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Abstract: This paper presents a method for predicting bus stop arrival times based on a unique
approach that extracts the spatio-temporal dynamics of bus flows. Using a new technique called Bus
Flow Centrality Analysis (BFC), we obtain the low-dimensional embedding of short-term bus flow
patterns in the form of IID (Individual In Degree) and IOD (Individual Out Degree) and TOD (Total
Out Degree) at every station in the bus network. The embedding using BFC analysis well captures
the characteristics of every individual flow and aggregate pattern. The latent vector returned by the
BFC analysis is combined with other essential information such as bus speed, travel time, wait time,
dispatch intervals, the distance between stations, seasonality, holiday status, and climate information.
We employed a family of recurrent neural networks such as LSTM, GRU, and ALSTM to model
how these features change over time and to predict the time the bus takes to reach the next stop in
subsequent time windows. We experimented with our solution using logs of bus operations in the
Seoul Metropolitan area offered by the Bus Management System (BMS) and the Bus Information
System (BIS) of Korea. We predicted arrival times for more than 100 bus routes with a MAPE of 1.19%.
This margin of error is 74% lower than the latest work based on ALSTM. We also learned that LSTM
performs better than GRU with a 40.5% lower MAPE. This result is even remarkable considering the
irregularity in the bus flow patterns and the fact that we did not rely on real-time GPS information.
Moreover, our approach scales at a city-wide level by analyzing more than 100 bus routes, while
previous studies showed limited experiments on much fewer bus routes.

Keywords: bus flow centrality; bus arrival time prediction; spatio-temporal data; artificial neural
network; deep learning

1. Introduction

Public transportation operators are striving to provide more convenient and efficient
services to users through the development of ITS (Intelligent Transport Systems) tech-
nologies, as discussed in [1,2]. ITS, APTS(Advanced Public Transportation Systems),
and ATIS(Advanced Traveler Information Systems) detect changes in traffic conditions in
real-time and predict future traffic conditions to recommend a fast route from an origin
to destination in advance. In doing so, they also help travelers to plan precise and fast
connections to other transportation modes. The net effect of such proactive prediction and
dynamic route planning is the timely arrival at the desired destination with low costs [3–5].

Two methodologies have been mainly discussed for the accurate prediction of traffic
conditions and travel time, as introduced in [6,7]. The first approach relies on the infor-
mation returned by high-precision GPS and IoT (Internet-of-Things) sensors. However,
this method incurs a considerable investment cost. The other more software-oriented and
cost-effective approaches employ various machine learning algorithms for prediction, as
discussed in [8–12].
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Unlike air-, sea-, and rail-based transportation, road-based transportation means are
more susceptible to delays due to lane sharing and bottlenecks. Hence, guaranteeing
punctuality of road-based transport is relatively more challenging. To deal with this
problem, we devised a new prediction method that takes into account road network
structure and the pattern of the overall traffic flow in a prior study [8]. However, whether
such a method can be effective specifically for public bus operations has been unclear. Bus
traffic patterns may differ from the overall road traffic patterns. Multiple bus routes can
operate a shared road network partially consisting of bus-only lanes. Buses require frequent
stops at stations to load and unload passengers. This paper focuses on modeling the bus
traffic flow for accurate arrival time predictions.

Recently, various approaches have been proposed to predict travel time on buses
more accurately. Methods based on GPS data have been discussed in [9,11,13–16] for
real-time bus location tracking and prediction. However, the cost for data collection and
refinement operations such as geopositioning is high. Several less costly approaches used
bus schedules such as estimated departure and arrival information at every stop [17–20].
However, such methods can suffer from inaccurate predictions compared to the approached
based on real-time GPS information. Therefore, we aim to devise a solution that does not
rely on GPS data but still outperforms approaches based on precise geopositioning.

This paper aims to improve the software-based approach of learning from past data.
We first propose a novel Bus Flow Centrality (BFC) analysis, which is a method of represent-
ing the short-term spatio-temporal flow of buses on the bus networks. BFC is conducted
based on the time series of departure and arrival times as well as spatial placements of bus
stops. As introduced in Section 3.1, we extracted a total of 26 features: We combine seven
basic information frequently used to predict bus arrival time information, nine flow infor-
mation generated through BFC analysis, and ten contextual information around road links.
We can de-noise the data by embedding the significant traffic flows into a low-dimensional
latent vector through BFC analysis. Machine learning with the latent vector incurs far
less costs than the method that uses raw input without preprocessing for further feature
extraction.

