
Citation: Han, S.-H.; Lee, D.

Kernel-Based Real-Time File Access

Monitoring Structure for Detecting

Malware Activity.. Electronics 2022,

11, 1871. https://doi.org/10.3390/

electronics11121871

Academic Editor: Antonio Pescapè

Received: 12 April 2022

Accepted: 10 June 2022

Published: 14 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Kernel-Based Real-Time File Access Monitoring Structure for
Detecting Malware Activity
Sung-Hwa Han 1 and Daesung Lee 2,*

1 Department of Information Security, Tongmyong University, Busan 48520, Korea; shhan@tu.ac.kr
2 Department of Computer Engineering, Catholic University of Pusan, Busan 46252, Korea
* Correspondence: dslee@cup.ac.kr

Abstract: Obfuscation and cryptography technologies are applied to malware to make the detection
of malware through intrusion prevention systems (IPSs), intrusion detection systems (IDSs), and
antiviruses difficult. To address this problem, the security requirements for post-detection and proper
response are presented, with emphasis on the real-time file access monitoring function. However,
current operating systems provide only file access control techniques, such as SELinux(version
2.6, Red Hat, Raleigh, NC, USA) and AppArmor(version 2.5, Immunix, Portland, OR, USA), to
protect system files and do not provide real-time file access monitoring. Thus, the service manager
or data owner cannot determine real-time unauthorized modification and leakage of important
files by malware. In this paper, a structure to monitor user access to important files in real time is
proposed. The proposed structure has five components, with a kernel module interrelated to the
application process. With this structural feature, real-time monitoring is possible for all file accesses,
and malicious attackers cannot bypass this file access monitoring function. By verifying the positive
and negative functions of the proposed structure, it was validated that the structure accurately
provides real-time file access monitoring function, the monitoring function resource is sufficiently
low, and the file access monitoring performance is high, further confirming the effectiveness of the
proposed structure.

Keywords: real-time monitoring; hidden malware; file access monitoring; kernel-based structure;
access control; endpoint detection and response; zero trust

1. Introduction

Security threats emerge as IT technology evolves. A malicious attacker can directly
access a service, leak important information, or slow down a service. However, this method
may expose the identity of the attacker. Therefore, spear phishing malware that can hide
the identity of the attacker is increasing used [1,2].

Malware can access an attack target (e.g., file, process, registry, or device) and modify
or leak important information. In an enterprise environment, IPSs or IDSs or antivirus is
applied to detect malware and prevent its execution [3]. A signature update service-type
security technique can detect and prevent malware in networks or system layers by using a
malware feature signature [4], which is periodically updated by the vendors who supply
this security technique to detect the latest malware and prevent its execution [5].

However, malware has evolved. In a recent malicious attack, a security technique
was applied to malware that is only used in information services [6]. A malicious attacker
applies obfuscation or cryptography to malware to avoid detection by an IPS/IDS or
antiviruses that are used in an enterprise environment [7,8]. This malware has complex
logic, which is difficult for malware analysts to decipher. Script-based malware exists
as text or saved files in a normal status and is executed by applications, such as web
servers or web browsers. Because these applications are trusted, they are excluded from
malware detection targets. Therefore, it is difficult to detect script-based malware [9]. In

Electronics 2022, 11, 1871. https://doi.org/10.3390/electronics11121871 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11121871
https://doi.org/10.3390/electronics11121871
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-2435-6867
https://doi.org/10.3390/electronics11121871
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11121871?type=check_update&version=2


Electronics 2022, 11, 1871 2 of 19

addition, because malicious attackers apply detection avoidance tests, malware detection is
becoming increasingly difficult [10]. In recent enterprise environments, white-list-based
process management, end-point detection response (EDR) security management with
AI-based IPS/IDS, and antivirus detection functions have been implemented [11].

The current operating systems (OS) provide event-monitoring functions, such as
application execution, user login, and network status. An access control function is also
provided to protect some of the important files of the system; however, a function for
monitoring user file access is not provided. To provide safe service, it is necessary to
identify all events for various information resources [12]. A file access monitoring function
is also required to improve the accuracy of the EDR technique used in recent enterprise
environments.

To overcome this limitation, we propose a real-time file access monitoring structure
that can monitor user access to a file or directory in real time. The proposed structure
monitors according to the policy set by the security manager, and notifies an event, only
when it is confirmed that the file access corresponds to the absolute file path set by the
policy. In addition, because the proposed structure operates at the kernel layer, malicious
attackers cannot bypass the file access monitoring function enforced in the system.

Because the proposed real-time file access monitoring structure should be effective,
its function and performance should be verified. Therefore, in this study, the positive and
negative functions and performance of the proposed structure were verified.

Main contributions of the proposed file access monitoring structure are as follows:

• It is possible to monitor all user access events for important files in real time.
• The normal operation of other user applications is guaranteed by minimizing the

resources used for file/directory access monitoring.
• As event data are generated using the file access monitoring function, EDR accuracy

can be increased.
• If the structure proposed in this study is loaded into a security service or OS, the

potential threat to information services can be prevented.

The remainder of this paper is organized as follows. In Section 1, the background,
purpose, and contribution of this study are described. In Section 2, the security event
monitoring technique provided by the current OS and the file access control technique
protecting important files are analyzed. The technique applied to current malware is further
verified, and an AI-based security technique is introduced to detect such malware. In
Section 3, the security environment of the information service is analyzed and requirements
are derived for the protection of the information service. In Section 4, a structure is
proposed for a real-time file access monitoring function to satisfy the security requirements.
In Section 5, the function and performance are verified to confirm the effectiveness of the
proposed real-time file access monitoring structure. Finally, the limitations of this study are
presented in Section 6.

2. Related Works
2.1. Security Event Monitoring Techniques

The application service manager should be able to check the status of as application
and ensure that its performance reaches the target level [13] using the monitoring function
provided by the OS, as presented in Table 1 [14–18].

These monitoring techniques do not determine whether the status of a system or user
application is normal or abnormal. They list the current status of a system or application
process. The system or service manager uses these monitoring functions to determine the
status of the system and its applications, and if an abnormal status is detected, they can
respond accordingly depending on the system or application status [19].



Electronics 2022, 11, 1871 3 of 19

Table 1. Monitoring functions provided by OS.

Layer Monitoring Function Description

System

Process monitoring
• Lists the application processes running in the OS.
• Identifies PID or PPIID, ownership, and process de-

pendencies.

Resource monitoring

• Checks the CPU and memory usage rates used by
each application process.

