
Citation: Saha, A.; Dhara, B.C.; Umer,

S.; AlZubi, A.A.; Alanazi, J.M.; Yurii,

K. CORB2I-SLAM: An Adaptive

Collaborative Visual-Inertial SLAM

for Multiple Robots. Electronics 2022,

11, 2814. https://doi.org/10.3390/

electronics11182814

Academic Editor: Dah-Jye Lee

Received: 13 July 2022

Accepted: 16 August 2022

Published: 6 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

CORB2I-SLAM: An Adaptive Collaborative Visual-Inertial
SLAM for Multiple Robots
Arindam Saha 1 , Bibhas Chandra Dhara 1 , Saiyed Umer 2,* , Ahmad Ali AlZubi 3 , Jazem Mutared Alanazi 4

and Kulakov Yurii 5

1 Department of Information Technology, Jadavpur University, Kolkata 700098, India
2 Department of Computer Science and Engineering, Aliah University, Kolkata 700156, India
3 Computer Science Department, King Saud University, Riyadh 11437, Saudi Arabia
4 Computer Science Department, Community College, King Saud University, Riyadh 11437, Saudi Arabia
5 Department of Computer Engineering, National Technical University of Ukraine “Igor Sikorsky Kyiv

Polytechnic Institute”, Kyiv 03056, Ukraine
* Correspondence: saiyed.umer@aliah.ac.in

Abstract: The generation of robust global maps of an unknown cluttered environment through
a collaborative robotic framework is challenging. We present a collaborative SLAM framework,
CORB2I-SLAM, in which each participating robot carries a camera (monocular/stereo/RGB-D) and
an inertial sensor to run odometry. A centralized server stores all the maps and executes processor-
intensive tasks, e.g., loop closing, map merging, and global optimization. The proposed framework
uses well-established Visual-Inertial Odometry (VIO), and can be adapted to use Visual Odometry
(VO) when the measurements from inertial sensors are noisy. The proposed system solves certain
disadvantages of odometry-based systems such as erroneous pose estimation due to incorrect feature
selection or losing track due to abrupt camera motion and provides a more accurate result. We
perform feasibility tests on real robot autonomy and extensively validate the accuracy of CORB2I-
SLAM on benchmark data sequences. We also evaluate its scalability and applicability in terms of the
number of participating robots and network requirements, respectively.

Keywords: Visual-Inertial Odometry; visual-inertial SLAM; collaborative SLAM; multi-map SLAM;
client–server architecture; heterogeneous camera configuration

1. Introduction

The autonomous navigation of robots requires robust estimation of robot poses (posi-
tion and orientation) as well as 3D scene structure. Visual Simultaneous Localization and
Mapping (VSLAM) [1–5] is the most accepted framework for estimating accurate poses and
scene structure. Hence, VSLAM has become a popular application for unmanned aerial
vehicles (UAVs) as well as unmanned ground vehicles (UGVs). VSLAM has some inherent
problems such as cumulative drift, losing camera track, unknown scale [1], etc., due to
the limitations in VO [1,6,7] estimation, and Visual Inertial SLAM (VISLAM) alleviates
some of such problems because VIO [8–11] uses the measurements from the Inertial Mea-
surement Unit (IMU) to estimate the initial motion. Moreover, visual and IMU sensors
are complementary in nature; therefore, IMU can provide estimations when VO fails. In
general, VIO is expected to produce better pose estimation than VO, but this depends on
the quality of the IMU sensor in terms of accurate measurement data [2]. In practice, noisy
IMU measurements can reduce the quality of combined measurements. Therefore, the
system requires intelligence to validate the IMU measurements before fusing them with
any other sensors.

The use of multiple heterogeneous mobile robots on a big mission is advantageous
because a complicated task can be broken down and allocated to multiple robots based on
their capabilities to reduce the final completion time. A collaborative SLAM framework

Electronics 2022, 11, 2814. https://doi.org/10.3390/electronics11182814 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11182814
https://doi.org/10.3390/electronics11182814
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-8017-171X
https://orcid.org/0000-0003-3731-0005
https://orcid.org/0000-0002-1476-041X
https://orcid.org/0000-0001-8477-8319
https://doi.org/10.3390/electronics11182814
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11182814?type=check_update&version=2


Electronics 2022, 11, 2814 2 of 15

helps multiple robots to navigate in an unknown environment in cooperation, generates a
global environmental map, and shares information among the robots. Information sharing
leads to the rapid exploration of the region and results in a more reliable system because
the system can still function even if one or more robot becomes inoperable. The major
challenges of any collaborative framework are communication among participating robots,
information availability among all robots, fusing partial maps generated by individual
robots, avoiding losing track, the reuse of map information, handling network delays, etc.

In this spirit, we propose a collaborative VISLAM framework, CORB2I-SLAM, where
each participating robot is treated as a client and accompanied by at least one visual
sensor (e.g., monocular/stereo/RGB-D camera) and may carry an IMU. These robots
have limited processing capabilities and navigate using either VIO or VO on a local map
depending on the availability of the IMU. The framework contains a centralized server
with higher processing and larger storage capability. The server receives information from
all participating robots and executes all computationally complex tasks for VSLAM, e.g.,
loop closing, map management and merging, and optimization. The central server shares
optimized information with the respective robots whenever required. The rest of the paper
uses robots, clients, or agents synonymously to indicate the participating robots. Our
proposed system uses Robot Operating System [12] (ROS)-based message passing with
approximate time synchronization. The main contribution of this work can be summarized
as follows:

• A collaborative visual-inertial SLAM framework that supports agents with multiple
types of cameras, such as monocular, stereo, and RGB-D. It can prevent erroneous
IMU pose integration.

• An efficient criterion to estimate the reliability of camera pose and decide the loss of
tracking once the reliability is below a threshold.

• An efficient collaborative SLAM framework design with multi-map operation either
within a single client or among multiple clients. A novel algorithm for efficient map
fusion on the server.

The rest of the paper is organized as follows: Section 2 describes the literature survey
of collaborative VSLAMs and VISLAMs. Section 3 describes our proposed collaborative
framework and our contribution. Section 4 presents the experimental results. Finally,
Section 5 concludes the paper.

2. Related Work

We describe the related work on collaborative SLAMs that use either visual or visual-
inertial sensors. VSLAMs are broadly classified into two categories, feature-based and
direct methods, and we refer to [13,14] for a detailed description of all types of VSLAMs. Re-
searchers mainly choose feature-based VSLAMs for collaborative frameworks, as explained
in [15]. Therefore, we restrict our discussion to feature-based VSLAMs.