Given the comprehensive features, we used LSTM [21] as the main deep learning
algorithm for predicting arrival and departure times at every bus stop. The performance
of LSTM is compared against other recurrent neural network algorithms such as ALSTM
model [11] and GRU [22]. Classical machine learning methods such as linear regression [23],
Random Forest [24], and multiple linear regression [25] were also used for performance
comparison. With our approach experimented for 100 buses on various routes in Seoul,
we could predict bus stop arrival and departure times with a significantly low error rate
(an MAE of 1.15 s and a MAPE of 1.19%). Note that our method does not rely on GPS
data could significantly outmatch GPS-based approaches, which no other non-GPS-based
techniques could achieve. We could analyzed an extensive city-scale bus network with
over 100 bus routes, while other previous methods were limited to a handful of courses.

This paper is structured as follows. Section 2 first reviews related research. Section 3
introduces a method for predicting the bus stop arrival time based on the new bus flow
centrality analysis technique. Section 4 shows how our approach outperformed the existing
approach by presenting experiment results. Finally,we provide conclusions in Section 5.

2. Related Works

As mentioned in [26,27], the arrival time information service of public transportation
in the city is one of the most preferred services by transportation users. In particular, the
subway and buses are the most used public transport modes. The subway is punctual
because it uses a non-shared railroad during operation. However, the bus traveling through
the road is relatively poor in punctuality. Therefore, the prediction of bus arrivals time has
been attempted for a long period of time, as mentioned in [28]. However, the bus stop
arrival time turns out to be affected by various factors, although the buses are supposed to
operate according to a preset schedule. Buses have to make frequent stops for a non-fixed



Electronics 2022, 11, 1875 3 of 19

number of passengers to embark and disembark. Buses are sensitive to dynamic traffic
conditions and can be influenced by weather conditions. Therefore, conducting arrival
time prediction is highly challenging. Equipment such as GPS and IoT sensors are used to
reduce prediction errors. However, this incurs a considerable cost. Therefore, researchers
are trying to minimize the error with a relatively lower investment cost by proposing
software-based approaches with improved prediction algorithms.

Recently, several approaches used machine learning approaches such as Linear Re-
gression [23], Random Forest [24], Multiple Linear Regression [25], Kalman filter [29],
KNN(K-Nearest Neighbor) [30], SVM (Support Vector Machine) [18], and ARIMA (Au-
toregressive Integrated Moving Average) [31]. More recently, works such as time series
prediction through Recurrent Neural Network (RNN) [10,11] and DNN (Deep Neural
Network) [9] are worthy mention. Lately, Petersen et al. experimented with a combination
of Convolutional Neural Network (CNN) and RNN for multi-output bus travel time pre-
diction [12]. ALSTM [11] is an approach that combines ANN and LSTM, which showed an
error of about 0.1–0.6 min in MAE, 0.2–1.1 min in RMSE, and 2.8–4.3% in MAPE. In [16],
LSTM was used to learn GPS trajectory to predict with an MAE of 1.6 min and a MAPE
of 4.8%. Moreover, in [20], heterogeneous data were used for LSTM modeling, and the
arrival time was predicted at about 0.4 min in MAE and 20.1% in MAPE. Lingqiu et al. [32]
learned the arrival time pattern separately during peak time and off-peak time. They
reported an RMSE of 0.65–1.12 min and a MAPE of 4.1–17.6% during peak time. Overall,
modeling based on deep neural networks returned better results than the classical machine
learning and statistical approaches. In particular, LSTM has been one of the most frequently
used modeling methods for bus arrival prediction.

Spatial flow patterns were also discussed recently. As presented in [12,33], the authors
found the consideration of the spatial factors in conjunction with the temporal patterns to be
effective. Lee and Yoon introduced TFC-LSTM [8] for predicting traffic speed by embedding
the flow of a traffic network in low dimensions and reported an MAE of 2.50 km/h, an
RMSE of 4.28 km/h, and a MAPE of 10.39%. Moreover, in DeepBTTE [34], which combines
one-dimensional CNN and LSTM neural network, an MAE of 2.13 min, an RMSE 2.875
min, and a MAPE of 6.82% were reported.

Recently, contextual and situational information around the network has been studied.
In [35], holiday status, day of the week, time of the day, temperature, and precipitation
were considered, and the prediction accuracy was reported to be 89.67%. Panovski et
al. [36] used visualized traffic patterns to predict bus arrival time and predicted an MAE of
0.99 min. In [37], the authors generated a vectorized value of the day, time, the distance
between stations, the number of bus stops and their orders on the route, the number of
intersections, and the number of traffic lights for predicting arrival time with an MAE of
4.55 min and a MAPE of 5.99%. Pang et al. [38] produced vectorized values of weather,
events, and past stations through one-hot encoding for the bus arrival time prediction with
an MAE of 0.93 ± 0.36 min, an RMSE of 1.06 ± 0.42, and a MAPE of 18.66 ± 4.05%. Such
long-term predictions were relatively more sensitive to contextual data such as day, time,
temperature, and precipitation.