• Identifies storage capacity, usage, and remaining
capacity for each storage device.

Network

Packet monitoring
• Inspects inbound/outbound packets.
• Saves monitoring packet to file.

TTY Session monitoring
• Monitors the TTY session of users connected to Tel-

net, rlogin, SSH protocol of Linux/Unix OS, or re-
mote desktop protocol (RDP) of Windows OS.

2.2. Current Malware Trends
2.2.1. Security Technique Application

Malware is widely used by malicious attackers in information attacks. It enters the
enterprise environment in various ways [20]; thus, an attacker uses malware to obtain
in-formation or modifies it into invalid information to harm the owner [21,22]. Most enter-
prise environments apply IPS/IDS to the network or antivirus to the OS to detect and stop
malware [23–25]. A malware analyst generates signatures by analyzing features such as
logic, processing flow, keywords, and memory handling. The generated signature is de-
ployed to an IPS/IDS or an antivirus, where it is compared to the inspection target packet,
file, process, and memory with the signature to determine whether it is malware [26].
When these techniques are applied to an enterprise environment, enterprise damage can be
reduced by preventing the execution of malware.

However, malware has evolved. Recently, malicious attackers have applied techniques
such as cryptography, obfuscation, and memory injection to malware [27–30]. Figure 1
shows the types of obfuscations that can be applied to malware. Obfuscation is a security
technique that protects the original software logic [31]. However, malicious attackers can
apply this security technique to avoid malware detection [32] by changing the malware
logic, processing flow, keywords, and memory handling procedures [33]. This modified
malware cannot be detected because its features are different from the signature deployed
in an IPS/IDS or antivirus. To detect malware applied with obfuscation, a new signature
must be created. To achieve this, analysts must analyze obfuscated malware, which is
a quite difficult process. In addition to applying the obfuscation technique, a malicious
attacker can avoid the malware detection function by applying other techniques, such as
garbage code injection or renaming the register to the malware [34].

A behavior-based IPS/IDS or antivirus can detect obfuscated malware by applying
a process-tracing technique [35]. However, if a malicious attacker applies a packing or
protector technique to malware, it stops the antivirus; thus, a malicious attacker can bypass
the behavior-based detection technique. The more techniques are applied to malware,
the more difficult it is for malware analysts to define signatures that can detect malware,
making malware detection increasingly difficult [36].



Electronics 2022, 11, 1871 4 of 19Version June 14, 2022 submitted to Journal Not Specified 4 of 19

(a) (b) (c)

(d) (e)

Figure 1. Malware obfuscation techniques: (a) original malware assembly code; (b) after applying
jumping obfuscation; (c) after applying renaming obfuscation; (d) after applying redundant code
obfuscation; and (e) after applying replacement obfuscation.

process of being delivered to the target system. To prevent this situation, a malware attacker 121

performs a detection-avoidance test [37]. 122

The detection avoidance test is a process in which malicious attackers check whether 123

malware can avoid the detection functions of IPS/IDS and antiviruses [38]. A malicious 124

attacker selects a malware detection technique that is available on the Internet and checks 125

whether malware is detected [39]. If a malware detection technique detects the malware, a 126

malicious attacker upgrades the malware until it is not detected. By applying this method 127

to malware development, malicious attackers can safely distribute malware to a target 128

system [40]. 129

2.3. EDR 130

The number of techniques applied to malware as well as the amount of malware are 131

increasing rapidly. In particular, with the kill-chain-based advanced persistence threat 132

(APT) attack rising in popularity, the limitations of the security techniques applied to the 133

enterprise are being identified [41]. 134

A kill-chain-based APT attack comprises seven steps. The attacker collects basic 135

information about the target (reconnaissance), creates a tool to collect detailed information 136

(weapons), and penetrates the target (delivery). After generating malware to attack a 137

target identified as a weapon (exploitation), it is installed and attacks according to the 138

attacker’s command (command and control) to achieve the final goal (act on the objective) 139

[42]. The detailed attack preparation and execution processes have increased the quality 140

of the malware used in APT attacks. Therefore, it is difficult to detect or prevent malware 141

used in APT attacks using legacy security techniques such as IPS/IDS or antiviruses [43]. 142

To address these problems, Gartner proposed EDR in 2013 [44]. EDR is a new paradigm 143

that identifies and responds to abnormal behavior based on the stable state of a system. It 144

responds to threats after recognizing security threats to PC, servers, applications, processes, 145

Figure 1. Malware obfuscation techniques: (a) original malware assembly code; (b) after applying
jumping obfuscation; (c) after applying renaming obfuscation; (d) after applying redundant code
obfuscation; and (e) after applying replacement obfuscation.

2.2.2. Conducting the Malware Detection Avoid Test

Malicious attackers may want malware to serve their purpose. However, IPS/IDS or
antiviruses are not only applied to the target environment. Malware detection techniques
have been applied to several devices and network switches. After a malicious attacker
distributes malware through the Internet, it can be removed by an IPS or antivirus in the
process of being delivered to the target system. To prevent this situation, a malware attacker
performs a detection-avoidance test [37].

The detection avoidance test is a process in which malicious attackers check whether
malware can avoid the detection functions of IPS/IDS and antiviruses [38]. A malicious
attacker selects a malware detection technique that is available on the Internet and checks
whether malware is detected [39]. If a malware detection technique detects the malware, a
malicious attacker upgrades the malware until it is not detected. By applying this method
to malware development, malicious attackers can safely distribute malware to a target
system [40].

2.3. EDR

The number of techniques applied to malware as well as the amount of malware are
increasing rapidly. In particular, with the kill-chain-based advanced persistence threat
(APT) attack rising in popularity, the limitations of the security techniques applied to the
enterprise are being identified [41].

A kill-chain-based APT attack comprises seven steps. The attacker collects basic
information about the target (reconnaissance), creates a tool to collect detailed information
(weapons), and penetrates the target (delivery). After generating malware to attack a target
identified as a weapon (exploitation), it is installed and attacks according to the attacker’s
command (command and control) to achieve the final goal (act on the objective) [42]. The
detailed attack preparation and execution processes have increased the quality of the



Electronics 2022, 11, 1871 5 of 19

malware used in APT attacks. Therefore, it is difficult to detect or prevent malware used in
APT attacks using legacy security techniques such as IPS/IDS or antiviruses [43].