Multiple collaborative frameworks are present in [16–18], which use the global fused
map to guide the trajectory estimation of UAVs but never share the global map with the
UAVs. Therefore, these systems are limited to 3D scene reconstruction. Choudhary et al. [19]
propose an object-based distributed SLAM system where all agents exchange information
directly among each other and perform all information fusion on-board, without having
a central instance. The relative localization is based on commonly observed pre-trained
objects. Some recent distributed SLAM systems are proposed in [20–23], which focus on
different aspects (e.g., decentralized place recognition, map overlap identification, efficient
distributed loop closure, data exchange, robustness, etc.) of decentralized collaborative
SLAM. However, the challenges with these distributed systems are that participating robots
must be equipped with high computation processing, assurance of data consistency, and
the avoidance of double-counting of information.

Zou and Tan [24] propose CoSLAM, a centralized collaborative monocular SLAM
capable of handling dynamic environments. The major drawback of this system is that
all cameras are synchronized by observing the same scene at initialization. Forster et al.



Electronics 2022, 11, 2814 3 of 15

propose a collaborative SLAM framework [25] based on the structure from motion pipeline
in a client–server model, but the server never shares optimized information with the agents.
Riazuelo et al. propose C2TAM [26], based on a client–server model where each client
uses PTAM [27] and the server periodically sends back the optimized complete map to
every agent. The system is communication-heavy for a large map in widely distributed
areas. Deutsch et al. present a collaborative framework [28] that allows agents to use
different monocular SLAMs. Each agent is informed only of updates to its local pose
graph by the server and is unaware of sub-maps from other agents. Schmuck and Chli
propose CCM-SLAM [15], a client–server-based collaborative SLAM framework where
each client runs monocular VO on a local map with a fixed number of key frames (KFs)
and does not have any relocalization mechanism after losing the camera track, which is
obvious in a VSLAM scenario. Recently, Richard et al. have presented ORB-Atlas [29], a
multi-map system for a single agent, in which it creates a new sub-map after tracking fails
and merges multiple sub-maps afterwards. The system is not designed for a collaborative
framework. Recently, Ouyang et al. have presented a collaborative framework [30], which
uses a similar design to CCM-SLAM for only UGVs to carry monocular or RGB-D cameras.
The proposed system claims to fuse maps between a monocular camera (without metric
scale) and an RGB-D camera (with scale), but the literature does not provide the mechanism
of such fusion. The proposed system considers each camera as an independent client in
a scenario where a single agent carries multiple cameras, which makes the system more
computationally intensive.

Stefan et al. present an open KF-based visual inertial SLAM (OKVIS) [8] for a single
agent that utilizes non-linear optimization with visual reprojection errors and IMU motion
errors on a sliding window. Tong et al. present a robust corner-feature-based visual
inertial SLAM (VINS-Mono) [31] for a single agent that applies a loosely coupled sensor
fusion initialization but uses pre-integrated IMU measurements before using them for
pose optimization on a sliding window. Recently, Marco et al. proposed a VIO version
of CCM-SLAM, CVI-SLAM [32], for only monocular cameras and used pre-integrated
IMU measurements for the optimization of KF poses. Recently, Campos et al. presented
ORB-SLAM3 [33], a visual-inertial version of ORB-SLAM2 [3] with multi-map support for a
single agent. Jialing et al. present a collaborative visual-inertial SLAM [34] using monocular
cameras for an augmented-reality application in which multiple users interact with their
smartphones. The system is designed as a client–server architecture that models the maps
as deformable maps and all the sub-maps in the fused maps are optimized independently
to solve the problem of common map distortion. Patrik et al. recently present a visual
inertial SLAM for centralized collaboration, COVINS [35], which is also designed as a
client–server architecture and is capable of incorporating twelve agents jointly. All these
proposed visual inertial SLAMs show state-of-the-art (SoA) accuracy on open data sets that
are equipped with good IMU sensors. However, no system is adaptable enough to deal
with noisy sensor measurements.

3. Proposed Methodology
3.1. Framework Description

Figure 1 presents the architecture of our proposed framework. Every client robot
is equipped with at least one monocular/stereo/RGB-D camera, an IMU (optional), a
processing unit, a small memory unit, and a wireless module. The central server contains
high-performance computation capabilities along with large storage and wireless communi-
cation capabilities. The system configuration does not assume any specific configuration of
client robots, so any type of UGV or UAV can participate as a client. If IMU is available, any
agent must try to initialize with VIO and continue with VIO if the biases of the accelerome-
ter and gyroscope, gravity direction, and velocities are estimated correctly; otherwise, VO
only estimation follows. In this context, we assume that the environment is feature-rich
and has sufficient illumination.



Electronics 2022, 11, 2814 4 of 15

Client Robot 1 

Local Map 

(KF & MP) 

Mono/ 

Stereo/ 

RGB-D 

Camera 

Optimizer 
Local BA 

Client Robot N 

Client Manager 1 
Storage Manager 

Server Map Stack 1 

Multiple 

maps 1st Map 

BoW 

Server 

Map 

Manager 

Intra Map Place Recognizer 

Loop 

detection 

Loop 

Merging 

Inter Map Place Recognizer 

Optimizer 
Global BA 

Server Map Stack N 

Client Manager N 

Odometry 
Communication 

Manager 

Communication 

Manager 

Map 

Matching 

Map 

Merging 

Sub map 

re-initialization 

IMU 

Figure 1. CORB2I-SLAM framework architecture.

Each client runs ORB VO/VIO on the local map, which follows a similar design to
ORB-SLAM2. In the present system, the local map structure is a sparse map, and we have
not considered a dense map formulation on the client in order to avoid high computations.
Therefore, the map structure, the KFs, and map points (MPs) follow similar conventions
to ORB-SLAM2 except for their globally unique numbers. At the beginning, every client
receives a unique client identification number (client ID, e.g., client_1, client_2, etc.) from
the server and initializes a local map. The local map with a fixed number (N) of KFs
represents the immediate vicinity of the client; therefore, clients offload the map structure,
including all KFs and MPs, to the server and delete all old KFs and MPs that are not part
of the local map. To reduce communication overhead, the communication messages are
designed for only visual data types. Therefore, the server map contains only visual data.
The server allocates a separate client manager for every client, which handles the data
management for associated clients. Data management includes receiving new KFs and MPs
from the corresponding client and storing them in the appropriate map stack. The server
sends back past KFs and maps to a client only when the server finds that the client reaches
a place near to a past location and the client’s local map does not contain the past location.
If the client finds any matches with these past KFs, the server executes a loop closer. We use
similar map structures for transmission between a client and the server as in CCM-SLAM.
We incorporate a novel reinitialization procedure with a globally unique map into the
framework when any client experiences track-loss. The server runs all computationally
expensive algorithms, namely intra- and inter-map place recognition, map fusion, and
global bundle adjustment (BA) [36]. The server can include more modules based on its
computing power, e.g., dense map creation [37] and scene graph creation [38,39], to realize
semantic information, but these are not considered in the present work. The present
design makes the collaborative functionalities of the framework heavily dependent on the
server’s performance, and the performance decreases with an increase in the number of
active clients.