Several studies utilized GPS information [9,11,13–16,39]. Such approaches are suitable
for highly accurate real-time bus location analysis. For instance, Liu et al. used ALSTM to
predict arrival time with a MAPE of 4%. According to the study in [39], LSTM-NN models
based on the traffic signal and the GPS data were used to predict arrival time with an MAE
of 0.31 min. On the other hand, the approaches discussed in [17–20,40,41] rely on the basic
information such as departure and arrival time logs, dispatch schedules, and distance to
make a longer-term prediction in a fixed time unit. When data are not sufficiently present
at a certain time, these methods may suffer a high margin of errors than the GPS-based
approaches. Prediction based on DA-LSTM devised by Leong et al. [40] showed a MAPE
of 10%, which is less accurate than GPS-based methods.

This paper presents a novel BFC analysis that is keen to unravel the bus flow patterns’
complex nature that can crucially influence the travel time to every bus stop. By conducting
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BFC analysis, we embed the dynamic spatio-temporal features of the bus flows into a
low-dimensional latent vector. Given BFC analysis results, basic bus operation information,
and contextual information such as seasonality and climate conditions, we aim to achieve
highly accurate travel time predictions using LSTM. Table 1 compares our approach against
previous methods. The GPS-based techniques yielded higher accuracy than the previous
approaches that do not use GPS data. However, we achieved a MAPE of 1.19 for more than
100 bus routes and even outperformed all GPS-based methods.

Table 1. Comparison of our approach based on BFC against previous prediction methods.

Model

Data Type Data Range
MAPE

(%)GPS Flow
Embedding Contextual Temporal

Range
Spatial
Range

ALSTM [11] X - - 1 month 1 route 4

Weighted LSTM [16] X - X 8 month 1 route 4.89

LSTM [32] X - - 12 month 1 route 3.6

ConvLSTM [12] X - - 6 month 1 route 4.19

Ensemble ML [41] - - X 1 month 1 route 19.64

LSTM-RNN [38] - - - 1 month 47 routes 11.75

DA-RNN [40] - - X unknown 4 routes 18

BFC-LSTM - X - 1 month 100+ routes 1.19
- X X 1 month 100+ routes 2.90

3. Methodology

Figure 1 describes the overall flow of our BFC-LSTM modeling approach. First, we
retrieve information such as bus network structure and departure/arrival time logs. We
obtained these data from BMS (Bus Management System)/BIS (Bus Information System)
(the data used in this study cannot be directly disclosed as a matter of ownership. An
official request should be made to https://www.open.go.kr/, (accessed on 29 April 2022 )
for approval of the data acquisition) of Korea. We also collect meteorological data such as
temperature and precipitation around every bus stop from systems such as AWS (Automatic
Weather System) of KMA (Korea Meteorological Administration) (the data used in this
study cannot be directly disclosed as a matter of ownership. An official request should
be made to https://data.kma.go.kr/, (accessed on 29 April 2022) for approval of the data
acquisition). These data are organized by days, and we denote holiday status. Using
interpolation, we fill in missing data due to inspection, omission, and error of the collecting
device. After data preprocessing, nine features are extracted through BFC analysis, as
explained in Section 3.1.2. We combine BFC-related features and contextual features such
as climate information and day of the week, bus location, and its placement order on the
route for every bus as an input vector. After normalization and tensor structuring, such a
comprehensive feature set is passed through a recurrent neural network. We employed the
LSTM algorithm to learn the correlation between the input features and arrival times of
buses at every bus stop.

https://www.open.go.kr/
https://data.kma.go.kr/
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Figure 1. The overall procedure for bus flow centrality analysis (BFC) and training for bus arrival
time prediction.

3.1. Feature Extraction

We explain the 26 features of bus traffic: 7 basic features from the bus management
systems, 9 features obtained by running BFC analysis, and 10 contextual features around
every bus stop.

3.1.1. Bus Network Basic Features

Figure 2<a> shows a snapshot of the buses en route at a particular time between bus
stops. Figure 2<b> additionally illustrates separate network information per bus route
based on the information given on A. The stations are expressed as nodes, and the roads
between stations are represented as links. We denote bus routes and buses operating
on those routes. For instance, B1-1 and B1-2 are the buses running on bus route B1. By
using this information representation, we can recognize how individual bus routes flow in
different patterns and which stations and roads can be congested at any point in time.

Figure 2. Buses on the basic road structures and the network per bus routes. Symbols A, B, C, and D
represent bus stops.

Note that buses run on the routes strictly in order without overtaking others due to
safety regulations. We compute the temporal and ordering characteristics of every bus flow
as follows.