To address these problems, Gartner proposed EDR in 2013 [44]. EDR is a new paradigm
that identifies and responds to abnormal behavior based on the stable state of a system. It
responds to threats after recognizing security threats to PC, servers, applications, processes,
and files/directories [45]. Thus, an EDR threat is not defined in advance. EDR considers
any unauthorized access to an endpoint as a threat. Therefore, it first defines the stable
status of the system, and a threat is detected with respect to this stable status [46]. To
define the stable status, an EDR-based security technique learns various operational data
generated in an enterprise environment [47]. Because considerable data have to be learned
for determining the stable status, the EDR-based security technique applies a machine-
learning technique. The higher the volume, variety, and velocity of the learning data,
the higher is the accuracy [48]. System, application, and network logs can be used as
operational data. Therefore, when different types of data are available and sufficient
learning data are guaranteed, the stable state can be defined more accurately using the
machine-learning techniques [49].

3. Analyzing Current Security Environments
3.1. Analyzing Security Environment

The security event monitoring technologies listed in Table 1 are used for the system,
information services, and security monitoring [50]. However, there is a limit to the detection
of security threats that combine access layers. Figure 2 presents examples of typical complex
security threats.

Figure 2. Multi-layered security threat.

A malicious attacker can upload script-based malware to a web server using a known
channel (e.g., HTTP or HTTPS). When malware uploaded to the web server executes, it
can access important files and leak or modify important information. An IPS/IDS cannot
detect zero-day attacks or malware to which obfuscation techniques have been applied at
the network layer. The script malware is executed on a web server. Because the web server
is a trusted subject, the antivirus does not detect abnormal behavior on the web server. The
resources used to access or modify important files of this malware are also at a very low
level; consequently, they cannot be identified as an abnormal state of the system. Thus,
legacy security techniques cannot detect or prevent combined access layer malware attacks.



Electronics 2022, 11, 1871 6 of 19

3.2. OS File Protection Techniques

The OS, which provides a safe operating environment for information services, con-
sists of various files and directories. It maintains a safe state and provides an execution
environment for user applications. It must also be able to allocate the resources required by
the user application, and the resources allocated to the application must be protected until
the application returns [51]. If the OS file/directory is deleted or modified, the functions
that the OS should provide cannot be provided. Therefore, to provide a secure environ-
ment, the important OS files/directories must be protected [52]. AppArmor(version 2.5,
Immunix, Portland, OR, USA) and SELinux(version 2.6, Red Hat, Raleigh, NC, USA) are
provided by the Linux OS, and the group policy object is provided by the Windows OS.
AppArmor(version 2.5, Immunix, Portland, OR, USA) and SELinux(version 2.6, Red Hat,
Raleigh, NC, USA) operate as a structure in which the application process and kernel
module interact, as shown in Figure 3 [53,54].

(a)

(b)

Figure 3. File access control structures: (a) SELinux registers the access control policy at the security
server in the kernel and enforces it with the access vector cache. (b) AppArmor registers the access
control policy using command and control tools and enforces it with system function mediators.

To protect the file access control policy, the security officer transfers objects repre-
senting files/directories to the SELinux(version 2.6, Red Hat, Raleigh, NC, USA) policy
management interface or AppArmor’s (version 2.5, Immunix, Portland, OR, USA) com-
mand and control tools, which interpret the received object and list the file/directory for
protection, creating an access control policy for the file/directory list prior to transferring
it to the kernel. The kernel module builds a policy table after receiving the access control



Electronics 2022, 11, 1871 7 of 19

policy from the application layer. Subsequently, the kernel module checks the file access of
the user to determine if it matches the policy registered in the policy table. If the path of
the file accessed by the user is not registered in the policy table, SELinux(version 2.6, Red
Hat, Raleigh, NC, USA) or AppArmor(version 2.5, Immunix, Portland, OR, USA) allows
access to all users. If the file accessed by the user is the same as that registered in the policy,
it denies user file access [55,56]. Because both AppArmor(version 2.5, Immunix, Portland,
OR, USA) and SELinux(version 2.6, Red Hat, Raleigh, NC, USA) enforce kernel-based
access control functions, users cannot bypass these file access functions [57,58].

3.3. Requirement for Application Service Security

The OS protects the system file/directory by applying SELinux(version 2.6, Red
Hat, Raleigh, NC, USA) or AppArmor(version 2.5, Immunix, Portland, OR, USA). It also
prevents unauthorized access to the file/directory used to provide system service. Thus,
the OS implements an environment that can perform its original role. However, both
SELinux(version 2.6, Red Hat, Raleigh, NC, USA) and AppArmor(version 2.5, Immunix,
Portland, OR, USA) focus only on system file/directory protection and do not protect user
applications.

Malware attacks enterprise systems and mainly user applications or user data. There-
fore, not only personal devices but also malware should be precluded from entering the
enterprise environment. IPS/IDS and antivirus legacy security solutions are effective for
detecting, deleting, and preventing normal malware. However, it is difficult to detect
malware to which obfuscation has been applied. In particular, in the current Internet
environment where malware is rapidly increasing, detection methods using signature
deployment are insufficient. Security managers must prevent malware from entering the
enterprise environment. However, if malware is deactivated, the security manager finds it
difficult to detect.

To solve this problem, a file access monitoring function is required. The requirements
for file access monitoring are emphasized in both the perimeter-based security model and
zero-trust model to protect user applications and data [59,60]. If a file access monitoring
function is provided, the security manager can check access to important application files or
user data. The security manager allows access to authenticated users and denies access to
unauthorized users through this function. If the unauthorized access is for an unidentified
application, the possibility of malware is high. Therefore, using this function, the security
manager can check for the existence of malware.

To satisfy a variety of EDR-based security techniques, status data are required. The
file access event data generated by the application are stable status data. Therefore, file
access event data do not include unstable status data. If unstable status data are provided,
the accuracy of the machine learning increases. Therefore, a file access monitoring function
is required to create stable and unstable status data.

4. Kernel-Based Real-Time File Access Monitoring
4.1. File Access Monitoring Structure

In this paper, we propose a structure that can monitor the access to files required in
many security environments. In the proposed file access monitoring structure, shown in
Figure 4, the module operating at the kernel layer and the process operating at the applica-
tion layer collaborate to monitor file access to the user application under the assumption
that important files are identifiable. The proposed structure compares the absolute path of
the monitoring file with that of the user file access event.

The proposed structure has five components. The policy register is an application
interface executed by a security manager. The security manager executes the policy register
and delivers an absolute file path to the kernel policy manager.