3.2. Notation

We use C to denote the camera coordinate, W to denote the world coordinate, and B to
denote the body coordinate of the IMU. We use small bold letters to denote vectors and bold
capital letters for matrices. The position and rotation of the world frame W relative to the
i-th camera frame can be described by the rigid body transformation Tw

Ci
∈ SE(3), where

Rw
Ci

is the corresponding rotation matrix and pw
Ci

is the corresponding translation vector. A
landmark is represented as a 3D point κ ∈ R3 with its image projection as u = π(κ) where
u ∈ R2.



Electronics 2022, 11, 2814 5 of 15

3.3. IMU Measurements

The IMU frequency is much higher than that of the visual camera; therefore, we
require performing a pre-integration of the IMU measurements between two consecutive
KFs in order to calculate a relative relationship between the consecutive KFs. We use a
manifold-based pre-integration of IMU measurements to transform IMU measurement
data into visual KF constraints, as proposed in [40]. The residual errors from KF k to KF
k + 1 with this IMU pre-integration model are given in Equation (1).

∆pBk
Bk+1

= RBk
w (pw

Bk
+ vw

Bk
∆tk −

1
2

gw∆t2
k)

− [p̆w
Bk
(b̂

g
, b̂

a
) +

∂p̂w
Bk

∂bg δbg +
∂p̂w

Bk

∂ba δba]

∆vBk
Bk+1

= RBk
w (vw

Bk
− gw∆tk)

− [v̆w
Bk
(b̂

g
, b̂

a
) +

∂v̂w
Bk

∂bg δbg +
∂v̂w

Bk

∂ba δba]

∆RBk
Bk+1

= log ((R̆w
Bk
(b̂

g
Bk
) exp (

∂R̂w
Bk

∂bg δbg))T RBk
w Rw

Bk+1
)

(1)

where ∆pw
Bk

, ∆vw
Bk

and ∆Rw
Bk

denote position, velocity, and rotation, respectively, in IMU
body coordinate at the time of KF k. gw, ba, and bg denote the gravity vector in the
world frame, the biases of the accelerometer, and the biases of the gyroscope, respectively.
Symbols ‘x̆’ and ‘x̂’ denote the bias estimation at the time of pre-integration of variable ‘x’
and the current estimates of the variable ‘x’, respectively. We refer to [40] for a detailed
explanation of the pre-integration method.

3.4. Tracking (Visual-Inertial and Visual)

We follow the strategy as proposed in CVI-SLAM for the initialization of VIO. In
the present system, we first initialize the VO tracking, where we extract ORB features
from two frames, a reference frame, and the current frame, and estimate their poses either
by homography or by fundamental matrix, a similar approach to ORB-SLAM2. After a
successful initialization, we create a map structure with KFs and MPs, where each of them
is identified with a unique identification number formed with a numerical value and the
client id, for example, a KF id (KF_x, client_y), where x and y are numerical values that
indicate KF’s number and client number, respectively, and a MP id (MP_z, client_w), where
z and w are numerical values that indicate MP’s number and client number, respectively.
We keep the distance between two consecutive KFs at 5 to avoid large IMU pre-integration.
The visual structure is optimized using BA with 20 KFs and the gyroscope bias is initialized
in a linear least squares fashion. The unknown scaling parameter for the metric scale,
velocity, and gravity directions are estimated linearly and refined. Once we achieve reliable
estimations in all the steps, we assume that the IMU estimation is correct, and we scale the
visual structure, followed by an alignment with the gravity direction. If the initialization
is unsuccessful, we iterate the process and declare the IMU unstable temporarily if the
initialization fails three times consecutively. Subsequently, we continue with pure VO
estimation as described in ORB-SLAM2. The client system continuously checks for a
nonlinear motion of the client using the estimated poses of the KFs from VO. Once the
nonlinear motion is observed, IMU measurements between the selected KFs are collected,
and IMU estimations are reiterated as described in Section 3.3. We continue with VIO
initialization as described above if we achieve stable IMU estimations; otherwise, we
declare the IMU as permanently unstable.

We extract ORB features on every incoming frame and integrate all the IMU measure-
ments accumulated since the last frame to estimate the motion model. This motion model
helps in predicting the pose of the incoming frame, and a guided search is performed
to find 2D correspondences by projecting the 3D map points into the current frame. We



Electronics 2022, 11, 2814 6 of 15

perform a two-step frame alignment, where the initial alignment is based on the matched
correspondences and further matching correspondences are searched on the frame by
projecting other map points and optimizing the final alignment using motion-only BA on
a local window. Here, we check whether to consider the current frame as a new KF and
store it in the local map. We select the current frame as a new KF if one of the following
conditions is satisfied.

(a) The current frame is 20 frames apart from the last KF.
(b) The current frame observes less than 15 old MPs.
(c) 2D key points cover less than 40% of the image area.

In the case of VO, we follow the process as in underline ORB-SLAM2, and we select
the current frame as a new KF when one of the following conditions is satisfied.

(a) The current frame is 20 frames apart from the last KF.
(b) The current frame observes less than 70 close MPs.
(c) The current frame observes less than 80% MPs than the last KF.
(d) 2D key points cover less than 40% of the image area.

3.5. VO Pose Consistency

The estimated poses using VIO are computed using measurements from IMU, as ex-
plained in Sections 3.3 and 3.4, where the motion estimation of the agent is guided through
the IMU measurements. Whereas the estimated poses using VO are purely based on visual
features that convey a geometric interpretation. Therefore, poses become erroneous when
visual features are not geometrically rich. Therefore, we evaluate the poses of every frame
with a heuristically proposed verification step to declare that the camera tracking is correct
in the case of VO estimation.

Scene Geometry Consistency: Once the detected points are not geometrically rich enough
to carry a geometric interpretation of the structure, then the estimated pose must be
erroneous. We measure the structural continuity of the reconstructed visual structure to
measure the geometric consistency as first proposed in [4]. We extract edges from the RGB
image and reconstruct the longest edge in 3D using sampled points on the selected edge
and the estimated pose of the frame. Afterwards, we check the depth continuity of the
reconstructed 3D points using their positional coordinates. In this case, we try to extract the
line by fitting a line equation, as explained in [41–43], and consider the 3D line segment as
continuous if all the 3D points satisfy the line equation. The basic assumption is that a line
segment would be continuous in 3D if it is continuous in 2D. Once the depth continuity is
broken, we consider that the pose is not accurate enough for tracking.

