σN (11.7 ppm/K, Figure 5B).

Fig. 7 

 

 
  Figure 7. Stress evolution at Q-point of model III under the (A) fixed constraint and (B) non-

fixed constraint.

For the stress recovery peak in Figure 7B, the corresponding stress contour plots of
model III are depicted in Figure 8. The corners of the copper and AlN layer interface within
the DBC substrate generally had high stresses. When the temperature loading reached its
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maximum value, the stress at this location basically returned to its initial stress-free state. In
contrast, σQ was always smaller. However, while the stress at the corner of the copper–AlN
interface returned to the stress-free state, σQ was enhanced. Due to the bonding with the
AlN layer, the deformation of the upper copper layer was constrained. Therefore, the CTE
mismatch between the solder layer and the upper copper layer in model III was larger than
the state in model II. In other words, the DBC substrate limited the deformation of the solder
layer more strongly than the individual copper layer, and it could more significantly reduce
the CTE mismatch between the chip and the solder layer [35,36]. This was evidenced by
the fact that the maximum σQ value in model III (Figure 7B) was lower than the maximum
σN value in model II (Figure 5B). This complex interaction also affected the magnitude of
stress recovery peak in model III [33].

Fig. 8 

 

 

  

Figure 8. The stress contour plots of model III corresponding to the points (a) A, (b) B and (c) C in
the stress recovery peak under the non-fixed constraint.

To further analyze the effect of different substrate types or specifications on the stress
recovery peak, the model II was used for σN simulations. The copper layer in model II was
assumed to be a substrate, just like the substrate was considered as an entirety in model III.
Here, the CTE value of the copper was set virtually to 8.5–26.5 ppm/K for the purpose of
simulating different types of substrates [37]. As shown in Figure 9, the stress intensity of
both the main peak and stress recovery peak enhanced almost linearly with the increase
in the substrate CTE values. The slope of the stress recovery peak (k2 = 0.82) was larger
than that of the main peak (k1 = 0.31). Meanwhile, the minimum value deviation method
was also applied to compare the sensitivity of the main peak and stress recovery peak to
the substrate CTE values [31]. As listed in Table 3, when the substrate CTE increased from
8.5 ppm/K to 26.5 ppm/K, the maximum relative change of the main peak was 16.3% and
the maximum relative change of the stress recovery peak was 302.2%. It can be seen that
the stress recovery peak value was more sensitive to the change in substrate CTE. This also
proved that the stress recovery peak was mainly caused by the CTE difference between the
solder layer and the substrate.



Electronics 2022, 11, 62 10 of 12

Fig. 9 

 

 
 

Figure 9. The variation of N-point stress along with the change of substrate CTE values.

Table 3. Magnitude and deviation in N-point stress values under non-fixed constraint.

Substrate CTE
(ppm/K)

σN (MPa) Deviation from the Least Value (%)

Main Stress Peak Stress Recovery Peak Main Stress Peak Stress Recovery Peak

8.5 37.5 4.6 0.0 0.0
13.0 39.4 7.9 5.1 71.7
17.5 39.7 13.0 5.9 182.6
22.0 41.3 17.0 10.1 269.6
26.5 43.6 18.5 16.3 302.2

Since the DBC substrate could indirectly affect the thermal stress at the chip–solder
interface and led to the appearance of stress recovery peak, the potential influence of all
assembly materials in the die-attach structure should be considered when conducting
studies, such as module life prediction and reliability estimation [38]. Especially when the
intermetallic compound layer or additional functional film layer are included in the finite
element models, their influence on the thermal stress will be more complex [39,40]. Since
this study used a simplified model and did not consider the joint strength, a more in-depth
evaluation combining simulation and experiment is needed in future studies to understand
the real effect of stress recovery peak on module reliability. It will be meaningful for the
design and reliability evaluation of die-attach structures.

4. Conclusions

The finite element method was used to analyze the effects of boundary conditions and
modeling scopes on the stress at the chip–solder layer interface during thermal cycling.
A simplified power die-attach structure, consisting of a SiC chip, a solder layer and a
DBC substrate, was built to explore the influences of boundary conditions and modeling
scopes on the thermal stress at the chip–solder interface corner during thermal cycling. The
results indicate that the boundary conditions directly affect the stress magnitude and stress
distribution in the solder layer. In addition, materials such as the copper layer or DBC
substrate, which are not directly bonded to the chip–solder interface, also indirectly affected
the chip–solder interfacial stress. Due to the superposition of two stresses generated by the
chip–solder layer CTE mismatch and the solder layer and DBC substrate CTE mismatch,
stress recovery peaks appear at the chip–solder layer interface stress curve during the
ramp-up in temperature. The magnitude of the stress recovery peak will increase with the
degree of CTE mismatch between the solder layer and the DBC substrate.
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