The policy manager receives the absolute file path that passes through the policy register.
The policy manager is a system-call handler. The policy database stores absolute file paths.
Because the policy database is composed of a linked list, multiple absolute file paths can



Electronics 2022, 11, 1871 8 of 19

be registered. The file access event parser inspects all file access events for the user. The
file access event parser compares the access target file path of the file access event with the
absolute file path registered in the policy database. If the access target file path of the file
access event matches the absolute file path registered in the policy database, the file access
event information is registered as a file access event node. The event monitor is a daemon
application. The event monitor uses a system call to check whether there is a file access event
node, and if so, it notifies the security manager. The key function of the proposed structure
is to monitor unauthorized file/directory access. The structure differs from that of SELinux
or AppArmor, as presented in Table 2.

Figure 4. Real-time file access monitoring structure.

Table 2. Difference between the proposed structure and legacy file access control security techniques
(SELinux/AppArmor).

Difference SELinux/AppArmor Proposed Structure

Key Function • Provide access control function • All file/directory access monitoring

Protect mechanism

• Pre-protect method
• Deny all unauthorized access
• Pre-defined accesses are allowed

• Post-protect method
• All file accesses are allowed
• All file accesses are the target of

security analysis

Policy managing method
• Object-based policy distribution
• A security officer should know

all policy object

• User generates monitoring policy
• Users only need to know the absolute

file path for monitoring

Security managing subject
• Security officer or system adminis-

trator can manage security policy

• All users
• Data owner or application service

manager, system manager manage se-
curity

4.2. File Access Monitoring Sequence

The existing OS can be accessed by multiple users and has a multi-processing function.
Therefore, multiple file access events can occur through multiple processing steps. The
security manager monitors all file access events, whereas the file access monitoring structure
proposed in this study operates in the order shown in Figure 5.



Electronics 2022, 11, 1871 9 of 19

After determining the important file, the security manager obtains the absolute file
path of the file and registers the policy in the policy register. The policy register creates
a policy structure that includes the absolute file path in the kernel policy manager and
delivers it using a system call. The policy manager receives this information and stores it in a
policy database.

When a user accesses a file, first the OS generates a user file access event node and
then a task node that includes the user file access event node, along with a handler to
process it and register it in an interrupt requeue (IRQ) [61]. The task nodes registered in
the IRQ are processed sequentially using the OS process module. Linux provides a Linux
security module (LSM), an interface that enforces user-defined functions for task node
processing [62]. If a user-defined handler is registered in the LSM, the user function can be
enforced before task node processing. In this study, a file access event-gathering handler
was registered in the LSM to gather file access event information [63].

Figure 5. Real-time file access monitoring function sequence.

When a user-defined handler is registered in the LSM, the user file access event is
delivered to the file access event parser. The file access event parser analyzes the file access
event and identifies the subject session ID, process ID, and the absolute file path accessing
the file. The file access event parser then compares the absolute file path identified in the
user file access event with the entire absolute file path registered in the policy database. The
policy database comprises a linked list that can be searched sequentially. If an absolute file
path matches a path in the policy database, the file access event parser creates a file access
event node.

The event monitor is a daemon that continuously checks for a file access event node. If
there is a file access event node, the event monitor transfers it to the application layer using a
system call, and outputs it on the screen.

4.3. Mechanism of the File Access Monitoring Function

The proposed real-time file access monitoring function generates a file access event node
only for user file access to the absolute file path. Therefore, the monitoring policy uses the
absolute file path (FP) as a parameter.

The real-time access monitoring mechanism includes the following definitions:

U = {x|x is all monitoring f unction }
P = {x ∈ U|Access monitoring policy en f orced to in f ormation system}

AR = {x|x is set o f all f ile access request}



Electronics 2022, 11, 1871 10 of 19

In the aforementioned state, the absolute file path (FP) from the user file access request
r is expressed as follows:

rFP, where r ∈ AR (1)

The decision result (file access event node generation, ENG) of the file access event parsers
decision function (generating decision, GD) that compares rFP with the absolute file path in
the monitoring policy PFP is defined as follows:

ENG = GD(rFP, PFP), for r ∈ AR (2)

When the absolute file path in the user file access event rFP matches the absolute
file path in the monitoring policy PFP (ENG is true, ENGT), a file access event node is
generated. Therefore, in such a case, there is a file access event notification occurrence
(FENO), expressed as follows:

FENO ⊃ ENGT (3)

When the monitoring policy is enforced, the file access event node that does not generate
(FENI) is the inverse function of Equation (3).

FENI = ENGT = GD(rFP, PFP), but r ∈ AR (4)

Equation (1) denotes the absolute file path extraction from a file access event. Equation (2)
is a monitoring function that enforces the process. When the absolute file path is registered
in the monitoring policy, and the user file access event path matches, the file access event
parser generates a file access event node. In the process denoted by Equation (3), if there is a
file access event node, the event monitor checks it and notifies the security manager. Equation
(4) indicates that, when the absolute file path registered in the monitoring policy and the
path of the user file access event do not match, the file access event parser ignores the user
file access event. These are the file access-monitoring mechanisms proposed in this study.

5. Implementation
5.1. Function Verification
5.1.1. Function Verification Items

The proposed real-time file access monitoring method is effective. Because the scope
of functional verification should encompass the entire scope of this study, functional
verification items were derived based on the file access monitoring function mechanism, as
presented in Table 3.

Func_VF_1, Func_VF_2, and Func_VF_3 are positive verifications of the proposed
real-time file access monitoring function, and Func_VF_4 is negative verification. If the
four functions are confirmed as correct, it can be verified that all functions of the structure
proposed in this study are correct.

5.1.2. Function Verification Result

The hardware environment used to verify the proposed structure comprises a i3-4150
CPU, 8 GB memory, and 500 GB HDD. The proposed real-time file access monitoring
structure was implemented in the CentOS 7.9 OS environment, and the verification items
defined in Table 3 were executed. To verify the functional operation of the real-time file
access monitoring function, the start and end of the debug messages were checked.

When a user file access event occurs, func_VF_1 checks whether the kernel file access
event parser has obtained the absolute file path from the file access event.

Therefore, as shown in Figure 6, not only the access target absolute file path but also the
user session-id, user id, and subject information of the user process were correctly obtained.



Electronics 2022, 11, 1871 11 of 19

Table 3. Function verification items.

Function ID Verification object

Func_VF_1

• Verification Equation (1)
• When a file access event occurs, verify that the file access

event parser correctly obtains the absolute file path from the
file access event.

• Code sequence:

Func_VF_2

• Verification Equation (2)
• Check file access event node’s monitoring policy (if there is

a monitoring policy and whether absolute file path in file
access event and monitoring policy are the same).