Pose Observability: Camera pose observability is first proposed in the ORB-Atlas [29].
We use a modified form of pose observability. Camera pose estimation becomes poor
when the tracked features have a very high depth. The 2D motions of such features on
consecutive images are negligible and thus fail to encode the true motion of the camera.
We therefore use the uncertainty of watching a 3D point κi into a camera Ck as Ψκi ,Ck . This
uncertainty is proportional to the observational depth of κi, which encodes a higher depth
point with a higher uncertainty of observability.

The estimated six-degrees-of-freedom (DoF) camera pose of the kth frame is T̂w
Ck

. We
represent the uncertainty of this estimated pose with an unbiased Gaussian vector of
six parameters, ρCk

, which defines the Lie algebra approximation of Tw
Ck

around T̂w
Ck

, as
given in Equation (2).

Tw
Ck

= exp (ρCk
)⊕ T̂w

Ck

ρCk
= (x, y, z, ωx, ωy, ωz) ∼ N (0, CovCk)

CovCk ≈ (
κn

∑
κi

JT
κi ,Ck

Ψκi ,Ck Jκi ,Ck
)
−1

(2)



Electronics 2022, 11, 2814 7 of 15

where n map points are visible on camera Ck. CovCk is the covariance matrix that represents
the observability accuracy of camera Ck, and Jκi ,Ck

is the Jacobian of observability mea-
surement of camera Ck for point κi. Translation is the most weakly estimated parameter in
most of the cases, as described in the ORB-Atlas, and therefore, we try to obtain an error
estimation of translation only with the diagonal values of CovCk . We consider the camera
tracking to be lost either when we find the number of tracked points below the threshold
or when we find the pose consistency to be very low, as described in Equation (2). Figure 2
shows an example of the utilization of pose consistency evaluation, where Figure 2a shows
the GPS ground truth path on the Google map from the Malaga 07 [44] sequence and
Figure 2b shows the erroneous path estimation using ORB-SLAM2. In Figure 2c, P3 indi-
cates the position where the SLAM was initialized, moved towards the position P4 (white
path), and took a u-turn, and the pose consistency failed at the position P1 and went into
track-loss mode. The proposed pose consistency prevents the system from continuing
with erroneous pose estimations that can decrease overall accuracy. Section 3.6 further
describes the re-initialization process after losing the camera track and shows the overall
improvement in accuracy for the example in Figure 2.

a

Figure 2. Accuracy improvement using pose-consistency evaluation. (a) The GPS ground truth path
of Malaga 07 data set [44] on Google map. (b) The map generated using ORB-SLAM2 [3]. (c) The
merged camera track with our pose-consistency evaluation. White and green show the two individual
camera tracks. (d,e) Magnified views show map fusion accuracy.

3.6. Re-Initialization

A client may lose track of an incoming frame either due to erroneous pose estimation
in VO, as described in Section 3.5, or due to the reduction in the number of 3D-2D matched
features. The client tries to relocalize with its own local map for a small user-defined



Electronics 2022, 11, 2814 8 of 15

duration, as in many cases we found that a sudden jerk creates track-loss and regains the
track immediately after the jerk. The client goes into a track-loss mode if the client is unable
to regain the track within the specified time. In this scenario, the client is left with two
options: either it can continue trying to relocalize or it can reinitialize from the beginning
and continue. If the client chooses the first option, autonomy is greatly affected because the
client can only start the navigation after the relocalization, and it can impact the completion
time of the entire mission. If the client chooses the second option, autonomy is restored, but
the trajectory would not be continuous and there would be extra overhead to fuse multiple
sub-maps. We opt for the second option, in which our autonomy is unaffected. In the
present system, the client immediately sends a track-lost notification message to the server
with the last KF id of the local map. The server creates a new map structure for that client
in the corresponding map stack upon receiving the track-lost message and waits till the
last KF is received. The server sends an acknowledgment message with the next available
client id to the client immediately after the last KF is received. The client again reinitializes
from the beginning with the new client id and a new local map and continues with VIO or
VO based on its previous configuration. To avoid ambiguity, each local map uses a globally
unique identifier, which is the associated client id. The message flow diagram is shown in
Figure 3.

Receive track-

lost notification 

(last KF) Wait for 

last KF 

Create a new 

Map 

Send 

acknowledgement 

Server 

Sensor 

Data 

Client Robot 
Tracking in 

Local Map 
Relocalize 

Track-lost 

Notification 

(last KF) 

Receive 

acknowledgement 

Reset with new 

Map id 

NO 

YES 

Tracking 

failed 

Figure 3. Block diagram of information flow after camera tracking fails.

Let us revisit the example in Figure 2, where the agent goes to the track-loss mode at
position P1, as shown in Figure 2c. The agent is reinitialized at position P2 and continues
tracking. Figure 2c shows the camera track (green path) after the re-initialization. The
agent moves towards position P3, and the map-matching module finds matches between
these two maps when the agent arrives at position P3. The map fusion module (Section 3.8)
merges these two maps, and Figure 2c shows the overlapped regions from position P3 to
position P4. The overall accuracy of our estimated camera track is greatly improved from
the ORB-SLAM2 estimation, but the camera track becomes discontinuous between positions
P1 and P2. The camera track enhancement and discontinuity are realized pictorially in
Figure 2a–c.

3.7. Map Structure and Optimization

The local map consists of the nearest N number of KFs from the current location of
the camera and is periodically updated by either inserting a new KF or updating the pose
of an old KF, received from the server. Now the local map structure has KFs with two
different types of connected constraints in the case of VO and VIO. We follow a similar
structure as proposed in CCM-SLAM [15] for VO estimation. In the case of VIO, the KFs
have connected constraints with IMU observation between consecutive KFs and covisibility
constraints with common MPs visibilities. The KFs of map structures in the server have
only covisibility constraints. Therefore, when an old KF is inserted into the local map in
the client, it only contains covisibility constraints, and the local BA excludes such a KF for
further optimization. The local BA runs on a local window of a fixed number of KFs, which
is smaller than the local map size to ensure valid IMU constraints within a small boundary.
The global BA on the server is a vision-only, BA where we make the scale fixed when any
contributed client runs VIO.



Electronics 2022, 11, 2814 9 of 15

3.8. Map Fusion

The place recognizer module uses the ORB-SLAM2 place-recognition technique and
generates a pair of matched KFs along with the associated matched MPs from two different
maps, either from the same client or from multiple clients. The fusion module is well aware
of each client’s sensors for estimating VIO or VO; therefore, it always fuses maps from a
non-metric scale to a metric scale.

Let us assume Fs and Fd are the matched KFs from the maps Ms and Md. The matched
MPs generate one set of 3D–3D point correspondences from Ms to Md and two sets of 3D–
2D point correspondences from Ms to Fd and from Md to Fs. There can be three situations:
(1) both the maps are in the metric scale, (2) only map Md is in the metric scale, and (3) no
maps are in the metric scale.

