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Abstract: The detection and counting of wheat ears are essential for crop field management, but
the adhesion and obscuration of wheat ears limit detection accuracy, with problems such as false
detection, missed detection, and insufficient feature extraction capability. Previous research results
have shown that most methods for detecting wheat ears are of two types: colour and texture extracted
by machine learning methods or convolutional neural networks. Therefore, we proposed an improved
YOLO v5 algorithm based on a shallow feature layer. There are two main core ideas: (1) to increase the
perceptual field by adding quadruple down-sampling in the feature pyramid to improve the detection
of small targets, and (2) introducing the CBAM attention mechanism into the neural network to solve
the problem of gradient disappearance during training. CBAM is a model that includes both spatial
and channel attention, and by adding this module, the feature extraction capability of the network can
be improved. Finally, to make the model have better generalization ability, we proposed the Mosaic-8
data enhancement method, with adjusted loss function and modified regression formula for the
target frame. The experimental results show that the improved algorithm has an mAP of 94.3%, an
accuracy of 88.5%, and a recall of 98.1%. Compared with the relevant model, the improvement effect
is noticeable. It shows that the model can effectively overcome the noise of the field environment to
meet the practical requirements of wheat ear detection and counting.
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1. Introduction

Wheat is an important food crop globally and is consumed by almost one-third of the
population. Current wheat yield forecasting has become an essential part of agricultural
production. It can provide a necessary reference for field management and agricultural
decision making [1]. Therefore, the accurate identification and counting of wheat ears
are essential for monitoring crop growth, estimating wheat yield, and analysing plant
phenotypic characteristics.

The number of wheat ears is mainly gathered by manual field yield prediction, capacity
prediction, prediction based on annual scenario [2], and forecast based on remote sensing
images [3]. Manual field judgements are mainly empirical, have low accuracy, and are
also labour-intensive. Volumetric methods are costly and inefficient in wheat density
measurement. Remote sensing is based on satellite images as samples. As these images are
distant, they are only suitable for large-scale processing and analysis, resulting in a low
accuracy of wheat prediction. Meanwhile, multiple linear regression-based predictions are
heavily influenced by variables such as precipitation, making accuracy difficult to guarantee
and unsuitable for field yield estimation. Traditional image processing techniques often use
moving window methods [4] or superpixel segmentation [5] to harvest the image, extract
colour or texture features from the sub-image, then train a classifier and use the classifier to
identify the wheat ears and complete the count, or they highlight the wheat ears through
image processing methods, such as binarising the image to place the ears after removing
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the adhesion [6]. In contrast, visual sensors can acquire rich texture and colour information
at a lower cost. However, the colour-texture characteristics of wheat affect the detection
accuracy. Therefore, detecting and counting wheat ears in the natural environment remains
a significant challenge.

In addition, the adhesion and occlusion between wheat ears severely limit the accuracy
of wheat ear identification and counting. Several scholars have attempted to successfully
detect adhering objects using segmentation techniques such as morphology [7], concave
point matching [8], and watershed algorithms [9]. However, the morphological variation of
wheat ears in images is considerable. Therefore, morphology-based segmentation cannot
necessarily be used to identify wheat ears in the adherence zone, resulting in missed and
false detections. In addition, the notch matching algorithm cannot detect objects with
sharper edges. However, as we all know, the advantages of wheat ears are not smooth,
and burr edges are susceptible and delicate and are particularly prone to blend in with
complex backgrounds, making it difficult to obtain smooth edges of wheat ear images, even
if their binary images undergo a series of erosion and expansion operations. The watershed
algorithm requires the calculation of local extremes. However, there are more local extremes
since the wheat ears have a detailed texture. Therefore, a watershed algorithm for detecting
wheat ears would lead to over-segmentation. Thus, the problem of how to accurately count
mutually-occluded wheat ears remains an urgent one.

With the development of image processing techniques, previous studies [10] have
shown that classifiers for wheat ear detection were built using machine learning methods,
which led to wheat ear detection and counting. Xu et al. used the k-means algorithm
to segment wheat ears to achieve recognition [11]. Although the recognition of wheat
ears was performed based on machine learning methods, most of them still required a
priori knowledge to artificially set up image features, which led to insufficient recognition
accuracy in field environments with noise disturbances such as uneven lighting and com-
plex backgrounds. At the same time, it is difficult to detect and count sheaves of wheat
in different scenarios based on traditional machine learning methods due to the lack of
generalisation ability of the models.