• Code sequence:

Func_VF_3

• Verification Equation (3)
• Check file access event notification when there is file access

event node.
• Code sequence:

Func_VF_4

• Verification Equation (4)
• Check if file access event’s absolute file path is different from

that in monitoring policy to determine if the event is ignored
correctly.

• Code sequence: Same that of Func_VF_2.



Electronics 2022, 11, 1871 12 of 19

• Func_VF_1

Figure 6. File access event check verification.

• Func_VF_2

After Func_VF_1, the monitoring policy of the file access event parser is checked. If
there is a matching monitoring policy, the file access event parser stops scanning the monitor-
ing policy.

As a result of the verification shown in Figure 7, the file access event parser begins by
comparing the absolute file path in the file access event with that of the monitoring policy.
When a matching monitoring policy is found, the file access event parser stops scanning.

Figure 7. Monitoring policy scanning verification.

• Func_VF_3

Once the file access event node is generated, the event monitor confirms this and checks
whether the file access event has been notified. If there are no file access events, the event
monitor is not notified.

Consequently, as shown in Figure 8, when the file access event parser generates a file
access event node, the event monitor checks and notifies the file access event.



Electronics 2022, 11, 1871 13 of 19

Figure 8. Event monitor’s notification function verification. The event monitor checks the file access
event node in the kernel periodically. When the event monitor confirms that the file access event
node is generated, it notifies the file access event.

• Func_VF_4

In Func_VF_1, if user file access does not match the monitoring policy, a further check
is conducted to determine whether file access event parser ignores this event.

As shown in Figure 9, the file access event parser compares the file access event with
all the monitoring policies. The file access event parser compares the user access target file
with the next monitoring policy to determine whether it differs from the absolute file path
registered in the monitoring policy. Thus, the file access event parser does not generate a file
access event node when there is no matching monitoring policy, even after comparing it to
the previous monitoring policy.

Figure 9. File access event parser ignoring function verification. When user file access does not match
any monitoring policies, the file access event parser ignores the user file access event.

5.2. Performance Verification
5.2.1. Performance Verification Items and Methodology

Even if the proposed real-time security file access-monitoring function performs
correctly, the resources used to provide the monitoring function should be small and fast.
Only then does the monitoring function affect the operation of other processes. In addition,
when multiple file accesses occur in the OS, the monitoring function can identify and
notify all file access events. To verify the performance, verification items were selected, as
presented in Table 4.



Electronics 2022, 11, 1871 14 of 19

Table 4. Performance verification items.

Performance
ID Verification Object

Perf_VF_1

• Check resource requirements to notify file access events
• Check the system resource (CPU occupancy) required for file

access notification when 100, 250, 500, 1000, 2500, or 5000 file
access events are generated after registering the monitoring
policy

• The average value was measured for 10 file access events

Perf_VF_2

• With multiple monitoring policies (100, 250, 500, 1000, 2500,
5000) registered, check the time to enforce the last policy

• The time gap from the first policy check scan time to the last
policy scan is used as the average value of 10 measurement
values

Perf_VF_3

• When file access events occur at approximately 200 event/min
with random time gaps, the monitoring function can catch all
file access events, checking three times during 24 h.

• If all file access events are monitored, the proposed monitoring
function is strong enough to resist the stress of the actual service
environment

The performance verification environment is the same as the function verification
environment.

A comparison should be conducted to evaluate the performance of the proposed
real-time security file access monitoring structure, wherein the application process is
interrelated to the kernel module. The structure is the most similar to that proposed in
this study, and the most widely used security technique is SELinux(version 2.6, Red Hat,
Raleigh, USA). Therefore, the same verification was performed using SELinux, and the
results were compared.

5.2.2. Performance Verification Results

• Perf_VF_1

Table 5 lists the resources used to notify the file access event in real time using the
proposed security file access monitoring structure when generating the event in SELinux.

Table 5. CPU usage file access event notification using the policy enforcement server in SELinux.

Component CPU Usage (%) File Access Event Count

File Access Event Monitor

Policy Count

100 250 500 1000 2500 5000

CPU usage(%)

0.24 0.31 0.46 0.85 1.43 1.94

Policy Enforcement Server (SELinux)

Policy Count

100 250 500 1000 2500 5000

CPU usage(%)

0.29 0.42 0.71 1.14 1.88 4.13

It was confirmed that the CPU usage in notifying the proposed file access event was
less than that of the SELinux event occurred.



Electronics 2022, 11, 1871 15 of 19

• Perf_VF_2

To check whether the structure proposed in this study could provide rapid file access
event notification, with multiple dummy policies registered, the time gap between the first
and last monitoring policy scans was measured.

As shown in Figure 10, the policy scan time of the proposed real-time security file
access monitoring structure was verified to be faster than that of SELinux under the same
conditions.

Figure 10. File access event detection time measurement.

• Perf_VF_3

To confirm the strength of the proposed file access monitoring function, a script was
created for a real IT service status. The file access event script generated approximately
200 file access events per minute. When a file access event occurred, a random time gap
was applied. If the proposed file access monitoring function can monitor all file access
events generated by the script, then the proposed real-time file access monitoring structure
is deemed sufficiently strong. The verification result is presented in Table 6.

Table 6. File access event occurrence count and monitoring count.

Time File Access Event File Access Monitoring Count
Occurrence Count by Script by the Proposed Structure

1 310,308 310,308

2 307,293 307,293

3 302,187 302,187

Table 6 shows that the file access event count generated by the script is the same as that
obtained by file access monitoring. Therefore, the proposed real-time file access monitoring
structure is strong enough.



Electronics 2022, 11, 1871 16 of 19

5.3. Performance Verification Analysis

To verify the function of the proposed real-time security file access monitoring struc-
ture, both positive and negative functions were verified empirically by implementing a
laboratory methodology. The verification confirmed that the proposed real-time security
file access monitoring structure monitors all user file access events. The structure proposed
in this study notifies the user when he/she accesses a file registered in the monitoring
policy. In addition, it was confirmed that the proposed structure does not provide access to
files that are different from the file path registered in the monitoring policy. Therefore, it
was validated that all monitoring functions of the proposed real-time security file access
monitoring structure perform correctly.

Further, it was verified that the monitoring function was sufficiently effective through
performance measurement results and it required fewer resources for file access monitoring
event notifications than SELinux. It was also verified that the proposed structure had little
effect on the operation of other applications. Furthermore, enforcement of the monitoring
policy proved to be faster than that of SELinux under the same conditions. Thus, the
proposed structure was sufficiently strong and guaranteed real-time performance.