• Passing Time PT
PTi,j,k is the required time PT in seconds for the jth bus of the route i to arrive at the
kth stop from the preceding k− 1th stop. PT is the difference between arrival time
AT and departure time DT, as shown in Equation (1). We do not compute starting
station’s PT as there is no preceding station.
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PTi,j,k = ATi,j,k − DTi,j,k−1 (1)

For example, as shown in Figure 2, bus B2-2 arriving at stop C is denoted as ATB2,2,C.
The time taken for bus B2-2 to arrive at stop C from stop B can be expressed as PTB2,2,C.
Moreover, the time at which this bus departs from the next stop C can be expressed as
DTB2,2,C.

• Mean Speed MS
Mean Speed MS (m/s) is PT divided by Distance d as shown in Equation (2). Here, d
is the distance between stop k− 1 and stop k on bus route i.

MSi,j,k =
PTi,j,k

di,k
(2)

• Wait Time WT
Wait Time WT is the amount of time a bus temporarily stays at the bus stop for loading
and unloading passengers or a short break, as shown in Equation (3).

WTi,j,k = DTi,j,k − ATi,j,k (3)

• Inter-Arrival Time I
Inter-Arrival Time I between buses on a bus route is given in Equation (4). We obtain
I by subtracting the time when the j− 1th bus on the bus route i arrived at stop k from
the time when the jth bus on i arrived at the same stop.

Ii,j,k = ATi,j,k − ATi,j−1,k (4)

• Distance d
Distance d in meters is the Euclidean distance between stops and k1 and k− 1 on bus
route i given their coordinates (x, y) as shown in Equation (5).

di,k =
√
(di,kx − di,k−1x )

2 + (di,ky − di,k−1y)
2 (5)

• Current Time CT
Current time CT of AT is the time in which the hour, minute, and second information
is converted into seconds.

• Bus Stop Order Index
The Bus Stop Order Index (BSOI) of k denotes the sequential order of station k for bus
route i. Each bus route is composed of bus stops in a different order. For instance, in
Figure 2, the BSOI of bus stops A, B, C, and D for route B2 are 1, 2, 3, and 4, respectively.

3.1.2. Bus Flow Centrality Analysis Features

BFC (Bus Flow Centrality) analysis is a method of yielding a low-dimensional embed-
ding of spatial flow information from a bus network. As suggested in [8], we selectively
embed significant features of the spatial flows on a large-scale bus network into a lower-
dimension latent vector to prevent memory outage during training and to save training
time. We reduced noise and produced more accurate prediction results by ruling out
irrelevant features.

The spatial flow can be characterized by the in-and-out degrees that we have defined
as follows.

• Individual In Degree I ID
IID refers to a set of times buses took to pass a given stop within a certain amount
of time to pass through a specific link. Suppose ATi,j,k is given. From a preset time
period in the past (LT) to ATi,j,k, we retrieve PT of every bus j on route i passing stop
k via k − 1 (denoted as PTi,j,k). In other words, I IDi,j,k can be regarded as a set of
buses including j and other buses ahead on the same route i that represent the overall
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inbound spatial flows upon the point when j passes bus station k. The pseudo-code
for obtaining I ID is presented in Algorithm 1.
An intuitive example is provided in Figure 3. Bus B1 is en route, passing stops in the
order of H, D, E, F, G, and C. Figure 3a and b show a snapshot at ATi=B1,j=4,k=4 − LT
and ATi=B1,j=4,k=4, respectively, where F is the fourth stop for route B1. Bus B1-4 on
sub-figure a is in between stops D and E. Later on, sub-figure b shows B1-4 arriving
at stop F. In this case, the buses involved in producing I IDi=B1,j=4,k=4 are B1-2, B1-3,
and B1-4.
Spatial flow information is embedded further into a low-dimensional vector. We con-
struct this vector by applying Equations (6)–(8) to a given I ID. The embedding process
is carried out for every stop and every bus. Note that, by using such embedding,
we represent not only spatial information but also the different temporal dynamics of
every bus on the route.

• Individual Out Degree IOD
IOD represents the outbound spatial flow when a bus j leaves station k for bus stop
k + 1. Suppose ATi,j,k is provided. From a preset time period in the past (LT) to
ATi,j,k, we retrieve PT of every bus j on route i that left station k for the next stop k + 1
(denoted as PTi,j,k). IOD is expected to be another factor for influencing the time a
bus takes to reach the next stop. IOD can be obtained by the running the pseudo-code
presented in Algorithm 2.
As shown in Figure 3, buses B1-1 and B1-2 that departed stop G are ahead of B1-4. PT
of B1-1 and B1-2 can provide a clue for B1-4 on the condition of the link to the next
stop.
Likewise, IOD is embedded into a latent vector by applying Equations (6)–(8) for
every stop and every bus.