Case 1: The 3D–3D correspondence set generates a SE(3) transformation [45] T1Md

Ms and
the 3D–2D point correspondence sets generate two more SE(3) transformations T2Md

Ms and

T3Ms

Md , where T3Md

Ms = (T3Ms

Md)
−1

. Finally, an average SE(3) transformation is formulated
by rotation averaging [46] and translation averaging [47,48].

Case 2: Md is only aligned in metric scale, meaning 3D–3D correspondences are not
in the same scale. Therefore, we calculated the scale difference from Ms to Md using
Equation (3).

s =
1
n

n

∑
i,j∈ψ

EMd
i ,Md

j

EMs
i ,Ms

j

(3)

where ψ is the 3D–3D point correspondence set, and EMx
i ,Mx

j
denotes the Euclidean distance

between 3D points i and j in map Mx. The scaled map M̂s = sMs and Md generate a
SE(3) transformation T1Md

M̂s similar to the previous case. The 3D–2D point correspondence

sets generate two more Sim(3) [45] transformations, S2Md

Ms and S3Ms

Md , and we calculate an
average Sim(3) transformation by rotation averaging and translation averaging.

Case 3: We follow a similar process as proposed in CCM-SLAM.
These calculated transformations in all three cases allow us to create a new map

structure M f , where map Ms is inserted after using the transformation and Md enters
directly. Both clients obtain access to the fused map M f . Global BA [36] runs after map
fusion. Figure 2c–e show an accurate map fusion using the proposed map fusion module.

3.9. Communication Bandwidth Requirement

Any new KF and MP that is created by a client is shared with the server with the
whole data structure, including 2D features, their feature descriptors, and associated 3D
map points. The average size is 56 KB for a new KF, considering 1000 feature points, and
200 bytes for a new MP. Any retransmission of an old KF or MP between client and server
requires 148 bytes and 52 bytes, respectively, as any retransmission does not send old 2D
feature points. The rest of the communication messages between the server and the client
are of negligible bandwidth because the message passing executes on the occurrence of
any event.

4. Experimental Results

We evaluate CORB2I-SLAM extensively on open sequences (EuRoC [49], Freiburg2 [50])
as well as in real autonomy with a total of five experiments. Section 4.1 presents Experiment 1
to show the accuracy of a single agent, and Section 4.2 presents Experiment 2 to show the
map merging accuracy among multiple agents with homogeneous cameras. Section 4.3
presents Experiment 3 and 4 to show the map-merging accuracy among multiple agents
with heterogeneous cameras, and finally, Section 4.4 presents Experiment 5, which shows
the map fusion in real flight. Experiments 1–3 are performed on EuRoC [49] sequences and
Experiment 4 is performed on Freiburg2 [50] sequences. Every client uses a standard laptop
with an Intel Core i5-5200, four cores @2.2GHz and 4 GB of RAM while executing open



Electronics 2022, 11, 2814 10 of 15

sequences. The server uses another laptop with an Intel Core i7-8750H, 12 cores @ 2.20 GHz,
and 16 GB of RAM, and we found this server performs without any delay with six active
clients, but it lags once the number of active clients increases further. The real autonomy is
tested on a Tarot drone with an NVidia Jetson TX2 board with an Intel RealSense D435i RGB-D
camera. The server remains the same laptop in real autonomy. The communication is over
a dedicated 4G wireless network. We assign values to multiple parameters experimentally,
where we keep N = 30 KFs in the local map for on-board VIO/VO calculation and 15 KFs for
local BA in all our experiments. The errors are estimated as the Root Mean Square (RMS) of
Absolute Translation Error (ATE) and presented as the average value of 10 executions.

4.1. Experiment 1: Single-Agent Accuracy

We evaluate the basic accuracy of CORB2I-SLAM on a single agent, where CORB2I-
SLAM is evaluated with IMU and without IMU. We calculate the RMS ATE and compare it
with the SoA VIO- or VO-based methods. Table 1 presents the details of the comparisons,
where the values of CVI-SLAM [32] are taken from the author’s publication because of a
closed source. The estimated trajectories are aligned with an SE(3) transformation before
the ATE calculation. The symbol ‘X’ indicates that the open source implementation either
does not support such a configuration or is not present in the author’s publication. Vision-
only CORB2I-SLAM experienced three tracking failures while executing the V203 sequence,
resulting in the creation of new maps. Therefore, the value in Table 1 shows up after
all four maps are merged. The accuracy of CORB2I-SLAM is comparable with that of
SoA. ORB-SLAM3 [33] shows marginally better accuracy in some cases because of better
loop corrections. The accuracy of CORB2I-SLAM (without IMU) indicates that using an
IMU is not always beneficial, as IMU measurements are noisy in many cases, and the
CORB2I-SLAM framework is adaptive to detect and reject very noisy IMU measurements.

Table 1. The RMS ATE (meter) of single agent for experiments on EuRoC sequences [49]. ‘⇐’, ‘⇔’,
and ‘m’ indicate monocular, stereo, and IMU usage, respectively. ‘*’ indicates the trajectories are
scaled off-line because the metric scale is not present.

VINS CCM * CVI ORB-SLAM3 CORB2I CORB2I
Data Set ⇐m ⇐ ⇐m ⇔m ⇔m ⇔

MH01 0.120 0.113 0.085 0.036 0.035 0.034
MH02 0.120 0.089 0.063 0.033 0.034 0.037
MH03 0.102 0.078 0.065 0.035 0.036 0.036
MH04 0.155 0.138 0.293 0.051 0.045 0.133
MH05 0.136 0.129 0.081 0.082 0.059 0.078
V103 0.190 X X 0.024 0.023 0.048
V203 0.220 X X 0.024 0.022 0.129

4.2. Experiment 2: Multiple Agents Map Fusion Accuracy

We evaluate the map fusion accuracy on EuRoC sequences [49], where multiple clients
run in parallel. Table 2 presents a comparative analysis with SoA, where the comparison
shows a good improvement in accuracy with the merged map. This is due to our novel
multi-constrained map fusion approach and a strongly constrained loop-closer correction.
Information sharing among clients helps in more accurate localization. The comparison
clearly shows that accuracy increases in collaboration as compared with the values in
Table 1.



Electronics 2022, 11, 2814 11 of 15

Table 2. The RMS ATE (meter) of multiple agents for experiments on EuRoC sequences. † indicates
that the sequences are run sequentially because the system is designed for a single agent and the rest
of the symbols have the same meanings as in Table 1.