In recent years, deep learning has achieved impressive results in many fields. Sig-
nificant progress has been made in target detection technology, one of the core problems
in computer vision. Target detection uses image processing, deep learning, and other
techniques to classify and locate target objects from an image or video, determine whether
the input image contains target information, and select the target location and category.
Deep learning-based target detection algorithms are mainly divided into two categories.
One is the two-stage detection algorithm represented by R-CNN (region-CNN) [12] and
Fast-RCNN (regions with CNN features) [13]. Based on feature extraction, firstly, many
candidate regions are generated, and then they are classified and regressed. The other is a
single-stage detection algorithm represented by an SSD (Single Shot MultiBox Detector) [14]
and the YOLO (you only look once) series of algorithms, which performs classification and
regression tasks while generating candidate frames. The specific problem of wheat quan-
tity detection is currently being investigated nationally and internationally. For example,
HASAN et al. [15] used R-CNN, and MADEC et al. [16] used Faster-RCNN to detect wheat
ears. Studies have also used single-stage target detection algorithms, such as counting
wheat sheaves, using target detection algorithms such as YOLO [17]. Xiong et al. used
context-enhanced local regression networks to detect and measure wheat sheaves [18].
Brilliant results have also been achieved using convolutional neural networks (CNNs) in
detecting and counting wheat ears [19–21]. Although convolutional neural networks are a
class of feedforward neural networks that include convolutional computation and have a
deep structure, they are one of the representative algorithms for deep learning. However,
the core of the CNN-based approach to detection is based on the region proposal method,
where a sliding window or extracted proposal is first selected to train the network. Then
classification is performed in the region proposal. The limitation of this approach is that
background regions are often mistaken for specific targets in object recognition. Wheat
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images captured in a field environment have many distracting factors such as high plant
density, multiple overlaps, uneven lighting, and complex backgrounds. Therefore, there
are still problems worth exploring and solving for wheat detection based on deep learning.

The YOLO family has spawned many versions as a representative framework for
single-stage detection. YOLO is a high-performance general-purpose target detection
model. YOLO v1 [22] uses a single-stage detection algorithm for the two tasks of locating
a target and classifying the target object. Subsequently, YOLO v2 [23] improved in three
areas: more accurate predictions, faster speed, and more objects recognised than the v1
version. YOLO v3 [24] accelerated the implementation of object detection by introducing
multi-scale prediction, core network optimisation, and loss function improvements. YOLO
v4 [25] presented an efficient and fast object detection model that significantly reduced the
computational number of parameters, making it easier to deploy on general-purpose and
hardware devices. Compared with YOLO v4, YOLO v5 has a smaller and more flexible
structure, faster image inference, and is closer to natural production and life. However,
the actual environment in which wheat is grown is complex. The main problems are
(1) severe object occlusion, with wheat ears obscuring and overlapping each other; (2) dense
objects, with multiple piles of wheat ears challenging to distinguish; (3) small target objects,
with the whole target taking up a smaller proportion of the whole image; (4) complex
backgrounds, increasing the difficulty of feature target extraction, and these practical
factors undoubtedly affect the detection accuracy of wheat. We also found that YOLO v5
also suffers from insufficient bounding box localisation and has difficulty distinguishing
between overlapping detection objects, especially objects such as wheat ears that are heavily
occluded. However, the presence of an attention mechanism can effectively solve these
problems. When processing information, the attention module resembles the human visual
attention mechanism by scanning the global image to obtain the target area that needs
to be focused on and then devoting more attention resources to this area to obtain more
detailed information related to the target while filtering out the secondary data to improve
the model effect. The Convolutional Block Attention Module (CBAM) [26] was integrated
into the convolutional module of YOLO v5 to implement the learning of target features and
location features in the channel dimension and global spatial dimension, respectively. One
of the difficulties for small target detection is that using multi-level convolution operations
may lead to small targets, with small pixel occupancy being lost in the process. To solve this
problem, we proposed to add a quadruple downsampling layer to the original YOLO v5
feature pyramid to improve the semantic information of small targets and, thus, make the
model’s prediction more accurate. To the best of our knowledge, there are few reports on
the detection and counting of wheat ears by YOLO v5 models using the improved method
described above.