6. Conclusions

In recent security environments, malware reinforced through techniques such as
cryptography, obfuscation, and cross-platforms can enter the target system through various
paths. It is difficult to detect or prevent malware using IPS, IDS, or antivirus in enterprise
environments. Thus, the next best option is that the security manager applies the post-
response via real-time file access monitoring to reduce the damage caused by malware.
However, the current OS does not provide a real-time file access monitoring function for
an application service manager or data owner to detect unauthorized modifications and
leakages in important files.

In this paper, a structure was proposed, from the perspective of post-response, to
monitor file access in real time. Because the proposed structure enforces a monitoring
policy in the kernel, the user cannot bypass the monitoring function. The performance of
the proposed real-time file access structure was verified, confirming that target file access-
monitoring was correctly provided. The result of the performance verification confirmed
that fewer system resources than that in SELinux were utilized and monitoring of the policy
enforcement time was sufficiently fast and strong to provide file access monitoring in a real
IT service environment.

If the proposed monitoring structure was applied to the enterprise environment, the
security manager is able to identify users who access files or directories containing impor-
tant information on services. Alternatively, because it is possible to check for malware
accessing important files, the damage caused by security accidents will be reduced. How-
ever, because this study focused only on monitoring files as targets, it is extremely difficult
to detect malware that selects other targets as victims, such as application processes and
devices. Therefore, we plan to conduct further studies to monitor these additional factors.

Author Contributions: S.-H.H. proposed the idea, conducted the experiments, and wrote the
manuscript. D.L. provided advice on the research approach, guided the experiments, and checked and
revised the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by Tongmyong University Research Grant no. 2021A017.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dewan, P.; Kashyap, A.; Kumaraguru, P. Analyzing social and stylometric features to identify spear phishing emails. In

Proceedings of the 2014 APWG Symposium on Electronic Crime Research (eCrime), Birmingham, AL, USA, 23–25 September
2014; Volume 11, pp. 1–13.

2. Allodi, L.; Chotza, T.; Panina, E.; Zannone, N. The need for new antiphishing measures against spear-phishing attacks. IEEE
Secur. Priv. 2019, 18, 23–34. [CrossRef]

http://doi.org/10.1109/MSEC.2019.2940952


Electronics 2022, 11, 1871 17 of 19

3. Huh, J.H. Implementation of lightweight intrusion detection model for security of smart green house and vertical farm. Int. J.
Distrib. Sens. Netw. 2018, 14, 1550147718767630. [CrossRef]

4. Sarıkaya, A. Anomaly-Based Cyber Intrusion Detection System with Ensemble Classifier. Master’s Thesis, Middle East Technical
University, Ankara, Turkey, 2018.

5. Mohaisen, A.; Alrawi, O. Av-meter: An evaluation of antivirus scans and labels. In International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment; Springer: Cham, Switzerland, 2014; pp. 112–131.

6. Roseline, S.A.; Geetha, S. A comprehensive survey of tools and techniques mitigating computer and mobile malware attacks.
Comput. Electr. Eng. 2021, 92, 107143. [CrossRef]

7. Abraham, S.; Chengalur–Smith, I. An overview of social engineering malware: Trends, tactics, and implications. Technol. Soc.
2010, 32, 183–196. [CrossRef]

8. Schrittwieser, S.; Katzenbeisser, S.; Kinder, J.; Merzdovnik, G.; Weippl, E. Protecting software through obfuscation: Can it keep
pace with progress in code analysis? ACM Comput. Surv. CSUR 2016, 49, 1–37. [CrossRef]

9. Preda, M.D.; Maggi, F. Testing android malware detectors against code obfuscation: A systematization of knowledge and unified
methodology. J. Comput. Virol. Hacking Tech. 2017, 13, 209–232. [CrossRef]

10. Barabosch, T.; Gerhards-Padilla, E. Host-based code injection attacks: A popular technique used by malware. In Proceedings of
the 9th International Conference on Malicious and Unwanted Software: The Americas (MALWARE), Fajardo, PR, USA 28–30
October 2014 ; pp. 8–17.

11. Najafi, P.; Koehler, D.; Cheng, F.; Meinel, C. NLP-based Entity Behavior Analytics for Malware Detection. In Proceedings of the
IEEE International Performance, Computing, and Communications Conference (IPCCC), Austin, TX, USA, 29–31 October 2021;
pp. 1–5.

12. Seo, K.K. Development of Certification Program for Application Service Provider: Application Certification. J. Korea Saf. Manag.
Sci. 2005, 7, 97–108.

13. Boniface, M.; Phillips, S.C.; Sanchez-Macian, A.; Surridge, M. Dynamic service provisioning using GRIA SLAs. In International
Conference on Service-Oriented Computing; Springer: Berlin/Heidelberg, Germany, 2007; pp. 56–67.

14. Buyya, R. Parmon: A portable and scalable monitoring system for clusters. Softw. Pract. Exp. 2000, 30, 723–739. [CrossRef]
15. Yamiun, M.M.; Katt, B.; Gkioulos, V. Detecting windows-based exploit chains by means of event correlation and process

monitoring. In Future of Information and Communication Conference; Springer: Cham, Switzerland, 2019; pp. 1079–1094.
16. Mehnaz, S.; Mudgerikar, A.; Bertino, E. Rwguard: A real-time detection system against cryptographic ransomware. In International

Symposium on Research in Attacks, Intrusions, and Defenses; Springer: Cham, Switzerland, 2018; pp. 114–136.
17. Kazienko, P.; Kiewra, M. Rosa—Multi-agent system for web services personalization. In International Atlantic Web Intelligence

Conference; Springer: Berlin/Heidelberg, Germany, 2003; pp. 297–306.
18. Anagnostakis, K.G.; Ioannidis, S.; Miltchev, S.; Greenwald, M.; Smith, J.M.; Ioannidis, J. Efficient packet monitoring for network

management. In Proceedings of the NOMS 2002. IEEE/IFIP Network Operations and Management Symposium.’ Management
Solutions for the New Communications World’ (Cat. No. 02CH37327), Florence, Italy, 19 April 2002; pp. 423–436.

19. Saez, J.C.; Casas, J.; Serrano, A.; Rodríguez-Rodríguez, R.; Castro, F.; Chaver, D.; Prieto-Matías, M. An OS-oriented perfor-
mance monitoring tool for multicore systems. In European Conference on Parallel Processing; Springer: Cham, Switzerland, 2015;
pp. 697–709.