• Total Out Degree TOD
IOD is computed for a particular route. On the other hand, TOD is a set of PTs of
buses on all routes heading toward the next stop k + 1 from stations k. TOD represents
the aggregate flow pattern on the link to the next stop. Buses not moving to k + 1
are not considered in constructing TOD. For example, in Figure 3, buses on route
B3 are not considered for computing TOD for station G via F. It is because the buses
on B3 head toward stop I from F instead. Set TOD can be obtained by executing
Algorithm 3. TOD is embedded into the latent vector using Equation (6), Equation (7),
and Equation (8). Along with TOD, we keep IODs separately for all stops and buses
to account for microscopic flow patterns that can affect the travel time prediction to
the next stations.

Num o f Set =
Set

∑
i∈Set

Ci (6)

Mean o f Set =
1

Num o f Set

Set

∑
i∈Set

xi (7)

Deviation o f Set =

√√√√ 1
Num o f Set− 1

Set

∑
i∈Set

(xi − x̄)2 (8)
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Algorithm 1: Individual In Degree I ID.

Input: AT list [atj, k], j = 1, 2, · · · , n, k = 1, 2, · · · , m, where each element is an
integer.

1 I ID ← array[n][m] ; // I ID is an empty 2d array

2 for k← 1 to m do
3 for j← 1 to n do
4 I IDj, k ← [ ] ; // I IDj, k is an empty 1d list

5 for x ← 1 to j do
6 if ATj, k − LT < ATx, k ≤ ATj, k then
7 I IDj, k.append(ATx, k) ;

8 return IID

Algorithm 2: Individual Out Degree IOD.

Input: AT list [atj, k], j = 1, 2, · · · , n, k = 1, 2, · · · , m, where each element is an
integer.

1 IOD ← array[n][m] ; // IOD is an empty 2d array

2 for k← 1 to m− 1 do
3 for j← 1 to n do
4 IODj, k ← [ ] ; // IODj, k is an empty 1d list

5 for x ← 1 to j do
6 if ATj, k+1 − LT < ATx, k+1 < ATj, k+1 then
7 IODj, k.append(ATx, k+1) ;

8 return IOD

Algorithm 3: Total Out Degree TOD.

Input: AT list [ati, j, k], j = 1, 2, · · · , n, k = 1, 2, · · · , m, i = 1, 2, · · · , o, where each
element is an integer.

1 TOD ← array[n][m] ; // TOD is an empty 2d array

2 for k← 1 to m− 1 do
3 for j← 1 to n do
4 TODj, k ← [ ] ; // TODj, k is an empty 1d list

5 for i← 1 to o do
6 for x ← 1 to j do
7 if ATj, k+1 − LT < ATi, x, k+1 < ATj, k+1 then
8 TODj, k.append(ATi, x, k+1) ;

9 return TOD
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Figure 3. Snapshot of a sample bus network and snapshot focusing on the bus stop F. Symbols A
through I represent bus stops.

3.1.3. Contextual Features

There are ten contextual features in total. First, we obtained the temperature and
the precipitation around a bus station. We enumerate the seven days of the week, and
we express holidays with a binary value (1 for holidays and 0 for non-holidays). By
such enumeration, we can characterize bus passengers’ seasonality and recurring daily
travel cycles.

3.2. Models

The structure of the input tensor entering the input layer is shown in Figure 4. We
combine the basic seven features of the bus mentioned in Section 3.1.1, nine features
embedded by using BFC analysis as proposed in Section 3.1.2, and ten contextual features
mentioned in Section 3.1.3. The three-dimensional tensor contains the aforementioned
composite features generated over multiple past time windows. The tensors flow through
the block of hidden layers to output the predicted arrival time at the next station.

The neural network models were configured as follows. We set 128 perceptrons for
the LSTM layer with the sigmoid function for the activation at the output layer [42,43]. We
used MSE and Adam [44,45] for the loss function and the optimizer, respectively. We set
the learning rate to 0.01 and epoch to 100 with the early stoppage option enabled. GRU
follows the same parameter setting as LSTM. We added a dense layer of 32 perceptrons
relative to LSTM to construct an ALSTM model. The dense layer of ALSTM uses the ReLU
function for activation.
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Figure 4. Using LSTM for modeling the correlation between the tensors of comprehensive features
and the bus arrival time prediction at every time window.

We compared the performance of our modeling system against other statistical and
deep learning approaches such as Linear Regression [23], Random Forest [24], Multiple
Linear Regression [25], ALSTM [11], and GRU [22].