Therefore, this study rationalises a novel and simple method based on YOLO v5
to detect the number of wheat ears. Firstly, the real wheat images were pre-processed
considering their quality, and on top of the image enhancement, we proposed an 8-Mosaic
data enhancement method inspired by the 4-Mosaic of the original YOLO v5 model. At the
same time, data enhancement methods such as varying degrees of brightness conversion,
increasing contrast by different multiples, and performing random multi-angle rotation
were performed on the dataset to greatly enrich the number of samples for wheat ear
recognition in complex backgrounds. Next, the colour and texture features of the wheat ear
images were extracted, and parameters defining the subsequent training were established.
Next, an improved YOLO v5 neural network model was built in PyTorch. The main im-
provements were: (1) eliminating background interference by using a two-channel (channel
and spatial channel) attention mechanism, and (2) enriching the semantic information of
small targets by adding 4-fold downsampling layers and improving the feature pyramid
structure to improve the robustness of the model. The GWHDD dataset was then divided
into a training set and a test set according to a 9:1 ratio, and input and output matrices
were created for training and testing. Finally, the loss function was improved to GIOU [27]
to speed up the convergence of the model according to the actual recognition situation.
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In China, there have been few problems involving deep learning for wheat counting so
far. The network model proposed in this paper provides a new idea and direction for the
accuracy of wheat counting. It will facilitate the rapid development of sustainable, green,
and automated smart agriculture.

The remainder of the paper is organised as follows: Section 2 presents the proposed
method for processing wheat ear images and the specification of the improved process.
Section 3 presents the experiments and results. Section 4 offers a discussion of the proposed
method. Section 5 concludes the paper.

2. Materials and Methods
2.1. Data Processing
2.1.1. Data Acquisition and Annotation

The data sets were from the Global Wheat Head Detection Dataset (GWHDD) [28],
including 3376 RGB images (1024 × 1024 pixels) with a total of 145,665 wheat ears. These
wheat images come from different regions, including Europe (France, Switzerland, United
Kingdom), North America (Canada), Oceania (Australia), and Asia (Japan, China). The
acquired images have great differences, including different varieties, different planting
conditions, and different image acquisition methods. Therefore, the wheat samples from
GWHDD are diverse and typical. Part of the wheat image is shown in Figure 1. The
relevant dimensions of the dataset are shown in Table 1.
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Figure 1. Samples of the wheat ears from the datasets.

Table 1. Wheat related data.

Title 1 Image Number Width Height Wheat Frame Coordinates
Source

0 b6ab77fd7 1024 1024 [834.0, 222.0, 56.0, 360] usask_l
1 b6ab77fd7 1024 1024 [226.0, 548.0, 130.0, 580] usask_l
2 b6ab77fd7 1024 1024 [377.0, 504.0, 74.0, 160.0] usask_l
3 b6ab77fd7 1024 1024 [834.0, 95.0, 109.0, 107.0] usask_l

In Table 1: width, height (the width and height of the images in the dataset); wheat
frame coordinates (the coordinates of the center point of the wheat bounding box in the
image, as well as the length and width of the bounding box); source location (the source
location of the wheat in the picture).
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Based on the data in Table 1, combined with specific wheat pictures, it is clear that the
difficulties in detecting wheat ears are as follows: (1) dense wheat plants often overlap;
(2) wind can blur photographs; and (3) appearance can vary depending on maturity, colour,
genotype, and head orientation, and the geographical source distribution is critical in terms
of appearance.

The labelled images comprising the GWHD dataset came from datasets collected
between 2016 and 2019 by nine institutions at ten different locations covering genotypes
from Europe, North America, Australia, and Asia. These individual datasets are called
“sub-datasets.” They were acquired over experiments following different growing practices,
with row spacing varying from 12.5 cm (ETHZ_1) to 30.5 cm (USask_1). They include
normal sowing density (Arvalis_1, Arvalis_2, Arvalis_3, INRAE_1, part of NAU_1) and
high sowing density (RRes_1, ETHZ_1, part of NAU_1). The GWHD dataset covers a
range of pedoclimatic conditions, including very productive context such as the loamy
soil of the Picardy area in France (Arvalis_3), silt-clay soil in mountainous conditions such
as the Swiss Plateau (ETHZ_1) or Alpes de Haute Provence (Arvalis_1, Arvalis_2). The
geographical source distribution is shown in Figure 2.
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Figure 2. Wheat source distribution map.