20. Gu, G.; Porras, P.A.; Yegneswaran, V.; Fong, M.W.; Lee, W. Bothunter: Detecting malware infection through IDS-driven dialog
correlation. In Proceedings of the USENIX Security Symposium, Vancouver, BC, Canada, 11–13 August 2007; pp. 1–16.

21. Ikegami, Y.; Yamauchi, T. Attacker investigation system triggered by information leakage. In Proceedings of the IIAI 4th
International Congress on Advanced Applied Informatics, Okayama, Japan, 12–16 July 2015; pp. 24–27.

22. Hsu, F.; Chen, H.; Ristenpart, T.; Li, J.; Su, Z. Back to the future: A framework for automatic malware removal and system repair.
In Proceedings of the 22nd Annual Computer Security Applications Conference (ACSAC’06), Miami Beach, FL, USA, 11–15
December 2006; pp. 257–268.

23. Claffey, G.F.; Regan, H.J. InnovatEDU a collaboration to reduce higher ed security risk. In Proceedings of the 39th Annual ACM
SIGUCCS Conference on User Services, San Diego, CA, USA, 6–9 November 2011; pp. 161–164.

24. Hu, X.; Wang, T.; Stoecklin, M.P.; Schales, D.L.; Jang, J.; Sailer, R. Asset risk scoring in enterprise network with mutually reinforced
reputation propagation. In Proceedings of the IEEE Security and Privacy Workshops, San Jose, CA, USA, 17–18 May 2014;
pp. 61–64.

25. Huh, J.H.; Hwang, S. Development of Java Capstone Design of Network Security Curriculum: Focusing on DDoS Intrusion
Detection System. International Information Institute (Tokyo). Information 2017, 20, 8057–8066.

26. Daryabar, F.; Dehghantanha, A.; Udzir, N.I. Investigation of bypassing malware defences and malware detections. In Proceedings
of the 7th International Conference on Information Assurance and Security (IAS), Melacca, Malaysia, 5–8 December 2011;
pp. 173–178.

27. Tuscano, A.; Koshy, T.S. Types of Keyloggers Technologies–Survey. In ICCCE 2020; Springer: Singapore, 2021; pp. 11–22.
28. Baysa, D.; Low, R.M.; Stamp, M. Structural entropy and metamorphic malware. J. Comput. Virol. Hacking Tech. 2013, 9, 179–192.

[CrossRef]
29. Holt, T.J.; Dupont, B. Exploring the factors associated with rejection from a closed cybercrime community. Int. J. Offender Ther.

Comp. Criminol. 2019, 63, 1127–1147. [CrossRef]

http://dx.doi.org/10.1177/1550147718767630
http://dx.doi.org/10.1016/j.compeleceng.2021.107143
http://dx.doi.org/10.1016/j.techsoc.2010.07.001
http://dx.doi.org/10.1145/2886012
http://dx.doi.org/10.1007/s11416-016-0282-2
http://dx.doi.org/10.1002/(SICI)1097-024X(200006)30:7<723::AID-SPE314>3.0.CO;2-5
http://dx.doi.org/10.1007/s11416-013-0185-4
http://dx.doi.org/10.1177/0306624X18811101


Electronics 2022, 11, 1871 18 of 19

30. Apvrille, A. Cryptography for mobile malware obfuscation. In Proceedings of the RSA Conference Europe, London, UK, 12–13
October 2011.

31. Suk, J.H.; Lee, J.Y.; Jin, H.; Kim, I.S.; Lee, D.H. UnThemida: Commercial obfuscation technique analysis with a fully obfuscated
program. Softw. Pract. Exp. 2018, 48, 2331–2349. [CrossRef]

32. Vu, D.L.; Nguyen, T.K.; Nguyen, T.V.; Nguyen, T.N.; Massacci, F.; Phung, P.H. HIT4Mal: Hybrid image transformation for
malware classification. Trans. Emerg. Telecommun. Technol. 2020, 31, e3789. [CrossRef]

33. Trajanovski, T.; Zhang, N. An automated behaviour-based clustering of IoT botnets. Future Internet 2021, 14, 6. [CrossRef]
34. Singh, J.; Singh, J. Challenge of malware analysis: Malware obfuscation techniques. Int. J. Inf. Secur. Sci. 2018, 7, 100–110.
35. Pham, D.P.; Vu, D.L.; Massacci, F. Mac-A-Mal: MacOS malware analysis framework resistant to anti evasion techniques. J. Comput.

Virol. Hacking Tech. 2019, 15, 249–257. [CrossRef]
36. Yan, W.; Zhang, Z.; Ansari, N. Revealing packed malware. IEEE Secur. Priv. 2008, 6, 65–69. [CrossRef]
37. Kang, B.; Yerima, S.Y.; Sezer, S.; McLaughlin, K. N-gram opcode analysis for android malware detection. arXiv 2016,

arXiv:1612.01445. Available online: https://arxiv.org/abs/1612.01445 (accessed on 11 April 2022).
38. Bukac, V. IDS System Evasion Techniques. Master’s Thesis, Masarykova Univerzita, Brno, Czech Republic, 2010.
39. Webster, M.P. Formal Models of Reproduction: From Computer Viruses to Artificial Life. Ph.D. Thesis, University of Liverpool,

Liverpool, UK, 2008.
40. Payer, U.; Teufl, P.; Lamberger, M. Hybrid engine for polymorphic shellcode detection. In International Conference on Detection of

Intrusions and Malware, and Vulnerability Assessment; Springer: Berlin/Heidelberg, Germany, 2005; pp. 19–31.
41. Yadav, T.; Rao, A.M. Technical aspects of cyber kill chain. In International Symposium on Security in Computing and Communication;

Springer: Cham, Switzerland, 2015; pp. 438–452.
42. Zhong, M.; Zhou, Y.; Chen, G. Sequential model-based intrusion detection system for IoT servers using deep learning methods.