VINS † CCM * CVI ORB- CORB2I CORB2I
SLAM3 †

Data Set ⇐m ⇐ ⇐m ⇔m ⇔m ⇔
MH01,02 0.159 0.097 0.050 0.035 0.028 0.036
MH01,02, 0.192 0.092 X 0.037 0.029 0.035

03
MH01,02, 0.239 0.079 X 0.051 0.034 0.069

03,04
MH01,02, 0.278 X X 0.086 0.035 0.052
03,04,05

Figure 4 shows the outcome of two experiments pictorially. Figure 4a shows a snapshot
of the first experiment on EuRoC MH04 and MH05 sequences running VIO on two different
clients (trajectories are in white and green), where white covisibility edges represent KFs
from one client, whereas red covisibility edges show KFs from multiple clients and MPs.
The inlet shows the magnified view of the merged map. Figure 4b shows a snapshot of
the second experiment on EuRoC MH01 and MH02 sequences running on two different
clients. The client executing the MH01 sequence has limited computing power and fails to
track twice due to frame skipping, but reinitializes immediately. The camera trajectories of
sub-maps are shown in white, blue, and purple. CORB2I-SLAM merges all sub-maps.

a b 

Figure 4. Snapshots of the CORB2I-SLAM map fusion experiment on EuRoC sequences [49]. (a) Map
fusion among multiple agents. (b) Map fusion in a single agent as well as multiple agents.

4.3. Experiment 3 and 4: Map Fusion with Heterogeneous Sensor

We use two sequences from the Freiburg2 data set [50] in these experiments where
we run CORB2I-SLAM without IMU integration. Experiment 3 and experiment 4 use
the same data sequences in the clients, but client_1 runs VO on monocular images in
experiment 3 and RGB-D images in experiment 4. Table 3 presents the quantitative details
of these two experiments. The RMS ATE values in our collaborative framework show great
improvement in the case of experiment 3 compared with experiment 4. The reason for the
higher accuracy is early map fusion. The values show that localization estimation improves
a great deal in the case of faster map fusion or information sharing.



Electronics 2022, 11, 2814 12 of 15

Table 3. Quantitative details for experiment on Freiburg2 sequences.

Experiment 3 Experiment 4
Client_1 Client_2 Client_1 Client_2

Sequence f r2/xyz f r2/rpy f r2/xyz f r2/rpy

Sensor Type Monocular RGB-D RGB-D RGB-D

Merging time offset (sec) 31.84 46.27

Single agent RMS ATE (m) 0.002438 0.033917 0.0046 0.033917

CORB2I-SLAM RMS ATE (m) 0.008357 0.034113

4.4. Experiment 5: Map Fusion on Real Autonomy

We use one Tarot drone in the outdoor and navigate using preset GPS way points.
We found the GPS point-based navigation to be quite erroneous; therefore, ground-truth
verification was excluded. Two clients run sequentially on a single drone. The start
coordinates of the two sequences were kept 3 meters apart, and each trajectory was about
55 meters long. In this experiment, we evaluate the proposed adaptive VIO- or VO-selection
mechanism. We use a noisy mem-based IMU to test the framework, where the IMU based
initialization is unsuccessful every time and continues with monocular VO. Here, we
choose monocular instead of RGB-D because of the long-range depth, which is beyond the
depth-sensing range of RealSense D435i. The camera tracking fails multiple times for both
the clients due to fast rotation, but the clients are reinitialized. The framework is able to
fuse the sub-maps of client_2 with the biggest sub-map of client_1 after 11.3 seconds of
client_2 execution. Figure 5 shows the intermediate trajectories and the fused trajectories
with MPs.

a 

b 

c e g 

h d f 
Figure 5. Test on real autonomy: Each column shows the camera view and corresponding map.
(a,c) show camera views of client_1. (e,g) show camera views of client_2. (b,d) show the camera
trajectories of client_1. (f) shows the camera trajectories of client_1 and client_2 before fusion.
(h) shows the entire fused map of client_1 and client_2.

4.5. Execution Time

We evaluate CORB2I-SLAM execution on EuRoC MH01 to MH04 sequences. The
on-board execution of any client is independent of the total number of participating clients;
therefore, the execution time is similar for single and multiple clients. The tracking thread
takes on average 36 ms, the mapping thread takes 240 ms to 245 ms, and communication
takes about 0.28 ms. Server performance changes with the number of KFs to be processed for



Electronics 2022, 11, 2814 13 of 15

an operation. Figure 6 shows the average execution time for computing the transformation
for a loop closing and map merging.

0

300

600

900

1200

0 200 400 600 800 1000 1200

Loop Closing Transformation Map Merging

No. of KFs for calculation

T
im

e 
[m

s]

Figure 6. The server execution time against a given number of KFs to be processed. The values are
tested on EuRoC MH01 to MH04 sequences with an average of 5 executions.

5. Conclusions

We present a novel architecture of a centralized collaborative SLAM framework for
heterogeneous vision sensors and inertial sensors. In this centralized architecture, client
robots are considered with limited computation capabilities and a central server with
higher computation capabilities. The framework allows the clients to run either VO or
VIO independently without any server dependency, and it is designed to adapt to detect
noisy inertial sensors and exclude them in pose estimation. We proposed a new criterion
to estimate the accuracy of poses and reinitialize with a sub-map in the case of tracking
being inaccurate. The sub-maps can be fused into a single map once a match is found
among multiple maps. We also propose a novel map-merging procedure between a non-
metric scale map and a metric scale map that produces better accuracy compared to SoA
techniques. We evaluate our proposed framework extensively on open data sets as well as
in real flight and show better accuracy. The CORB2I-SLAM may not have better accuracy
on sudden illumination changes or low-light conditions. We keep such enhancements in
the scope of future work.

Author Contributions: Original Draft Preparation, Conceptualization, Methodology, Formal Anal-
ysis, A.S.; Supervision, Investigation, Methodology B.C.D.; Conceptualization, Formal Analysis
S.U.; Validation K.Y.; Acquisition J.M.A.; Funding A.A.A. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the Researchers Supporting Project (No. RSP-2021/395), King
Saud University, Riyadh, Saudi Arabia.

Institutional Review Board Statement: Approval by an ethics committee or institutional review
board is not required for this manuscript. This research respects all the sentiments, dignity, and
intrinsic values of animals or humans.

Informed Consent Statement: Not applicable.

Data Availability Statement: In this manuscript, the employed data sets were taken with license
agreements from the corresponding institutions with proper channels.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Scaramuzza, D.; Fraundorfer, F. Visual Odometry [Tutorial]. IEEE Robot. Autom. Mag. 2011, 18, 80–92. [CrossRef]
2. Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J. Past, Present, and Future of

Simultaneous Localization and Mapping: Toward the Robust-Perception Age. IEEE Trans. Robot. 2016, 32, 1309–1332. [CrossRef]
3. Mur-Artal, R.; Tardos, J. ORB-SLAM2: An open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans.