Through crawling and other technical means, we finally obtained 3358 photos of wheat
ears with different growth environments, different shooting angles, and different maturity
stages. The label software was used to label them into the VOC dataset format. At the
same time, we manually re-checked the labelled dataset (as shown in Figure 3) to make it
as accurate as possible.
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2.1.2. Data Augmentation

To obtain a well-performing neural network model, a large amount of data is often
required to support it. However, acquiring new information is often costly in time and
labour, so data augmentation is necessary. With data augmentation techniques, the data can
be enhanced by using computer-generated data and increasing the amount of data, such as
scaling, panning, rotating, colour transformations, and other methods. The advantage of
data augmentation is that the number of training samples can be increased, and appropriate
noisy data can be added, thus improving the model’s generalisation and using the most
basic data enhancement method in YOLO v5. The main idea was to cut and scale four
pictures randomly and then randomly arrange and stitch them into one image to enrich
the dataset and increase small samples. The goal was to improve the training speed of the
network. The process of the Mosaic data enhancement is shown in Figure 4.
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Inspired by the Mosaic idea, this paper used Mosaic-8, i.e., eight images were randomly
cropped, randomly arranged, and randomly scaled, and then they were combined into one
image to increase the amount of data in the sample. At the same time, some random noise
was reasonably introduced to improve the network model’s ability to recognise small target
samples in images and enhance the model’s generalisation ability, the details of which are
shown in Figure 5.
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In order to improve the robustness of the detection model, a variety of methods
were adopted for data enhancement. The specific operations were as follows: (1) perform
different levels of brightness conversion, and the brightness of the image was increased
by 1.3 times and decreased by 0.7 times, respectively, so that the wheat target detection
model was not affected by the diversity of light in the field environment; (2) increase the
contrast of the wheat image by 1.2 times and weaken it by 0.8 times, so that the sharpness,
gray level, and texture details of the wheat image could be better expressed; (3) perform
random multi-angle rotation, such as 90◦, 270◦, horizontal flip, mirror flip, etc.
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2.2. The Improved Network Model
2.2.1. Feature Extractor

In the most primitive YOLO v5 backbone network, three different feature layers
are used to detect objects of various sizes. The images enter this detection network and
are sequentially passed through the 8× downsampling, 16× downsampling and 32×
downsampling layers to obtain three additional sized feature images, fed into the feature
fusion network for target recognition. Through the idea of a feature pyramid network [29],
we found that, although the feature pictures obtained after deep convolution are rich
in semantic information, some target location information will be lost during multiple
convolutions, which is not conducive to small target detection. Although the semantic
information of the feature image obtained after shallow convolution is not rich enough, the
target’s location information is more accurate.

In a complex environment, most wheat ears are detected with targets representing
only a tiny part of the whole image. Therefore, in this paper, a 4× downsampling layer was
added to the YOLO v5 backbone network to improve the location information for small
target detection, and the network structure is shown in Figure 6.
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After 4× downsampling, the original image is fed into a feature fusion network to
obtain a feature map of the new dimension. This feature map has a small field of perception
and relatively affluent position information, which improves the detection of small objects.

In convolutional neural networks, the feature pictures we obtained through different
convolutional layers contain different target features. The feature images obtained by
shallow convolution have high resolution and relatively rich target location information,
but the semantic information is not obvious, while the feature images obtained by deep
convolution have low resolution and richer semantic information, but the lost target
location information is also more abundant. Therefore, the shallow convolution layer can
discriminate simple objects, while the deep convolution layer can discriminate complex
objects. The fusion of information between the shallow and deep convolutional layers is
more beneficial for object detection, which is the principle of feature fusion networks. As
we can see in Figure 7, a feature pyramid network is combined with a path aggregation
network [30], with the feature pyramid network conveying deep semantic features from
top to bottom and the path aggregation network conveying the location information of
the target from bottom to top. By fusing top-down and bottom-up feature information,
the model can learn features better and improve the accuracy of the model for small
target detection.
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2.2.2. Introduce Convolutional Attention Module

Based on the YOLO v5 framework, the convolutional block attention module CBAM
(Convolutional Block Attention Network) was introduced. CBAM consists of a channel and
spatial attention module, as shown in Figure 8. For input feature F, the global information
of each feature channel was obtained by the global average pooling and maximum pooling
operations, and then the future channel attention vector was obtained through two fully
connected layers, FC1 and FC2, which were used to weigh the input feature F channel by
channel to obtain the feature F′.
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For the spatial attention module, the feature was subjected to the maximum pooling
operation to obtain the feature map, which was used to calculate the spatial information
of the feature map. In addition, the feature F′ was input into a 3 × 3 convolutional layer
and output by the sigmoid function to obtain the spatial attention map, which was used to
activate the feature F′ to obtain the fusion feature F”.