Sensors 2021, 21, 1113. [CrossRef]
43. Lee, S.; Huh, J.H. An effective security measures for nuclear power plant using big data analysis approach. J. Supercomput. 2019,

75, 4267–4294. [CrossRef]
44. Park, S.H.; Yun, S.W.; Jeon, S.E.; Park, N.E.; Shim, H.Y.; Lee, Y.R.; Lee, S.J.; Park, T.R.; Shin, N.Y.; Kang, M.J.; et al. Performance

evaluation of open-source endpoint detection and response combining google rapid response and osquery for threat detection.
IEEE Access 2022, 11, 1523. [CrossRef]

45. Möller, D.P. Threat Intelligence. In Cybersecurity in Digital Transformation; Springer: Cham, Switzerland, 2020; pp. 29–45.
46. Tselios, C.; Tsolis, G.; Athanatos, M. A comprehensive technical survey of contemporary cybersecurity products and solutions. In

Computer Security; Springer: Cham, Switzerland, 2019; pp. 3–18.
47. Chandel, S.; Yu, S.; Yitian, T.; Zhili, Z.; Yusheng, H. Endpoint protection: Measuring the effectiveness of remediation technologies

and methodologies for insider threat. In Proceedings of the International Conference on Cyber-Enabled Distributed Computing
and Knowledge Discovery (CyberC), Guilin, China, 17–19 October 2019; pp. 81–89.

48. Argaw, S.T.; Troncoso-Pastoriza, J.R.; Lacey, D.; Florin, M.V.; Calcavecchia, F.; Anderson, D.; Burleson, W.; Vogel, J.M.; O’Leary, C.;
Eshaya-Chauvin, B.; et al. Cybersecurity of Hospitals: Discussing the challenges and working towards mitigating the risks. BMC
Med. Inform. Decis. Mak. 2020, 20, 146. [CrossRef]

49. WWeissman, D.; Jayasumana, A. Integrating IoT monitoring for security operation center. In Proceedings of the Global Internet
of Things Summit (GIoTS), Dublin, Ireland, 3–5 June 2020; pp. 1–6.

50. Mao, R.; Xu, H.; Wu, W.; Li, J.; Li, Y.; Lu, M. Overcoming the challenge of variety: Big data abstraction, the next evolution of data
management for AAL communication systems. IEEE Commun. Mag. 2015, 53, 42–47. [CrossRef]

51. Kuorilehto, M.; Hännikäinen, M.; Hämäläinen, T.D. A survey of application distribution in wireless sensor networks. EURASIP J.
Wirel. Commun. Netw. 2005, 5, 859712. [CrossRef]

52. Blaze, M. A cryptographic file system for UNIX. In Proceedings of the 1st ACM Conference on Computer and Communications
Security, Fairfax, VA, USA, 3–5 November 1993; pp. 9–16.

53. Pasquier, T.; Han, X.; Goldstein, M.; Moyer, T.; Eyers, D.; Seltzer, M.; Bacon, J. Practical whole-system provenance capture. In
Proceedings of the 2017 Symposium on Cloud Computing, Santa Clara, CA, USA, 24–27 September 2017; pp. 405–418.

54. McDonald, G.; Papadopoulos, P.; Pitropakis, N.; Ahmad, J.; Buchanan, W.J. Ransomware: Analysing the impact on Windows
active directory domain services. Sensors 2022, 22, 953. [CrossRef]

55. Lugo, P.C.; Garcia, J.M.G.; Flores, J.J. A system for distributed SELinux policy management. In Proceedings of the Third
International Conference on Network and System Security, Queensland, Australia, 19–21 October 2009; pp. 254–261.

56. Cowan, C. Securing Linux Systems with AppArmor. DEF CON 2007, 15, 15–26.
57. Wang, J.; Li, D.; Yang, L.; Tan, L.; Wang, H. Security strategy and research of power protection equipment based on SELinux. In

Proceedings of Sixth International Congress on Information and Communication Technology; Springer: Singapore, 2022; pp. 37–47.
58. Zhu, H.; Gehrmann, C. Lic-Sec: An enhanced AppArmor Docker security profile generator. J. Inf. Secur. Appl. 2021, 61, 102924.

[CrossRef]
59. Reti, D.; Fraunholz, D.; Zemitis, J.; Schneider, D.; Schotten, H.D. Deep down the rabbit hole: On references in networks of decoy

elements. In Proceedings of the International Conference on Cyber Security and Protection of Digital Services (Cyber Security),
Dublin, Ireland, 15–19 June 2020; pp. 1–11.

http://dx.doi.org/10.1002/spe.2622
http://dx.doi.org/10.1002/ett.3789
http://dx.doi.org/10.3390/fi14010006
http://dx.doi.org/10.1007/s11416-019-00335-w
http://dx.doi.org/10.1109/MSP.2008.126
https://arxiv.org/abs/1612.01445
http://dx.doi.org/10.3390/s21041113
http://dx.doi.org/10.1007/s11227-018-2440-4
http://dx.doi.org/10.1109/ACCESS.2022.3152574
http://dx.doi.org/10.1186/s12911-020-01161-7
http://dx.doi.org/10.1109/MCOM.2015.7010514
http://dx.doi.org/10.1155/WCN.2005.774
http://dx.doi.org/10.3390/s22030953
http://dx.doi.org/10.1016/j.jisa.2021.102924


Electronics 2022, 11, 1871 19 of 19

60. Kindervag, J.; Balaouras, S. No more chewy centers: Introducing the zero trust model of information security. Forrester Res. 2010,
3, 7545.

61. Zhao, X.; Borders, K.; Prakash, A. Using a virtual machine to protect sensitive Grid resources. Concurr. Comput. Pract. Exp. 2007,
19, 1917–1935. [CrossRef]

62. Isohara, T.; Takemori, K.; Miyake, Y.; Qu, N.; Perrig, A. Lsm-based secure system monitoring using kernel protection schemes. In
Proceedings of the International Conference on Availability, Reliability and Security, Krakow, Poland, 31 August–2 September
2010; pp. 591–596.

63. Win, T.Y.; Tianfield, H.; Mair, Q. Virtualization security combining mandatory access control and virtual machine introspection.
In Proceedings of the IEEE/ACM 7th International Conference on Utility and Cloud Computing, London, UK, 8–11 December
2014; pp. 1004–1009.

http://dx.doi.org/10.1002/cpe.1134

	Introduction
	Related Works
	Security Event Monitoring Techniques
	Current Malware Trends
	Security Technique Application
	Conducting the Malware Detection Avoid Test

	EDR

	Analyzing Current Security Environments
	Analyzing Security Environment
	OS File Protection Techniques
	Requirement for Application Service Security

	Kernel-Based Real-Time File Access Monitoring
	File Access Monitoring Structure
	File Access Monitoring Sequence
	Mechanism of the File Access Monitoring Function

	Implementation
	Function Verification
	Function Verification Items
	Function Verification Result

	Performance Verification
	Performance Verification Items and Methodology
	Performance Verification Results

	Performance Verification Analysis

	Conclusions
	References