Robot. 2017, 33, 1255–1262. [CrossRef]
4. Maity, S.; Saha, A.; Bhowmick, B. Edge slam: Edge points based monocular visual slam. In Proceedings of the IEEE International

Conference on Computer Vision (ICCV) Workshops, Venice, Italy, 22–29 October 2017.

http://doi.org/10.1109/MRA.2011.943233
http://dx.doi.org/10.1109/TRO.2016.2624754
http://dx.doi.org/10.1109/TRO.2017.2705103


Electronics 2022, 11, 2814 14 of 15

5. Yang, S.; Scherer, S. Direct Monocular Odometry Using Points and Lines. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 3871–3877.

6. Fraundorfer, F.; Scaramuzza, D. Visual Odometry: Part II - Matching, Robustness, and Applications. IEEE Robot. Autom.
Mag.-IEEE Robot. Autom. 2012, 19, 78–90. [CrossRef]

7. Alkendi, Y.; Seneviratne, L.; Zweiri, Y. State of the Art in Vision-Based Localization Techniques for Autonomous Navigation
Systems. IEEE Access 2021, 9, 76847–76874. [CrossRef]

8. Leutenegger, S.; Furgale, P.; Rabaud, V.; Chli, M.; Konolige, K.; Siegwart, R. Keyframe-based visual-inertial SLAM using nonlinear
optimization. Int. J. Robot. Res. 2015, 34, 314–334. [CrossRef]

9. Yang, Y.; Geneva, P.; Eckenhoff, K.; Huang, G. Visual-Inertial Odometry with Point and Line Features. In Proceedings of the 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 2447–2454.
[CrossRef]

10. Scaramuzza, D.; Zhang, Z. Visual-Inertial Odometry of. In Encyclopedia of Robotics; Springer: Berlin/Heidelberg, Germany, 2020;
pp. 1–9. [CrossRef]

11. Li, H.; Stueckler, J. Visual-Inertial Odometry With Online Calibration of Velocity-Control Based Kinematic Motion Models. IEEE
Robot. Autom. Lett. 2022, 7, 6415–6422. [CrossRef]

12. Quigley, M.; Gerkey, B.; Conley, K.; Faust, J.; Foote, T.; Leibs, J.; Berger, E.; Wheeler, R.; Ng, A. Ros: An open-source robot
operating system. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) Workshop on Open
Source Software, Kobe, Japan, 12–17 May 2009.

13. Chen, W.; Shang, G.; Ji, A.; Zhou, C.; Wang, X.; Xu, C.; Li, Z.; Hu, K. An Overview on Visual SLAM: From Tradition to Semantic.
Remote. Sens. 2022, 14, 3010. [CrossRef]

14. Macario Barros, A.; Michel, M.; Moline, Y.; Corre, G.; Carrel, F. A Comprehensive Survey of Visual SLAM Algorithms. Robotics
2022, 11, 24. [CrossRef]

15. Schmuck, P.; Chli, M. CCM-SLAM: Robust and efficient centralized collaborative monocular simultaneous localization and
mapping for robotic teams. J. Field Robot. 2018, 36, 763–781. [CrossRef]

16. Loianno, G.; Mulgaonkar, Y.; Brunner, C.; Ahuja, D.; Ramanandan, A.; Chari, M.; Diaz, S.; Kumar, V. A swarm of flying
smartphones. In Proceedings of the International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14
October 2016; pp. 1681–1688.

17. Schwager, M.; Dames, P.; Rus, D.; Kumar, V. A multi-robot control policy for information gathering in the presence of unknown
hazards. In Robotics Research; Springer: Cham, Switzerland, 2017; pp. 455–472.

18. Kushleyev, A.; Mellinger, D.; Powers, C.; Kumar, V. Towards a swarm of agile micro quadrotors. Auton. Robot. 2013, 35, 287–300.
[CrossRef]

19. Choudhary, S.; Carlone, L.; Nieto, C.; Rogers, J.; Christensen, H.; Dellaert, F. Distributed mapping with privacy and communica-
tion constraints: Lightweight algorithms and object-based models. Int. J. Robot. Res. 2017, 36, 1286–1311. [CrossRef]

20. Egodagamage, R.; Tuceryan, M. Distributed monocular slam for indoor map building. J. Sens. 2017. [CrossRef]
21. Giamou, M.; Khosoussi, K.; How, J. Talk resource-efficiently to me: Optimal communication planning for distributed loop closure

detection. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia,
21–25 May 2018; pp. 1–9.

22. Cieslewski, T.; Choudhary, S.; Scaramuzza, D. Data-efficient decentralized visual slam. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 2466–2473.

23. Zhang, H.; Chen, X.; Lu, H.; Xiao, J. Distributed and collaborative monocular simultaneous localization and mapping for
multi-robot systems in large-scale environments. Int. J. Adv. Robot. Sys. 2018, 15. [CrossRef]

24. Zou, D.; Tan, P. Coslam: Collaborative visual slam in dynamic environments. IEEE Trans. Pattern Anal. Mach. Intell. 2013,
35, 354–366. [CrossRef] [PubMed]

25. Forster, C.; Lynen, S.; Kneip, L.; Scaramuzza, D. Collaborative monocular slam with multiple micro aerial vehicles. In Proceedings
of the International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 3962–3970.

26. Riazuelo, L.; Civera, J.; Montiel, J. Coslam: Collaborative visual slam in dynamic environments. Robot. Auton. Syst. 2014,
62, 401–413. [CrossRef]

27. Klein, G.; Murray, D. Parallel Tracking and Mapping for Small AR Workspaces. In Proceedings of the Sixth IEEE and ACM
International Symposium on Mixed and Augmented Reality (ISMAR’07), Nara, Japan, 13–16 November 2007; pp. 225–234.

28. Deutsch, I.; Liu, M.; Siegwart, R. A framework for multi-robot pose graph slam. In Proceedings of the IEEE International
Conference on Real-time Computing and Robotics (RCAR), Angkor Wat, Cambodia, 6–10 June 2016; pp. 567–572.

29. Elvira, R.; Tardos, J.; Montiel, J. Orbslam-atlas: A robust and accurate multi-map system. In Proceedings of the International
Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 6253–6259.

30. Ouyang, M.; Shi, X.; Wang, Y.; Tian, Y.; Shen, Y.; Wang, D.; Wang, P. A Collaborative Visual SLAM Framework for Service
Robots. In Proceedings of the International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27
September–1 October 2021; pp. 8679–8685.