Leaves or other wheat ears usually concealed the information for detecting wheat
ear characteristics. Therefore, the channel attention module could enhance the feature
expression of the occluded target related to the current task.

2.2.3. Introduce Target Box Regression

Target frame regression aims to find a mapping relationship. The mapping of a
candidate target frame (Region Proposal) is infinitely close to that of an actual target frame
(Ground Truth). The prediction of the basic structure is made by regressing the relative
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position of the frame relative to the upper left corner of a grid. The relationship between
the a priori frame and the predicted structure is shown in Figure 9, where the dashed
frame represents the a priori frame, and the solid frame represents the expected frame.
The prediction frame is obtained by translating and scaling the a priori frame. According
to the feature map size, the original image is divided into S × S grid cells. Each grid cell
will predict three prediction frames, each containing four coordinate information and one
confidence level information. When the centre of a target in a natural frame falls in a grid,
that grid predicts the target.
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The predicted coordinates of the target frame are shown in Equations (1)–(4):

bx = 2σ(tx)− 0.5 + cx (1)

by = 2σ
(
ty
)
− 0.5 + cy (2)

bw = pw(2σ(tw))
2 (3)

bh = ph(2σ(th))
2 (4)

The network model prediction yields four offsets, tx, ty, tw, th, σ, which represent the
Sigmoid activation function used to map the network prediction values, tx, ty, tw, th to
between [0, 1], cx, cy is the offset in the cell grid relative to the top left corner of the image,
and pw, ph is the a priori box width and height. The final centre coordinates bx, by, and
width bw and height bh of the predicted target box are obtained by the above equation.
σ(to) is the confidence level of the predicted frame, obtained by multiplying the probability
of the predicted frame and the IoU value of the predicted frame with the real frame. A
threshold is set for σ(to) to filter out the prediction frames with low confidence, and then
the final prediction frame is obtained by using Non-Maximum Suppression (NMS) [31] for
the remaining prediction frames.

2.2.4. Loss Function

The original YOLO v5 loss function is shown in Equation (5), consisting of locality loss,
confidence loss, and category loss. The confidence loss and category loss are calculated
using the binary cross-entropy loss function, as shown in Equations (7) and (8), where K
denotes the final output of the network divided into K × K lattices, M denotes the number
of anchor frames corresponding to each lattice, Iobj

ij denotes anchor frames with targets,
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Inoobj
ij denotes anchor frames without marks, and λnoobj denotes the confidence loss weight

coefficient of anchor frames without effects.

Lossobject = Lossloc + Losscon f + Lossclass (5)

Lossloc = 1− GIoU (6)

Losscon f = −
K×K
∑

i=0
Iobj
ij [

ˆ
C

j

i log(Cj
i ) + (1−

ˆ
C

j

i)log(1− Cj
i )]

−λnoobj
K×K
∑

i=0

M
∑

j=0
Inoobj
ij [

ˆ
C

j

i log(Cj
i ) + (1−

ˆ
C

j

i)log(1− Cj
i )]

(7)

Lossclass = −
K×K

∑
i=0

Iobj
ij ∑

c∈classes
[

ˆ
P

j

i log(Pj
i ) + (1−

ˆ
P

j

i)log(1− Pj
i )] (8)

GIoU = IoU − |C− GT ∪ P|
|C| =

|P ∩ GT|
|P ∪ GT| −

|C− GT ∪ P|
|C| (9)

As shown in Figure 10, the black box is the actual box, denoted GT, the green box is
the prediction box, denoted P, and the grey box is the smallest box that wraps both the
basic package and the prediction box, marked C, where c is the length of the diagonal of
the grey box, and d is the length of the centroid of the actual container and the centroid of
the prediction box. The GIoU is calculated as shown in Equation (9).
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Unlike the original IoU, GIoU focuses not only on the overlap area between the actual
frame and the predicted frame, but also on other non-overlapping areas, so you can better
reflect the overlap between the two compared to the original IoU.

On the most miniature feature map, it should be used to detect large targets because
its perceptual field is the largest, so large-scale feature maps should be applied to small
size a priori frames, and small size feature maps should be applied to large scale a priori
frames for the regression of prediction frames. In this paper, a four-scale detection structure
was used, and the correspondence between the size of the feature map and the size of the a
priori frame for each of the four scales is shown in Table 2.
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Table 2. The relationship between the size of the feature map and the size of the a priori box.