4. Evaluation

The sources for train data were BMS/BIS and AWS of KMA in Korea. BMS/BIS data
comprise separate files for each date and bus route. Each BMS/BIS file contains the arrival
and departure time logs of the buses on every route. We associated the coordinate of
bus stops to extract features, as mentioned in Section 3.1.1. In addition, as mentioned in
Section 3.1.2, key features of the bus traffic flows were extracted through BFC analysis.
AWS provided precipitation and temperature data around bus stops. We used the data of
the buses operating within the Seoul metropolitan area from 00:00:01 on 1 December 2017
to 00:00:00 on 1 January 2018. The attributes of the data are described in Table 2 along with
basic statistics, units, measurement intervals, and data types. The data were divided into
60% training data, 20% validation data, and 20% test data.

Table 2. Basic bus data attributes.

Data Status Time
(by Bus Stop ID) Temperature Precipitation Day Holiday

Mean - - −1.72 0.00 - -

Median - - −1.7 0.0 - -

Max 1
(Arrival)

1-January-2018
00:00:00 9.5 1.0 1 1

Min 0
(Depart)

01-December-2017
00:00:00 −16.9 0.0 0 0

Unit - DD-MM-YYYY
hh:mm:ss

◦C mm - -

Time
Interval

Each
Bus 1-s 1-min 1-min 1-day 1-day

Type Binary Int Float Float Binary Binary
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Bus departure and arrival times were interpolated with missing values according to
the logic specified in Algorithm 4. There are a few conditions to be aware of, which are
listed as follows:

• Buses pass through stops in order;
• A bus x cannot overtake the other bus y ahead if x and y are on the same route;
• Algorithm 4 implements linear interpolation between two points. However, interpola-

tion cannot be carried out for the time intervals, with consecutive nulls appearing at
the beginning or end of the sequence.

Interpolation is iteratively performed to keep the spatio-temporal order constraints
of the buses. In this case, null values appear at the beginning or end of the sequence, and
exception handling is required, such as excluding the bus as not analyzable.

We trained and tested our model on NVIDIA DGX-1 with an 80-core CPU with 160
threads, 8 Tesla V100 GPUs each with 32 GB of exclusive memory, and 512 GB of RAM.
NVIDIA DGX-1 is operated with Ubuntu 18.04.5 LTS server, and the machine learning jobs
were executed on Docker containers. Machine learning algorithms were implemented with
Python (v3.6.9), Tensorflow (v1.15.0), and Keras (v2.3.1) libraries. The following perfor-
mance indicators were used to measure prediction performance, (1) MAE (Mean Absolute
Error) (Equations (9)); (2) RMSE (Root Mean Squared Error) (Equation (10)); (3) MAPE
(Mean Absolute Percentage Error) (Equation (11)), as our models conduct regression over
continuous arrival time values. We can consider discretizing the time range to intuitively
classify punctuality such as “on time” and “late”. The performance of the classifying ML
algorithms can be statistically analyzed as presented in [46,47]. Punctuality prediction is an
interesting subject for future study.

MAE =
1
n

n

∑
t=1
|yt − ŷt| (9)

RMSE =

√
1
n

n

∑
t=1

(yt − ŷt)2 (10)

MAPE =
1
n

n

∑
t=1

∣∣∣∣yt − ŷt

yt

∣∣∣∣ ∗ 100 (%) (11)
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Algorithm 4: Interpolation function.

Input: Time list T = [tj, k], j = 1, 2, · · · , n, k = 1, 2, · · · , m, where each element is a
time stamp data.

1 for k← 1 to m do
2 if t∀j, k = ∅ then
3 del t∀j, k;

4 for k← 1 to m do
5 if k = 1 or m then
6 for j← 1 to n do
7 if tj, k = null then
8 tj, k = linear interpolation(tj, k) ;

9 t = nanmean(t∀j, k) ;
10 for j← 1 to n do
11 if (tj, k = null) and (tj−1, k 6= null) then
12 tj, k = tj−1, k + t ;

13 for j← n to 1 do
14 if (tj, k = null) and (tj+1, k 6= null) then
15 tj, k = tj+1, k − t ;

16 N = inf ;
17 while ∑ isnull(tj, k) < N do
18 N = ∑ isnull(tj, k) ;
19 for j← 1 to n do
20 for k← 1 to m do
21 if tj, k = null then
22 tj, k = linear interpolation(tj, k) ;

23 for k← 1 to m do
24 for j← 1 to n do
25 if (tj+1, k ≤ tj, k) and (tj, k ≤ tj−1, k) then
26 tj, k = null ;

27 for k← 1 to m do
28 for j← 1 to n do
29 if tj, k = null then
30 tj, k = linear interpolation(tj, k) ;

31 for j← 1 to n do
32 for k← 1 to m do
33 if (tj, k+1 ≤ tj, k) and (tj, k ≤ tj, k−1) then
34 tj, k = null ;

35 if ∑ isnull(tj, k) > 0 then
36 Exception handling required ;

37 return Time list T

4.1. Measuring Prediction Performance

Prediction models were obtained separately for all bus routes. Experimental results
are compiled in Table 3. In this paper, we made predictions for 100 buses operating on
various routes in Seoul. In short, the LSTM model without contextual features showed



Electronics 2022, 11, 1875 13 of 19

the best prediction performance. The source code for BFC analysis and LSTM modeling is
available upon request made to the repository at the following link (https://git.apl.hongik.
ac.kr/ckswofl/Bus_Arrival_Time_Prediction.git, (accessed on 29 April 2022 )).