31. Qin, T.; Li, P.; Shen, S. Vins-mono: A robust and versatile monocular visual-inertial state estimator. IEEE Trans. Robot. 2018,
34, 1004–1020. [CrossRef]

http://dx.doi.org/10.1109/MRA.2012.2182810
http://dx.doi.org/10.1109/ACCESS.2021.3082778
http://dx.doi.org/10.1177/0278364914554813
http://dx.doi.org/10.1109/IROS40897.2019.8967905
http://dx.doi.org/10.1007/978-3-642-41610-1_71-1
http://dx.doi.org/10.1109/LRA.2022.3169837
http://dx.doi.org/10.3390/rs14133010
http://dx.doi.org/10.3390/robotics11010024
http://dx.doi.org/10.1002/rob.21854
http://dx.doi.org/10.1007/s10514-013-9349-9
http://dx.doi.org/10.1177/0278364917732640
http://dx.doi.org/10.1155/2017/6842173
http://dx.doi.org/10.1177/1729881418780178
http://dx.doi.org/10.1109/TPAMI.2012.104
http://www.ncbi.nlm.nih.gov/pubmed/22547430
http://dx.doi.org/10.1016/j.robot.2013.11.007
http://dx.doi.org/10.1109/TRO.2018.2853729


Electronics 2022, 11, 2814 15 of 15

32. Karrer, M.; Schmuck, P.; Chli, M. Cvi-slam-collaborative visual-inertial slam. IEEE Robot. Autom. Lett. 2018, 3, 2762–2769.
[CrossRef]

33. Campos, C.; Elvira, R.; Rodriguez, J.; Montiel, J.; Tardos, J. ORB-SLAM3: An Accurate Open-Source Library for Visual,
Visual-Inertial, and Multimap SLAM. IEEE Trans. Robot. 2021, 37, 1874–1890. [CrossRef]

34. Liu, J.; Liu, R.; Chen, K.; Zhang, J.; Guo, D. Collaborative Visual Inertial SLAM for Multiple Smart Phones. In Proceedings of the
2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 11553–11559.
[CrossRef]

35. Schmuck, P.; Ziegler, T.; Karrer, M.; Perraudin, J.; Chli, M. COVINS: Visual-Inertial SLAM for Centralized Collaboration. In
Proceedings of the 2021 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Bari, Italy,
4–8 October 2021; IEEE Computer Society: Los Alamitos, CA, USA, 2021; pp. 171–176. [CrossRef]

36. Triggs, B.; McLauchlan, P.; Hartley, R.; Fitzgibbon, A. Bundle Adjustment—A Modern Synthesis. In International Workshop on
Vision Algorithms: Theory and Practice; Springer: Berlin/Heidelberg, Germany, 2000; pp. 298–372.

37. Matsuki, H.; Scona, R.; Czarnowski, J.; Davison, A.J. CodeMapping: Real-Time Dense Mapping for Sparse SLAM using Compact
Scene Representations. IEEE Robot. Autom. Lett. 2021, 6, 7105–7112. [CrossRef]

38. Zhang, S.; Li, S.; Hao, A.; Qin, H. Knowledge-inspired 3D Scene Graph Prediction in Point Cloud. In Proceedings of the Advances in
Neural Information Processing Systems; Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W., Eds.; Curran Associates,
Inc.: New York, NY, USA, 2021; Volume 34, pp. 18620–18632.

39. Wu, F.; Yan, F.; Shi, W.; Zhou, Z. 3D scene graph prediction from point clouds. Virtual Real. Intell. Hardw. 2022, 4, 76–88.
[CrossRef]

40. Forster, C.; Carlone, L.; Dellaert, F.; Scaramuzza, D. On-Manifold Preintegration for Real-Time Visual–Inertial Odometry. IEEE
Trans. Robot. 2017, 33, 1–21. [CrossRef]

41. Chen, T.; Wang, Q. 3D Line Segment Detection for Unorganized Point Clouds from Multi-view Stereo. In Asian Conference on
Computer Vision; Springer: Berlin/Heidelberg, Germany, 2011; pp. 400–411.

42. Lin, Y.; Wang, C.; Cheng, J.; Chen, B.; Jia, F.; Chen, Z.; Li, J. Line segment extraction for large scale unorganized point clouds.
ISPRS J. Photogramm. Remote Sens. 2015, 102, 172–183. [CrossRef]

43. Tian, P.; Hua, X.; Tao, W.; Zhang, M. Robust Extraction of 3D Line Segment Features from Unorganized Building Point Clouds.
Remote Sens. 2022, 14, 3279. [CrossRef]

44. Blanco, J.; Moreno, F.; Gonzalez-Jimenez, J. The malaga urban dataset: High-rate stereo and lidars in a realistic urban scenario.
Int. J. Robot. Res. 2014, 33, 207–214. [CrossRef]

45. Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004.
46. Hartley, R.; Trumpf, J.; Dai, Y.; Li, H. Rotation averaging. Int. J. Comput. Vis. 2013, 103, 267–305. [CrossRef]
47. Cui, Z.; Tan, P. Global structure-from-motion by similarity averaging. In Proceedings of the IEEE International Conference on

Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 864–872.
48. Zhuang, B.; Cheong, L.; Lee, G. Baseline desensitizing in translation averaging. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4539–4547.
49. Burri, M.; Nikolic, J.; Gohl, P.; Schneider, T.; Rehder, J.; Omari, S.; Achtelik, M.; Siegwart, R. The EuRoC MAV Datasets. Int. J.

Robot. Res. 2016, 35, 1157–1163. [CrossRef]
50. Sturm, J.; Engelhard, N.; Endres, F.; Burgard, W.; Cremers, D. A Benchmark for the Evaluation of RGB-D SLAM Systems.

In Proceedings of the International Conference on Intelligent Robots and Systems (IROS), Vilamoura-Algarve, Portugal, 7–12
October 2012; pp. 573–580.

http://dx.doi.org/10.1109/LRA.2018.2837226
http://dx.doi.org/10.1109/TRO.2021.3075644
http://dx.doi.org/10.1109/ICRA48506.2021.9561946
http://dx.doi.org/10.1109/ISMAR-Adjunct54149.2021.00043
http://dx.doi.org/10.1109/LRA.2021.3097258
http://dx.doi.org/10.1016/j.vrih.2022.01.005
http://dx.doi.org/10.1109/TRO.2016.2597321
http://dx.doi.org/10.1016/j.isprsjprs.2014.12.027
http://dx.doi.org/10.3390/rs14143279
http://dx.doi.org/10.1177/0278364913507326
http://dx.doi.org/10.1007/s11263-012-0601-0
http://dx.doi.org/10.1177/0278364915620033

	Introduction
	Related Work
	Proposed Methodology
	Framework Description
	Notation
	IMU Measurements
	Tracking (Visual-Inertial and Visual)
	VO Pose Consistency
	Re-Initialization
	Map Structure and Optimization
	Map Fusion
	Communication Bandwidth Requirement

	Experimental Results
	Experiment 1: Single-Agent Accuracy
	Experiment 2: Multiple Agents Map Fusion Accuracy
	Experiment 3 and 4: Map Fusion with Heterogeneous Sensor
	Experiment 5: Map Fusion on Real Autonomy
	Execution Time

	Conclusions
	References