Characteristic Map Size Characteristic Map Size

13 × 13 [116, 90] [156, 198] [373, 326]
26 × 26 [30, 61] [62, 45] [59, 119]
52 × 52 [10, 13] [16, 30] [33, 23]

104 × 104 [5, 6] [8, 14] [15, 11]

2.3. An Improved Wheat Ear Detection Counting Model Based on YOLO v5

Finally, we improved the overall network structure based on the YOLO v5 network,
as shown in Figure 11. The network enhances the mining of small target features by
adding a feature map with one-fourth of the input image size, using multi-scale feedback
to introduce global contextual information to improve the recognition of small targets
in images. The CBAM attention module was also introduced to extract helpful location
information. The loss function uses GIOU to better describe the regression of target frames
in terms of overlap area, centroid distance, and aspect ratio. Based on the original YOLO
v5 using Mosaic-8 data enhancement, the formula of target frame regression was modified
to improve the convergence accuracy of the model.
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The overall detection process is as follows: first, the training and validation sets were
constructed using the manually labelled wheat dataset. Secondly, the training set of wheat
images was used to fine-tune the model based on the migration learning approach. Again,
the model was tuned, optimised, and validated using the validation set. Finally, the model
was tested using the test set, and wheat ear detection and counting results were generated.
Among them, the wheatsheaf recognition results are presented in the form of a bounding
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box. Counting wheat sheaves is based on wheatsheaf recognition, and the results are shown
in bounding boxes and statistical ordinal numbers.

2.4. Evaluation of the Model Performance

To test the effectiveness of the model and to verify the transfer performance of the
attention information on the model, intersection over union (IOU) was used to evaluate
the accuracy of the model according to the coincidence rate of the output box and the label
box. Setting a different IOU threshold will result in different numbers of detection frames.
Among them, a high threshold results in a small number of detection frames, and a low
threshold results in a large number of detection frames. When the detected wheat ear target
is small, if a larger threshold is set, the detection of the wheat ear may be missed. Therefore,
the threshold value was 0.5 in this study.

In addition, this paper introduced precision (P), which is precision rate, recall rate (R),
and mean average precision (mAP), to evaluate the performance of the detection model.

P =
TP

TP + FP
(10)

R =
TP

TP + FN
(11)

F1 − score =
2× P× R

P + R
(12)

AP =
∫ 1

0
P(R)dR (13)

mAP =

N
∑

i=1
APi

N
(14)

Among them, true positives (TP) mean that both the detection result and the true value
are wheat ears, that is, the number of wheat ears was detected correctly. False positives
(FP) indicate that the detection result is wheat ears, and the true value is the background,
that is, the number of wheat ears counted incorrectly. False negatives (FN) mean that the
detection result is the background, and the true value is the wheat ears, that is, the number
of wheat ears that are not counted.

“TP + FP” refers to the total number of wheat ears detected, and “TP + FN” refers to
the total number of wheat ears in an image. F1-score was used to evaluate the method’s
performance by balancing the weights of precision and recall.

TP, FP, and FN in precision (Formula (10)) and recall (Formula (11)) represent the
number of correctly detected, incorrectly detected, and missing frames. Where the AP
value refers to the area of the P-R curve, this paper used the interpolation method to
calculate the integral in Formula (13). In Formula (14), the value of mAP is obtained by
averaging all categories of AP. N represents the total number of types detected. The larger
the value of mAP in this experiment, the better the algorithm detected and the higher the
recognition accuracy. The coefficient of determination (R2), root mean square error (RMSE),
and Bias were used as evaluation indicators to measure the counting performance of the
model, which are defined as follows:

R2 = 1− ∑n
i=1(mi − ci)

2

∑n
i=1(mi −m)2 (15)

RMSE =

√
1
n∑n

i=1(mi − ci)
2 (16)

Bias =
1
n∑n

i=1(mi − ci) (17)
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where n represents the number of wheat ear pictures, mi, ci represent the number of wheat
ears manually labeled and counted by the model in the i-th image, and m represents the
average number of wheat ears. Bias represents the average number of ears of each image
detected and the actual error.