The Linear Regression model solely relying on passing time information showed
poor performance with a MAPE of 54%. The Random Forest, also using passing time
information only, performed better than the Linear Regression model with a MAPE of
20.8%. The Multi-Linear Regression model performed similarly to Random Forest with
a MAPE of 18.8%. The Multi-Linear Regression model performed well regardless of the
contextual features.

Our LSTM consists of 128 perceptrons. We do not use activation functions other than
for the LSTM layer. Following this layer, we constructed a fully connected layer with one
perceptron to match the shape and the range of the output. For activation [42,43] on the
fully connected layer, the sigmoid function was used. For training, the batch size, the epoch,
and the time window were set to 10, 200, and 5, respectively. We used Adam [44,45] as an
optimizer and configured the learning rate to 0.05. We used MSE for the loss function. With
the early stoppage option switched on, we stopped training if no improvement was made
in terms of MSE after 20 epochs.

The LSTM model using all the features except contextual information showed a
remarkable prediction performance with a MAPE of 1.19%. The MSE values during the
training and the validation phases of neural network models with BFC features are as
shown in Figure 5. The MSE of the LSTM model converged to the minimum at 60 epochs
according. Note that the novel BFC features we defined in this paper boosted performance
significantly. Our LSTM model outperformed GRU and ALSTM by showing 40.5% and
74% lower MAPE, respectively.

Several previous studies found the contextual features to improve prediction perfor-
mance. However, we could not see the benefit of the contextual features in this study. We
suspect the reason to be the limited availability of the data. We expect that the train data
collected over a more extended period can improve the prediction performance by learning
the complex seasonality.

Table 3 shows the feature usage by various modeling approaches. The novel BFC
features can be used in any neural network model. We observed significant accuracy
improvements when BFC features were used. The LSTM model performed the best with
the BFC feature with the lowest MAPE of 1.19%.

Table 4 compares the performance of BFC-based models against non-BFC-based mod-
els in terms of number of perceptrons. As mentioned earlier, LSTM with 128 perceptrons
and the incorporation of BFC features returned the best result.

Table 3. Feature usage by modeling methods.

Model Passing Time
Feature

Basic
Features

BFC
Features

Contextual
Features

MAPE
(%)

Linear Regression X - - - 54.6

Random Forest X - - - 20.8

Multi-Linear Regression X X
X - 18.8
- - 22.4

LSTM X X

X - 1.19
X X 2.91
- - 31.7
- X 34.9

GRU X X
X - 2.03
- - 34.1

ALSTM X X
X - 4.71
- - 38.7

https://git.apl.hongik.ac.kr/ckswofl/Bus_Arrival_Time_Prediction.git
https://git.apl.hongik.ac.kr/ckswofl/Bus_Arrival_Time_Prediction.git
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Figure 5. MSEs during training and validation.

Table 4. Performance of BFC-based models against previous non-BFC-based methods in terms of the
number of perceptrons in the neural networks.

Number of
Perceptrons

Previous Model
MAPE (%)

BFC Model
MAPE (%)

LSTM GRU ALSTM LSTM GRU ALSTM

64 35.0 37.8 42.8 1.64 2.76 5.87

128 31.7 34.1 39.1 1.19 2.03 4.92

256 32.1 34.3 38.7 1.22 2.11 4.71

512 31.9 34.4 39.0 1.21 2.08 4.74

4.2. Measuring the Predictive Performance of Random Forest Models

The detailed MAPE results during the training of the Random Forest model are shown
in Table 5. T is the number of trees in the forest, and D is the maximum allowable depth.
Prediction performance improved with larger T and D. However, no further performance
improvement was observed at D higher than 25. A large-scale Random Forest could neither
capture the complex dynamics of the bus flows nor filter out insignificant data.

Table 5. Performance comparison between Random Forest models.