3. Results
3.1. Model Training

The model training and validation were performed using the training set and valida-
tion set in Table 1. The model training parameters were set as follows: learning rate = 0.001,
momentum = 0.9, decay = 0.0005, batch size = 16. Adaptive Momentum Estimation (Adam)
was used to optimize the training model. The hardware parameters for the experiments
were an Intel Xeon Gold 6130H processor and an NVIDIA GeForce GTX 1080Ti GPU, imple-
mented using the Pytorch deep learning framework and Python programming. The CUDA
11.4.0 parallel computing framework and the CUDNN 8.2 deep neural network acceleration
library were used in this study, and the total number of iterations in the experiments was
300. Figure 12 shows the model verification accuracy and training loss values obtained in
each iteration during the training process.
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It can be seen from Figure 12 that the training accuracy of the model gradually in-
creased as the number of iterations increased, and the training loss value of the model
gradually decreased as the number of iterations increased. The model learning efficiency
was high in the initial model training stage, and the training loss curve converged more
quickly. After 50 iterations, the loss value decreased slowly. When the iteration reached
200 times, the loss curve was almost flat. As the number of iterations increased, the slope of
the training loss curve gradually decreased. Finally, when the number of training iterations
reached about 300, the fluctuation trend of the loss value gradually stabilised, and the
corresponding accuracy no longer changed.

At the same time, it could be seen from Table 3 that our model was effective in
detecting wheat ears, even though the shape, colour, and texture of wheat ears in the image
were different. The F1-score was 89.3%, the mAP was 94.3%, the precision was 88.5%, and
recall was 98.0%, indicating that our model did not have problems such as over-fitting or
under-fitting and gradient disappearance.

Table 3. Evaluation indicators of wheat ear detection.

Data F1-Score/% Precision Recall mAP

GWHDD 89.3% 88.5% 98.0% 94.3%

It can be seen from Figure 13 that the wheat in the image can be detected by image
enhancement, and the trained model can be used for counting wheat ears.
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3.2. Results of Detecting Wheat Ears

To evaluate the performance of the YOLO v5 model proposed in this study, we used
the test set to compare the detection of wheat ear counts by typical convolutional neural
networks such as Faster-RCNN, SSD, YOLO v3, YOLO v4, YOLO v5, and some references.
The test set results are shown in Table 4, from which we can see that our model had a great
improvement compared with other models. If the same series of YOLO v5 is used as the
benchmark, then the mAP has increased by nearly three percentage points, which shows
that the model has beneficial for detecting wheat ears.

To compare the effect of the proposed method of estimating the number of wheat ears,
20 images were randomly selected from each test set of GWHDD images. Our model was
used to detect and count the number of wheat ears. The results are shown in Figure 14. The
R2 of the model was 0.976 for GWHDD, and the RMSE corresponding to the data sets was
3.178. In addition, the results of our method count deviation values that are 2.37.
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Table 4. The results of wheat ear detection based on different methods.

Model Precision Recall mAP (%)

Faster-RCNN 47.5% 46.9% 39.2%
SSD 91.2% 36.7% 69.5%

YOLO v3 76.6% 92.2% 88.8%
Reference [32] 76.9% 93.1% 89.5%

YOLO v4 77.8% 93.4% 90.3%
Reference [33] 87.5% 91.0% 93.1%

YOLO v5 88.7% 98.0% 91.9%
Our method 88.5% 98.0% 94.3%
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Figure 15 shows part of the counting results from the data sets, which were counted
based on the proposed method, and the results were compared with the ground truth.
It was easy to see that the method we proposed had better robustness, and even if the
distribution of wheat ears was relatively concentrated, better counting results could be
obtained. At the same time, we also found that the improved YOLO v5 method could detect
wheat ears with a complex background, but some of the detection results were higher than
the ground truth. A possible reason was that the sample label was insufficient, which led
to some wheat leaves being misjudged.
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4. Discussion
Comparison of the Effect of Wheat Ear Detection and Counting under a Complex Background

The detection accuracy of the model under the complex background of the natural
environment will be affected to a certain extent. In particular, it was difficult to detect
wheat ears when the leaves covered the samples and the wheat ear samples overlapped
each other. To test the detection effect of the model proposed in this study under a complex
background, 20 images with severe occlusion were selected as data set A and 20 images
with slightly occluded wheat ears as data set B. The degree of occlusion was used as a
control variable, and our model was used to detect data sets A, B, and A + B, respectively.
The detection results are shown in Table 5 and Figure 16. For the detection of lightly
obscured wheat ears (data sets A), the F1-score of the model can reach 0.941, and the mAP
can reach 97.2%. In a heavily occluded environment with dense targets (data sets B), the
model can also achieve an F1 value of 0.923 and an mAP value of 95.8%. The two data sets
were mixed into one data set (A + B), and the F1-score and the mAP of the model reached
0.932 and 96.7%. It showed that our model could effectively detect wheat ears in the natural
field environment.