MAPE
(%)

T
25 50 75 100 150 200

D

10 22.08 21.97 21.95 21.93 21.92 21.91

15 21.29 21.13 21.13 21.03 21.00 20.98

20 21.25 21.02 21.02 20.90 20.87 20.85

25 21.23 21.01 21.01 20.89 20.86 20.84

30 21.26 21.03 21.03 20.91 20.86 20.84

35 21.24 21.02 21.02 20.90 20.86 20.84

4.3. Measuring the Predictive Performance of Multi-Linear Regression Models

The training results of the Multi-Linear Regression model are shown in Table 6. The
BFC features did play a role in improving the results. We varied LT as the time window for
computing the centrality values, and MAPE was the lowest when LT was set at 60 min. A
higher LT value burdens the system as more buses have to be involved in generating I ID,
IOD, and TOD. This model was not sensitive to context features.
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Table 6. Performance comparison between Multi-Linear Regression models.

BFC Features
LT (min.)

With Contextual Features
MAPE (%)

Without Contextual Features
MAPE (%)

- 22.41 22.36

5 21.26 21.22

10 20.36 20.35

15 20.03 20.00

20 19.66 19.66

30 19.24 19.23

45 18.92 18.92

60 18.83 18.83

120 18.84 18.84

180 18.84 18.84

4.4. Measuring the Predictive Performance of LSTM Models

The effect of LT configuration on training results of the LSTM model is shown in
Table 7. LSTM performed the best when LT was set to 10 without contextual features

Table 7. The effect of LT and contextual features on LSTM models.

LT (min.)
With Contextual Features Without Contextual Features

MAE RMSE MAPE (%) MAE RMSE MAPE (%)

5 3.84 8.29 3.71 1.62 4.23 1.65

10 3.09 6.50 3.05 1.15 2.91 1.19

15 2.94 5.75 3.01 1.16 2.92 1.21

20 2.94 5.80 2.98 1.22 2.99 1.26

30 2.88 5.68 2.90 1.32 3.10 1.37

45 3.00 5.80 3.10 1.30 3.12 1.37

60 3.07 5.98 3.09 1.37 3.21 1.42

120 3.08 6.23 3.16 1.43 3.49 1.47

180 3.36 6.51 3.42 1.39 3.25 1.47

Similarly, we observed the effect of the number of past time windows LSTM had to
consider. The results are shown in Table 8. LSTM performed the best with a relatively small
number of time windows. According to BFC, LSTM looking over far-distant past leads
to the incorporation of flows of buses that went farther ahead on the route. Those flows
do not impact the prediction of the travel time from the current station to the next stop.
Therefore, accounting for far-distant bus flows ahead inevitably leads to a higher margin of
errors.
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Table 8. The effect of the number of time windows on LSTM models.

Number of Time Windows MAE RMSE MAPE (%)

5 1.16 2.92 1.19

10 1.33 3.27 1.37

15 1.38 3.38 1.44

20 1.36 3.44 1.40

25 1.42 3.38 1.47

Figure 6A shows the predicted time (PT) of a bus on a particular route passes each
station. The total travel time of the bus up to the last station is shown in Figure 6B. LSTM
makes a highly accurate prediction compared to the actual PT record. Figure 7 shows
the predicted time (PT) buses on a particular route passing a station in order. Despite
the irregularity of the actual PT values between the buses, LSTM modeled without BFC
features returned outstanding prediction results.

Figure 6. Passing times and cumulative passing time of a bus at each bus station.

Figure 7. Passing times of buses on a station.

5. Conclusions

We have presented a novel approach for predicting bus arrival times. In our exper-
iments with actual bus operation data in Seoul, Korea, the short-term spatio-temporal
bus flow patterns embedded in a low-dimensional latent vector with BFC analysis helped
the LSTM model outperform other renowned recurrent neural network models with an
MAE of 1.15 s, an RMSE of 2.91 s, and MAPE of 1.19%. Despite being shorthanded with
limited training data availability by BMS/BIT of Korea and the irregularity present in the
bus operation patterns, the results were outstanding. The performance of our approach is
intriguing as we showed a small margin of error without relying on real-time GPS data.
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The enhanced reliability of the bus operators by predictable route plans can attract
more travelers leading to a revenue increase. Reduced uncertainty can cut the operation
cost by a more efficient deployment plan with respect to buses. Better predictability also
helps bus users to reduce travel planning time and cost significantly. Precisely assessing
the multilateral economic benefits by using simulations is an interesting subject for a
follow-up study.

Despite accurate prediction performance, this study has the following limitations.
First, unlike previous studies [8,35–38], we observed the negative effect of using contextual
features. However, we expect the contextual features to take effect when more training
data are collected. Second, our solution lacks accountability. We plan to improve ac-
countability by adapting XAI (eXplainable Artificial Intelligence) techniques such as GNN
Explainer [48]. As additional future works, we plan to employ GPS data that could further
boost accuracy. Utilizing GPS data entails studying the confrontation of the non-negligible
costs of collecting and preprocessing GPS. We also plan to experiment with the applicability
of our BFC features to more deep learning algorithms such as neural networks with residual
learning [49] and Transformer networks with attention layers [50].
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