Table 5. Evaluation indicators of wheat ear detection.

Test Set Precision Recall F1-Score mAP (%)

A 0.941 0.936 0.941 97.2%
B 0.948 0.902 0.923 95.8%

A + B 0.955 0.910 0.932 96.7%
A = 20 images with severely occluded wheat ears; B = 20 images with lightly occluded wheat ears.
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As shown in the density maps in Figure 16, the colours in the maps reflect the size
of the density value. The darker the colour, the greater the density value. It could be
seen from Figure 16 that the detection and counting of wheat ears can meet the needs of
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conventional farmland management, regardless of whether the wheat ears are severely
occluded or slightly occluded. On the one hand, high-density wheat planting will result
in denser wheat ears and severe occlusion. On the other hand, the camera shooting angle
will increase the sample occluded by wheat ears [34]. In fact, in fields with dense heat
ears, even experts must count the number of wheat ears multiple times to obtain reliable
measurement results.

To further verify the detection performance of the algorithm proposed in this study
and to explore the effectiveness of each improved method, we designed three ablation
experiments based on YOLO v5, each using the same hyperparameters and training tech-
niques. It could be seen from Table 6 that the precision, recall, and mAP of our model were
the highest. Among them, the mAP of YOLO v5 + 4× + CBAM was 94.42%, 2.82%, and
0.29% higher than that of the YOLO v5 and YOLO v5 + 4×models, respectively. The results
showed that our proposed method improves the model’s detection accuracy.

Table 6. Different algorithms for wheat ear detection.

Model Precision Recall mAP (%)

YOLO v5 88.70% 98.01% 91.60%
YOLO v5 + 4× 89.63% 98.04% 94.13%

YOLO v5 + 4× + CBAM 88.52% 98.06% 94.32%

Figure 17 shows the precision-recall curves of three YOLO models on wheat ears.
It can be seen from Figure 11 that when the recall of the three models was less than 0.1,
the precision remained around 1.0, and the difference was not significant. However, we
can see that increasing the shallow feature layer had a greater effect on small targets and
mAP increased by 2.72%. Although the mAP only increased by 0.19% after adding CBAM,
its corresponding precision was larger than the other two models, indicating that spatial
attention could improve the detection performance of the model and could fully reflect the
advantages of a spatial attention module.
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5. Conclusions

Wheat counting is an important research area in agricultural yield estimation. Based
on the original YOLO v5 algorithm, this paper improved on five aspects: Mosaic data
enhancement, feature extraction, loss function, target frame regression, and attention mech-
anism, which effectively improved the detection accuracy of the YOLO v5 network model
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for small target objects. Finally, a neural network model for training image recognition was
developed. The conclusions can be summarised as follows:

(1) Convolutional neural networks can play an important role in studying wheat
counting, using the improved YOLO v5 to detect wheat counts. Its recognition speed is
fast, and the recognition rate is high. After pre-processing, feature extraction, and network
optimisation, the training recognition rate can reach 94.42%.

(2) The application of Mosaic-8 in the image pre-processing process can accelerate the
convergence speed of the model.

(3) The recognition rate of colour and texture features in complex backgrounds can be
significantly improved by introducing a shallow feature layer and an attention mechanism.

(4) The method achieves fast and accurate recognition of what counts while also
eliminating the need to rely on complex technologies such as remote sensing, which helps
to significantly reduce the labour intensity of agricultural practitioners and thus improve
work efficiency. In the future, there is a need to increase the number of images collected
at different heights to cover the whole process of wheat counting and to increase the
number of training samples to improve the recognition rate. In addition, detection methods
can be combined with drones to compress the number of model parameters and achieve
real-time detection.

The neural network model proposed in this report will shed new light on wheat
counting. Due to its unique advantages, crop yield estimation will break new ground.
However, fast detection still needs specific hardware configuration. We will continue to
optimise our model and use pruning technology to optimise the model. At the same time,
we will continue to increase the research on more wheat varieties and increase the scope
of application. We believe it can make a great contribution to sustainable, green, and
automated agriculture.
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